
Conditional Independence in Testing Bayesian Networks

Yujia Shen 1 Haiying Huang 1 Arthur Choi 1 Adnan Darwiche 1

Abstract
Testing Bayesian Networks (TBNs) were intro-
duced recently to represent a set of distributions,
one of which is selected based on the given evi-
dence and used for reasoning. TBNs are more ex-
pressive than classical Bayesian Networks (BNs):
Marginal queries correspond to multi-linear func-
tions in BNs and to piecewise multi-linear func-
tions in TBNs. Moreover, TBN queries are uni-
versal approximators, like neural networks. In
this paper, we study conditional independence
in TBNs, showing that it can be inferred from
d-separation as in BNs. We also study the role
of TBN expressiveness and independence in deal-
ing with the problem of learning with incomplete
models (i.e., ones that miss nodes or edges from
the data-generating model). Finally, we illustrate
our results on a number of concrete examples, in-
cluding a case study on Hidden Markov Models.

1. Introduction
Testing Bayesian Networks (TBNs) were introduced re-
cently, motivated by an expressiveness gap between
Bayesian and neural networks (Choi & Darwiche, 2018).
The basic observation here is that neural networks are univer-
sal approximators, which means that they can approximate
any continuous function to an arbitrary error1(Hornik et al.,
1989; Cybenko, 1989; Leshno et al., 1993). However, for
Bayesian networks (BNs), a joint marginal query is a multi-
linear function of evidence and a conditional marginal query
corresponds to a quotient of multi-linear functions.

The main insight behind TBNs is that a TBN represents a set
of distributions instead of just one. Moreover, one of these
distributions is selected based on the given evidence and
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1Typically, the function is assumed to be defined on a compact
set (i.e., closed and bounded) and hence uniformly continuous.

used for reasoning. As a result, in a TBN, a joint marginal
query corresponds to a piecewise multi-linear function and
a conditional marginal query corresponds to a quotient of
such functions. TBNs were shown to be universal approxi-
mators in the following sense. Any continuous function can
be approximated to an arbitrary error by a marginal query on
a carefully crafted TBN (under similar assumptions to those
used in neural networks). Therefore, as function approxima-
tors, TBNs are as expressive as neural networks. Moreover,
TBNs are more expressive than BNs as they can capture
some relations between evidence and marginal probabilities
that cannot be captured by BNs.

We further investigate TBNs in this paper from several an-
gles. First, we consider the notion of conditional indepen-
dence, which is somewhat subtle in TBNs since the addition
of evidence can change the distribution selected by a TBN
for reasoning. In particular, we show that conditional inde-
pendence can still be inferred from the structure of a TBN
using the classical notion of d-separation despite this more
dynamic behavior. Next, we consider some situations in
discriminative learning where the expressiveness of TBNs
provide an advantage. In particular, we consider learning
with incomplete BNs, which miss some nodes or edges from
the data-generating BN, showing analytically how TBNs
can help alleviate this problem. Finally, we extend and fur-
ther analyze the mechanism used by TBNs for selecting
distributions based on evidence, which increases the reach
of TBNs and tightens our understanding of their semantics.

This paper is structured as follows. We review TBNs in
Section 2 and then extend their dependence on evidence in
Section 3. We study conditional independence in Section 4,
proving it can be inferred from d-separation as in BNs. We
then consider discriminative learning in Section 5, showing
how TBNs can help alleviate the problem of learning with
incomplete models. We follow by a case study in Section 6
on Hidden Markov Models and the associated problem of
missing temporal dependencies. We finally close with some
concluding remarks in Section 7. Proofs of results are dele-
gated to Appendix in the supplementary material.

2. Testing Bayesian Networks
A Testing Bayesian Network (TBN) is a BN whose CPTs
are selected dynamically based on the given evidence.
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Consider a BN that contains a binary node X having a
single binary parent U . The CPT for node X contains one
distribution on X for each state u of its parent:

U X
u x θx|u
u x̄ θx̄|u
ū x θx|ū
ū x̄ θx̄|ū

In a TBN, nodeX can be testing, requiring two distributions
on X for each state u of its parent, and a threshold for each
state u, which is used to select one of these distributions:

U X
u x Tu θ+

x|u θ−x|u
u x̄ θ+

x̄|u θ−x̄|u
ū x Tū θ+

x|ū θ−x|ū
ū x̄ θ+

x̄|ū θ−x̄|ū

The selection of distributions utilizes the posterior on parent
U given some of the evidence onX’s non-descendants.2 For
parent state u, the selected distribution on X is (θ+

x|u, θ
+
x̄|u)

if the posterior on u is ≥ Tu; otherwise, it is (θ−x|u, θ
−
x̄|u).

For parent state ū, the distribution is (θ+
x|ū, θ

+
x̄|ū) if the pos-

terior on ū is ≥ Tū; otherwise, it is (θ−x|ū, θ
−
x̄|ū). Thus, the

CPT for node X is determined dynamically based on the
two thresholds and the posterior over parent U , leading to
one of the following four CPTs:3

U X CPT1 CPT2 CPT3 CPT4

u x θ+
x|u θ+

x|u θ−x|u θ−x|u
u x̄ θ+

x̄|u θ+
x̄|u θ−x̄|u θ−x̄|u

ū x θ+
x|ū θ−x|ū θ+

x|ū θ−x|ū
ū x̄ θ+

x̄|ū θ−x̄|ū θ+
x̄|ū θ−x̄|ū

In general, if the parents of testing node X have n states,
the selection process may yield 2n distinct CPTs.

2.1. Syntax

A TBN is a directed acyclic graph (DAG) with two types of
nodes: regular and testing, each having a conditional proba-
bility table (CPT). Root nodes are always regular. Consider
a node X with parents U.

– If X is a regular node, its CPT is said to be regular and
has a parameter θx|u ∈ [0, 1] for each state x of node
X and state u of its parents U, where

∑
x θx|u = 1

(these are the CPTs used in BNs).
2(Choi & Darwiche, 2018) used evidence onX’s ancestors, but

we will generalize this later to include more evidence.
3Testing can take other forms such as > T , ≤ T or < T .
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Figure 1. A TBN with binary nodes. Testing nodes are shaded. In
a BN, we need 18 parameters to specify the network: 2 forA, 4 for
each of B,C and 8 for D. For the TBN, we need 30 parameters:
4 additional parameters for B and 8 additional parameters for D.
We also need 2 thresholds for B and 4 thresholds for D.

– If X is a testing node, its CPT is said to be testing
and has a threshold TX|u ∈ [0, 1] for each state u of
parents U. It also has two parameters θ+

x|u ∈ [0, 1] and
θ−x|u ∈ [0, 1] for each state x of node X and state u of
its parents U, where

∑
x θ

+
x|u = 1 and

∑
x θ
−
x|u = 1.

The parameters of a regular CPT are said to be static and
the ones for a testing CPT are said to be dynamic.

Consider a node that has m states and its parents have n
states. If the node is regular, its CPT will have m · n static
parameters. If it is a testing node, its CPT will have n
thresholds and 2 ·m · n dynamic parameters; see Figure 1.
As we shall discuss later, the thresholds and parameters of a
TBN can be learned discriminatively from labeled data.

2.2. Semantics

A testing CPT corresponds to a set of regular CPTs, one
of which is selected based on the given evidence. Once a
regular CPT is selected from each testing CPT, the TBN
transforms into a BN. Hence, a TBN over DAG G repre-
sents a set of BNs over DAG G, one of which is selected
based on the given evidence. It is this selection process that
determines the semantics of TBNs. We define this process
next based on soft evidence, which includes hard evidence.

Soft evidence on node X with states x1, . . . , xk is specified
using likelihood ratios λ1, . . . , λk (Pearl, 1988). Without
loss of generality, we require λ1 + . . .+ λk = 1 so λi = 1
corresponds to hard evidence X=xi. When node X is
binary, soft evidence reduces to a single number λx ∈ [0, 1]
since λx̄ = 1− λx. We use Λ to denote all soft evidence.

We next show how to select a BN from a TBN using evi-
dence Λ, thereby defining the semantics of TBNs.

Definition 1 Consider DAG G and a topological ordering
X1, . . . , Xn of its nodes, which places non-testing nodes
before testing nodes. Define DAGs G1, . . . , Gn+1 such that
G1 is empty and Gi+1 is obtained by adding node Xi to Gi
and connecting it to its parents (hence, Gn+1 = G).
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Figure 2. Testing nodes are shaded (B and D) and evidence nodes
are double-circled (A and E).

Figure 2 depicts an example of this DAG sequence, using
the topological ordering A,C,E,B,D.

Definition 2 Given TBN G, evidence Λ and DAGs
G1, . . . , Gn+1, the selected BN Gn+1 has the following
CPTs. If node Xi is regular, its CPT is copied from the TBN,
otherwise it is selected based on the posterior Pi(Ui|Λi).
Here, Pi(.) is the distribution of BN Gi, Ui are the parents
of Xi and Λi is evidence on the ancestors of Xi.

This definition follows (Choi & Darwiche, 2018) by us-
ing ancestral evidence when selecting CPTs, but we will
generalize this later. CPTs are selected as discussed earlier:4

θx|u =

{
θ+
x|u if Pi(ui|Λi) ≥ TX|u
θ−x|u otherwise.

The selected BN is invariant to the specific total order used
in Definition 1. Moreover, it has the same structure as the
TBN and can be used to answer any query as long as it
based on the same evidence Λ used to select the BN. If the
evidence changes, a new BN needs to be selected.

2.3. Testing Arithmetic Circuits

A BN query can be computed using an Arithmetic Circuit
(AC), which is compiled from a BN (Darwiche, 2003; Choi
& Darwiche, 2017). A TBN query can be computed using a
Testing Arithmetic Circuit (TAC), which is compiled from a
TBN (Choi & Darwiche, 2018; Choi et al., 2018).

A TAC is an AC that includes testing units. A testing unit
has two inputs, x and T , and two parameters, θ+ and θ−.
Its output is computed as follows:5

f(x, T ) =

{
θ+ if x ≥ T
θ− otherwise.

Figure 3(b) depicts a TAC that computes a query on the
TBN in Figure 3(a). The TAC inputs (λa, λā) and (λc, λc̄)
represent soft evidence Λ on nodes A and C. Its outputs

4The selection can be based on other tests such as Pi(ui|Λi) >
TX|u, Pi(ui|Λi) ≤ TX|u or Pi(ui|Λi) < TX|u.

5The unit may employ other tests, x > T , x ≤ T or x < T .

represent the marginal P (B,Λ). All other TAC inputs cor-
respond to TBN parameters and thresholds: 2 static parame-
ters for node A, 4 static parameters for node C, in addition
to 8 dynamic parameters and 2 thresholds for node B. The
parameters and thresholds of a TAC can be learned from
labeled data using gradient descent (Choi et al., 2018).

2.4. Expressiveness

TBN queries are universal approximators, which means
that any continuous function f(x1, . . . , xn) from [0, 1]n to
[0, 1] can be approximated to an arbitrary error by a TBN
query (Choi & Darwiche, 2018; Choi et al., 2018).

The TBN and query used in this result are specific to the
given function and error. In practice though, the TBN and
query are mandated by modeling and task considerations,
so the resulting TBN query may not be as expressive. In
general, a TBN joint marginal query computes a piecewise
multi-linear function of the evidence (Choi et al., 2018).
In particular, the evidential input Λ can be partitioned into
regions where the query computes a multi-linear function
(like a BN) in each region. Moreover, the number of such re-
gions is linked to the query expressiveness, i.e., its ability to
approximate functions from the evidence into a probability.

For reference, neural networks with ReLU activation func-
tions are universal approximators and compute piecewise
linear functions (Pascanu et al., 2014; Montúfar et al., 2014).
Moreover, there has been work on bounding the number of
regions for such functions, depending on the size and depth
of neural networks, e.g., (Pascanu et al., 2014; Montúfar
et al., 2014; Raghu et al., 2017; Serra et al., 2018).

3. Generalized CPT Selection
TBNs get their expressiveness from the ability to select
CPTs based on available evidence, which allows them to
compute probabilities based on multiple distributions.

The dependence of CPT selection on only ancestral evidence
can be limiting though. For example, in Figure 2, evidence
on node E will not participate in selecting the CPT of node
B, which reduces expressiveness. In the extreme case of no
evidence above a testing node, its CPT selection will not be
impacted by the given evidence.

The dependence on ancestral evidence can be relaxed but
up to a point as we have the following constraint:

(1) Evidence at/below testing node Xi cannot participate
in CPT selection until the CPT of Xi has been selected.

The reason for this constraint is that we need the CPT of
node Xi in order to factor evidence at or below it.

We can include some non-ancestral evidence without violat-
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�ā

P ?(b̄)

✓�
b̄|a✓�b|ā✓+
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Figure 3. Nodes A, B and C are binary and node B is testing. Nodes x ≥ T ? θ+ : θ− represent testing units.
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Figure 4. CPT selection using a sigmoid function. The selected
parameter θx|u is a weighted average of parameters θ+

x|u and θ−x|u
(TX|u is the sigmoid center and γ controls the sigmoid slope).

ing this constraint. In particular, when selecting the CPT of
nodeXi in Definition 2, we can define Λi so it only excludes
evidence at or below testing nodes Xj that are not ancestors
of Xi (the CPTs of nodes Xj are not guaranteed to have
been selected at that point). Using this method in Figure 2,
evidence on E will now participate in selecting the CPT of
node B. However, this evidence cannot participate in this
selection if node C was also testing.

The selected BN according to this method is also invariant
to the specific total order used in Definition 1.

Before we close this section, we note that the selection of
CPTs based on threshold test, e.g., P (.|.) ≥ T , is not strictly
needed. Threshold tests are both simple and sufficient for
universal approximation. However, one can employ more
general and refined selection schemes, which can also facil-
itate the learning of TAC parameters and thresholds using
gradient descent methods. The main requirement is that the
selection process uses only the posterior on parents to make
its decisions. For example, one can use a sigmoid function
to select CPTs as shown in Figure 4 and detailed in (Choi
& Darwiche, 2018; Choi et al., 2018). This leads to TACs
with sigmoid units instead of testing units.

4. Conditional Independence
We will now discuss conditional independence in TBNs and
whether it can be inferred from d-separation as in BNs.

Our focus is on hard evidence using the following key nota-
tion. Given a TBN and evidence e, we use P e(.) to denote
the distribution of the selected BN under evidence e. We
also use Q(q||e) to denote a TBN query that computes the
probability of q given evidence e. Evaluating TBN query
Q(q||e) is a two step process: we first select the distribution
P e(.) and then use it to compute the probability P e(q|e).

We now define conditional independence in TBNs. In what
follows, X, Y and Z are disjoint variable sets and x, y, z
are their corresponding instantiations.

Definition 3 For a TBN, we say X is independent of Y
given Z iff Q(x||z) = Q(x||zy) for all x, y and z.

That is, independence holds when P z(x|z) = P zy(x|zy).
The selected distributions P z and P zy may be distinct, but
must still assign the same probability to x|z and x|zy, re-
spectively. In BN independence, the two sides of the equal-
ity assume the same distribution, which is induced by the
same set, yet any set, of CPTs. In TBN independence, the
distributions P z and P zy may be induced by different CPTs.

In BNs, evidence may change probabilities. In TBNs, evi-
dence may also change the selected CPTs.

Definition 4 For a TBN, we say the selected CPTs for nodes
X are independent of Y given Z iff they are the same under
evidence z or evidence zy, for all y and z.

We are interested in the relationship between d-separation
and TBN independence, for both selected CPTs and proba-
bilities. In fact, to prove that certain probabilities will not
change in a TBN due to evidence, we will have to prove that
the selection of all relevant CPTs will not change either.
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4.1. d-separation in BNs

We first prove some results about d-separation in BNs, which
are instrumental for reasoning about d-separation in TBNs.

Definition 5 A proper subset of a DAG G is obtained by
successively removing some leaf nodes from G.

A proper subset can also be obtained by removing some
nodes and all their descendants from G. In Definition 1,
each DAG Gi is a proper subset of DAG Gj for j > i.

The following proposition shows how d-separation in DAG
G can be used to infer d-separation in its proper subsets.

Proposition 1 If dsepG(X,Z,Y) and G? is a proper sub-
set of G, then dsepG?(X?,Z?,Y?), where X?, Y?, Z? are
the subsets of X, Y, Z in DAG G?.

The following proposition identifies evidence that does not
impact the parents posterior of a node, which is essential for
showing it does not impact the selected CPT of that node.

Proposition 2 If dsepG(X,Z,Y), then dsepG(U \
Z,Z,Y), where U are the parents of node X in G.

The following proposition identifies CPTs that are irrelevant
to a particular query. If a CPT is irrelevant to a query, then
the query is not impacted by how the CPT is selected.

Proposition 3 If dsepG(X,Z,Y) and P (x|zy) depends
on the CPT of node T , then dsepG(T,Z,Y).

Consider a BN Y → T1 → Z → T2 → X . Since
dsep(X,Z, Y ) and not dsep(T1, Z, Y ), the CPT of node
T1 is irrelevant to query P (x|zy). Hence, changing the CPT
of node T1 will not impact the query P (x|zy) (or P (x|z)
since P (x|zy) = P (x|z)).

4.2. d-separation in TBNs

We next show that d-separation implies conditional inde-
pendence in TBNs. Our result is based on CPT selection
as given by Definition 2, except that the evidence Λi used
to select a CPT for node Xi is not restricted to being an-
cestral. In particular, all we assume is that evidence Λi is
the projection of evidence Λ on some proper subset of the
BN Gi used to select the CPT of node Xi. The methods
we discussed for evidence inclusion satisfy this condition.
Moreover, a method that satisfies this condition cannot vio-
late Constraint (1) from Section 3.

We start by the impact of d-separation on CPT selection.

Theorem 1 If dsepG(X,Z,Y) in TBNG, then the selected
CPT of node X is independent of Y given Z.

We are now ready for our main theorem: one can infer
conditional independence from d-separation in TBNs.

Theorem 2 If dsepG(X,Z,Y) in TBN G, then X is inde-
pendent of Y given Z.

Theorem 2 implies that the Markovian assumption is sat-
isfied by TBNs: Every node is independent of its non-
descendants given its parents. It also implies that Markov
blankets apply in TBNs: Given the parents, children and
spouses of a node, it becomes independent of all other nodes.

5. Learning with Incomplete Models
We will show in this section how the expressiveness of TBNs
can be used to alleviate a common and practical problem:
Learning with incomplete models. We will focus on the
task of discriminative learning. That is, our data contains
labeled examples of the form < Λ, p >, where Λ is a soft
evidence vector and p is the corresponding probability. Our
goal is to learn the function f that generated this labeled
data (function f maps evidence to a probability).

Our assumption is that the function f corresponds to a query
on a BN G. However, we are unaware of some of the nodes
or edges in this data-generating model G, so we are using
an incomplete BN structure G? to learn function f .

Normally, this task can be accomplished by compiling the
structure of BN G? into an AC that computes the query of
interest (Darwiche, 2003; Choi & Darwiche, 2017). That is,
the AC takes the evidence vector Λ as input and generates
the sought probability as an output. The AC parameters
correspond to parameters in the BN G? and can be trained
using gradient descent (not all parameters of the BN G?

may be relevant to the query of interest).

Since BN G? misses some nodes or edges from the data-
generating BN G, we will next show that the AC compiled
from G? may not be able to represent the data-generating
function f (for any choice of parameters). Moreover, we
will show that a TAC compiled from a TBN G? is provably
a better approximator of the data-generating function f .

5.1. The Functional Form of Marginal Queries

Our first step is to look into the form of function f . For
simplicity, we will assume binary variables so soft evidence
on a node is captured by a single number λ ∈ [0, 1].

We will distinguish between a function, a functional form
and a constrained functional form (CFF). For example,
f(λ) = λ − 1 is a function admitted by functional form
f(λ) = Aλ + B (A = 1, B = −1). A functional form is
constrained iff its constants must satisfy some constraints.
For example, if A = γ2 − (1− γ)2 and B = (1− γ)2 for
some γ ∈ [0, 1], then the functional form f(λ) = Aλ+B
is constrained. This CFF admits the function f(λ) = 1− λ
(γ = 0) but not f(λ) = λ− 1 (B cannot be negative).
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A B C

(a) true model

A B C

(b) incomplete model

Figure 5. Missing edge.

Let f1(λ1, . . . , λk) and f2(λ1, . . . , λk) be two CFFs.
We say that f2(λ1, . . . , λk) is less expressive than
f1(λ1, . . . , λk) iff the set of functions admitted by f2 is
a strict subset of the set of functions admitted by f1.

Marginal BN queries induce constrained functional forms.
In particular, for soft evidence λ1, . . . , λk, a joint
marginal query induces a constrained multi-linear func-
tion f(λ1, . . . , λk) and a conditional marginal query in-
duces a constrained quotient of two multi-linear functions
g(λ1, . . . , λk). The constraints depend on the BN topology
and location of evidence and query variables.

5.2. Missing Nodes and Edges

Consider Figure 5, where A and B are evidence nodes and
C is a query node. Model M2 in Figure 5(b) results from
missing edge A→ C in the true model M1 of Figure 5(a).
Assuming all variables are binary, we have:

P1(c,Λ) = [θaθb|aθc|ab]λaλb + [θaθb̄|aθc|ab̄]λaλb̄ +

[θāθb|āθc|āb]λāλb + [θāθb̄|āθc|āb̄]λāλb̄
P1(c̄,Λ) = [θaθb|aθc̄|ab]λaλb + [θaθb̄|aθc̄|ab̄]λaλb̄ +

[θāθb|āθc̄|āb]λāλb + [θāθb̄|āθc̄|āb̄]λāλb̄

Noting that λā = 1− λa and λb̄ = 1− λb, and setting

β1 β2 β3 β4 β5 β6 β7

θa θb|a θb|ā θc|ab θc|ab̄ θc|āb θc|āb̄

we get the following CFF for computing the posterior on
C=c given soft evidence on nodes A and B:

f1(λa, λb) = P1(c|Λ) =
µ1λaλb + µ2λa + µ3λb + µ4

µ5λaλb + µ6λa + µ7λb + µ8

where coefficients µ1, . . . , µ8 are determined by the seven
independent parameters β1, . . . , β7 in [0, 1] (β̄i = 1− βi):

µ1 = β1β2β4 −β1β̄2β5 −β̄1β3β6 +β̄1β̄3β7

µ2 = β1β̄2β5 −β̄1β̄3β7

µ3 = β̄1β3β6 −β̄1β̄3β7

µ4 = β̄1β̄3β7

µ5 = β1β2 −β1β̄2 −β̄1β3 +β̄1β̄3

µ6 = β1β̄2 −β̄1β̄3

µ7 = β̄1β3 −β̄1β̄3

µ8 = β̄1β̄3

Similarly, we get a CFF for model M2 in Figure 5(b):

f2(λa, λb) = P2(c|Λ) =
ν1λaλb + ν2λa + ν3λb + ν4

ν5λaλb + ν6λa + ν7λb + ν8

(a) f1(λa, λb)

(b) f2(λa, λb)

Figure 6. Functions that compute the probability of C=c given
soft evidence on A and B in the models of Figure 5.

We are omitting the constraints on coefficients ν1, . . . , ν8

for space limitations.

Every function admitted by f2 satisfies the following: if
input λb is set to 0 or 1 (i.e., hard evidence), the function
output will become independent of input λa. Figure 6(b)
provides an example, but this can be shown more gener-
ally since f2|λb=0 = θc|b̄ and f2|λb=1 = θc|b. However,
there are functions admitted by f1 that do not satisfy this
constraint as shown in Figure 6(a). Hence, CFF f2 is less
expressive than f1. The two CFFs are equally expressive
if β4 = β6 and β5 = β7. In this case, θc|ab = θc|āb and
θc|ab̄ = θc|āb̄, so the edge A→ C superfluous.

One can similarly show that missing nodes can also lead to
losing the ability to represent the data-generating function.

While a TBN for an incomplete structure may also not be
able to represent the data-generating function, it is provably
a better approximator than a BN over the same structure.
Moreover, all approximations generated by a TBN are guar-
anteed to respect the conditional independences implied by
its structure. Hence, the additional expressiveness remains
guarded by the available modeling assumptions. Viewing
TACs and ACs as constrained functional forms, we now
have the following.

Theorem 3 Consider a BN and a TBN over the same DAG
G and consider a corresponding AC and TAC for some
query. The TAC is more expressive than the AC.
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We next discuss a class of functions where TBN queries are
a better approximator than BN queries.

5.3. Simpson’s Paradox

Simpson’s paradox is a phenomenon in which a trend ap-
pears in several different groups of data but disappears or
reverses when these groups are combined; see, e.g., (Mali-
nas & Bigelow, 2016; Pearl, 2014).

Definition 6 A distribution P (A,B,C) exhibits Simpson’s
paradox if P (c|a) ≤ P (c|ā) but P (c|a, b) > P (c|ā, b) and
P (c|a, b̄) > P (c|ā, b̄).

That is, the probability of c given a is no greater than that
of c given ā, but this reverses under every value of B. A
function f(λa, λb) that computes the probability of c given
soft evidence on A and B exhibits Simpson’s paradox if
f(1, 1/2) ≤ f(0, 1/2), f(1, 1) > f(0, 1) and f(1, 0) >
f(0, 0) since a soft evidence of 1/2 amounts to no evidence.

Simpson’s paradox typically arises when we have two
causes A and B, for some effect C, which are not inde-
pendent. For example, C could be an admission decision,
where A represents gender and B represents the department
applied to. Normally, one would expect A and B to be
independent, but it is possible that an applicant’s gender
influences which department they may apply to. When this
influence is missed, two things may happen. First, the data
may look surprising implying a paradox. For example, the
data may show that each department has a higher admission
rate for females, but the overall admission rate for males
is higher. While this may seem paradoxical, it can be ex-
plained away by the fact that females apply to competitive
departments with higher rates than males. The second thing
that may happen is that a model that misses the direct influ-
ence between A and B may not be able to learn Simpson’s
paradox even though it is exhibited in the data.

Proposition 4 Consider a BN with edges A → C and
B → C, where all variables are binary. Under any pa-
rameterization of the BN, if P (c|a, b) > P (c|ā, b) and
P (c|a, b̄) > P (c|ā, b̄), then P (c|a) > P (c|ā).

Hence, if the edge between A and B is missed, then the
BN model will not be able to capture Simpson’s paradox if
exhibited in the data. As it turns out, however, TBNs can
still learn this pattern even if the edge is missed. We next
provide a concrete example illustrating this phenomenon.

This is a real-world example comparing the success
rates of two treatments for kidney stones (https://en.
wikipedia.org/wiki/Simpson%27s_paradox).

The following data shows the success rates of treatments:

L

T

S

(a) true

L

T

S

(b) incomplete

Figure 7. Kidney stone model: L is whether stone is large (yes,
no), T is treatment (A, B) and S is treatment success (yes, no).

Treatment A Treatment B
Group 1 Group 2

Small Stones 93% (81/87) 87% (234/270)
Group 3 Group 4

Large Stones 73% (192/263) 69% (55/80)
Both 78% (273/350) 83% (289/350)

The paradoxical reading of the above table: Treatment A
is more effective when used on small stones and also when
used on large stones. Yet, treatment B is more effective
when considering both sizes at the same time. Explana-
tion: Doctors favor treatment B for small stones. Hence,
treatment B suggests a less severe case (small stone).

Figure 7(a) depicts a corresponding BN, which parame-
ters can be computed from the above table (maximum-
likelihood parameters). Using this data-generating BN,
P (S=yes|T =A) = 78% and P (S=yes|T =B) = 83%.

We compiled an AC and a TAC from the incomplete struc-
ture in Figure 7(b) and trained them using nine examples:

Labeled Data Predictions
λL λT Large Treatment BN AC TAC
1.0 1.0 Yes A 73.0 71.4 73.0
0.0 1.0 No A 93.0 91.4 93.0
0.5 1.0 ? A 77.9 81.1 78.0
1.0 0.0 Yes B 69.0 71.5 69.0
0.0 0.0 No B 87.0 88.6 87.1
0.5 0.0 ? B 82.9 79.8 83.1
1.0 0.5 Yes ? 72.1 71.5 72.1
0.0 0.5 No ? 88.4 88.7 88.3
0.5 0.5 ? ? 80.4 79.8 80.3

The TAC captures Simpson’s paradox despite the missing
edge L → T : The overall success rate for treatment B
is higher than for treatment A, but this is reversed when
considering stone size. The AC fails to capture this pattern
(as expected): the success rate for treatment B is lower
overall and for small stones, but is higher for large stones.

Overall, the TAC predictions are much better than the AC
predictions and are very close to the ground truth. It is
interesting that this is achieved even though L and T are
independent in the TAC/TBN by Theorem 2.

https://en.wikipedia.org/wiki/Simpson%27s_paradox
https://en.wikipedia.org/wiki/Simpson%27s_paradox
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Figure 8. HMM and second-order HMM.

6. A Case Study: Testing HMMs
Figure 8(a) illustrates a Hidden Markov Model (HMM),
with hidden nodes Ht and observables Et. To define an
HMM, we need an initial distribution P (H0), a transition
model P (Ht | Ht−1) and an emission model P (Et | Ht).

We want to learn a function that computes the state of hidden
node Hn given evidence on E0, . . . , En−1, where n is the
length of the HMM. We assume, however, that labeled data
is generated from a higher order HMM in which each hidden
node Ht can depend on more than the previous hidden node
Ht−1. Figure 8(b) depicts a second-order HMM, in which a
hidden node Ht has Ht−2 and Ht−1 as its parents, t ≥ 2.

We simulated examples from a third-order HMM and trained
both an HMM and a Testing HMM using the structure in
Figure 8(a). That is, we pretended that we were unaware of
the edges Ht−2 → Ht and Ht−3 → Ht. Training records
< e0, . . . , en−1 : hn > were sampled from the joint dis-
tribution of the third-order HMM (data-generating model).
The cross entropy loss was used to train both the HMM
and the Testing HMM using an AC and a TAC, respectively.
Our goal was to demonstrate the extent to which a Testing
HMM can compensate the modeling error, i.e., the missing
dependencies of Ht on Ht−2 and Ht−3.

We considered all transition models for third-order HMMs
such that P (ht | ht−3, ht−2, ht−1) is either 0.95 or 0.05.
We assumed binary variables and a chain of length 8. We
used uniform initial distributions and emission model P (ht |
et) = P (h̄t | ēT ) = 0.99. There were 256 third-order
HMMs satisfying these conditions. We fit an AC (HMM)
and a TAC (Testing HMM) using data simulated from each,
with sigmoid selection in the TAC. We used data sets with
16, 384 records for each run and 5-fold cross validation to
report prediction accuracy as shown in Figure 9. The x-axis
measures the accuracy of the HMM, and the y-axis measures
the accuracy of the Testing HMM. There are 256 data points
in Figure 9, each representing a distinct third-order HMM
used. The error bar around each data point represents the
standard deviation over the 5-fold cross validation.

In Figure 9, 178/256 points are above the dashed diagonal

line, indicating a better prediction accuracy for the Testing
HMM over the HMM. Moreover, 82 of the data points
obtain accuracies above 95% for the Testing HMM. This
further illustrates the extent to which the Testing HMM can
recover from the underlying modeling error.
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Figure 9. Accuracy of fitting a
third-order HMM by an HMM
and a Testing HMM.
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Figure 10. Selected parameters
by hidden node Ht in a Testing
HMM across all evidence.

We can view a Testing HMM as a set of heterogeneuous
HMMs since a hidden node Ht may select a different transi-
tion model depending on evidence e0, . . . , et−1. In contrast,
the learned HMM uses the same transition model across all
hidden nodes. In Figure 10, we visualize the distinct param-
eters selected by nodes Ht in the Testing HMMs (across all
possible evidence). When t is small, we see fewer distinct
parameters as nodes Ht use a limited number of evidence
nodes in the test. For larger t, we see that hidden nodes se-
lect from a larger set of parameters. This intuitively explains
why Testing HMMs are more expressive than HMMs.

7. Conclusion
TBNs were introduced recently, motivated by an expressive-
ness gap between Bayesian and neural networks. A TBN
represents a set of distributions, one of which is selected
based on the given evidence and used for reasoning. This
makes TBNs more expressive than BNs and as expressive
as neural networks. We showed that TBN independence
can be inferred from d-separation as in BNs. We also im-
proved the expressiveness of TBN queries by making TBN
selection more sensitive to evidence. We finally showed that
TBN expressiveness and independence can help alleviate a
common and practical problem, which arises when learning
from labeled data using incomplete models (i.e., ones that
are missing nodes or edges from the data-generating model).
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A. Proofs
Proposition 1 Suppose dsepG(X,Z,Y) holds but
dsepG?(X?,Z?,Y?) does not hold. There must exist a
path in G? that connects X? and Y? but is not blocked
by Z?. This path also connects X and Y in G. Moreover,
it is not blocked by Z since no variable in Z \ Z? can be
on this path. This is a contradiction with dsepG(X,Z,Y).
Hence dsepG?(X?,Z?,Y?) holds. �

Proposition 2 Suppose dsepG(X,Z,Y) holds but
dsepG(U \ Z,Z,Y) does not hold. We have U ∩Y = ∅
by dsepG(X,Z,Y). Moreover, there must exist a path
connecting some U ∈ U \ Z and Y that is not blocked by
Z. If X is on this path, then we have a path connecting X
and Y that is not blocked by Z. Otherwise, augmenting this
path with the edge X ← U leads to a path with the same
properties. Either case contradicts dsepG(X,Z,Y). �

Proposition 3 Suppose dsepG(X,Z,Y). A leaf node out-
side X ∪ Y ∪ Z is irrelevant to P (x|zy), so repeatedly
remove all such leaf nodes. Prune edges outgoing from
nodes Z as this does not change the value of P (x|zy) either.
Nodes X are now disconnected from Y. If dsepG(T,Z,Y)
does not hold, then node T is connected to Y and discon-
nected from X so P (x|zy) cannot depend on the CPT of
T . Hence, if P (x|zy) depends on the CPT of T , then
dsepG(T,Z,Y). �

The next proof uses the following corollary of Proposition 1.

Corollary 1 If dsepG(X,Z,Y), G is a proper super-
set of Gi and Gi is a proper superset of Gj , then
dsepGi

(Xj ,Zj ,Yj), where Xj , Yj , Zj are the subsets
of X, Y, Z in DAG Gj .

Theorem 1 The proof is by induction on DAGs
G1, . . . , Gn+1 in Definition 1. We will show: if
dsepGi

(Xk,Zi,Yi), the CPT for node Xk is independent
of Yi given Zi. Here, Yi and Zi are projections of Y and
Z on some proper subset of Gi. The theorem statement is
for i = n+ 1.

This holds trivially for G1 (empty). Consider Gi for
i > 1 and assume this holds for Gj , where j < i.
Suppose dsepGi

(Xk,Zi,Yi) for k < i. Then Gk is a
proper subset of Gi and contains parents Uk of node Xk.
We have dsepGi

(Uk \ Zi,Zi,Yi) by Proposition 2 and
dsepGk

(Uk \ Zk,Zk,Yk) by Corollary ??. The CPT of
node Xk is selected in Gk based on Pk(Uk|zkyk). Con-
sider node Xm in Gk (m < k). By Proposition 3, if
the CPT of node Xm is relevant to Pk(Uk|zkyk), then
dsepGk

(Xm,Zk,Yk). By the induction hypothesis, this
CPT is independent of Yk given Zk. That is, every CPT in
Gk that is relevant to Pk(Uk|zkyk) is independent of Yk

given Zk. Moreover, Pk(Uk|zkyk) = Pk(Uk|zk) since

dsepGk
(Uk \ Zk,Zk,Yk). Hence, the CPT of node Xk is

independent of Yk given Zk and of Yi given Zi. �

Theorem 2 Assume dsepG(X,Z,Y). We show
Q(x||yz) = Q(x||z), which reduces to P zy(x|zy) =
P z(x|z). By Proposition 3, if P zy(x|zy) depends on
the CPT of some node T , then dsepG(T,Z,Y). By
Theorem 1, this CPT is independent of Y given Z. Hence,
P zy(x|zy) = P z(x|zy). Moreover, P z(x|zy) = P z(x|z)
since dsepG(X,Z,Y). Therefore, P zy(x|zy) = P z(x|z).
�

Theorem 3 The TAC can simulate the AC by setting its
parameters θ+

x|u and θ−x|u to the corresponding parameter
θx|u in the AC. Hence, the TAC is no less expressive than the
AC. Proposition 4 identifies a class of functions that cannot
be represented by an AC. A function in this class is given
in Section 5.3 (kidney stones), which can be represented by
a corresponding TAC. Hence, the TAC is more expressive
than the AC. �

Proposition 4 P (c|a, b) > P (c|ā, b) and P (c|a, b̄) >
P (c|ā, b̄) imply θc|ab > θc|āb and θc|ab̄ > θc|āb̄. Moreover,
P (c|a) = θbθc|ab + θb̄θc|ab̄ and P (c|ā) = θbθc|āb + θb̄θc|āb̄.
Hence, P (c|a) − P (c|ā) = θb(θc|ab − θc|āb) + θb̄(θc|ab̄ −
θc|āb̄) > 0. �


