
On The Reasons Behind Decisions
Adnan Darwiche1 and Auguste Hirth2

Abstract. Recent work has shown that some common machine
learning classifiers can be compiled into Boolean circuits that have
the same input-output behavior. We present a theory for unveiling the
reasons behind the decisions made by Boolean classifiers and study
some of its theoretical and practical implications. We define notions
such as sufficient, necessary and complete reasons behind decisions,
in addition to classifier and decision bias. We show how these notions
can be used to evaluate counterfactual statements such as “a decision
will stick even if . . . because” We present efficient algorithms
for computing these notions, which are based on new advances on
tractable Boolean circuits, and illustrate them using a case study.

1 Introduction
Recent work has shown that some common machine learning clas-
sifiers can be compiled into Boolean circuits that make the same
decisions. This includes Bayesian network classifiers with discrete
features [2, 31] and some types of neural networks [32, 3]. Proposals
were also extended to explain and verify these numeric classifiers by
operating on their compiled circuits [30, 29]. We extend this previous
work by proposing a theory for reasoning about the decisions made
by classifiers and discus its theoretical and practical implications.

In the proposed theory, a classifier is a Boolean function. Its vari-
ables are called features, a particular input is called an instance and
the function output on some instance is called a decision. If the func-
tion outputs 1 on an instance, the instance and decision are said to
be positive; otherwise, they are negative. Figure 1 depicts a clas-
sifier (C1) for college admission, represented as an Ordered Binary
Decision Diagram (OBDD) [1]. This OBDD was compiled from the
Bayesian network (BN) classifier in Figure 2 using the algorithm
in [31]. The OBDD is guaranteed to make the same decision as the
BN classifier on every instance (same input-output behavior).

Our main goal is to explain the decisions made by a classifier on
specific instances by way of providing various insights into what
caused these decisions. Consider Susan who passed the entrance
exam, is a first-time applicant, has no work experience and a high
GPA. Susan will be admitted by classifier C1 depicted in Figure 1.
She also comes from a rich hometown and will be admitted by clas-
sifier C2 depicted in the same figure. We can say that Susan was ad-
mitted by classifier C1 because she passed the entrance exam and
has a high GPA. We can also say that one reason why classifier C2
admitted Susan is that she passed the entrance exam and has a high
GPA (there are other reasons in this case). Moreover, we can say
that classifier C2 would still admit Susan even if she did not have a
high GPA because she passed the entrance exam and comes from
a rich hometown. Finally, we can say that classifier C2 is biased as
it can make biased decisions: ones that are based on protected fea-

1 University of California, Los Angeles, email: darwiche@cs.ucla.edu
2 University of California, Los Angeles, email: ahirth@cs.ucla.edu

Figure 1. OBDD C1 (left) and OBDD C2 (right). To classify an instance,
we start at the root OBDD node and repeat the following. If the feature we

are at is positive, we follow the solid edge, otherwise the dotted edge.

Figure 2. The structure of a Bayesian network classifier.

tures. For example, it will make different decisions on two applicants
who have the same characteristics except that one comes from a rich
hometown and the other does not. We will also show that one can
sometimes prove classifier bias by inspecting the reasons behind one
of its unbiased decisions.

We will give formal definitions and justifications for the state-
ments exemplified above and show how to compute them algorith-
mically. As far as semantics, the main tool we will employ is the
classical notion of prime implicants [6, 25, 21, 26]. On the computa-
tional side, we will exploit tractable Boolean circuits [9] while pro-
viding some new fundamental results that further extend the reach of
these circuits to computing explanations.

This paper is structured as follows. We review prime implicants in
Section 2. We follow by introducing the notions of sufficient, nec-
essary and complete reasons in Sections 3–5. Counterfactual state-
ments about decisions are discussed in Section 6, followed by a dis-
cussion of decision and classifier bias in Section 7. We dedicate Sec-
tion 8 to algorithms that compute the introduced notions while illus-
trating them using a case study in Section 9. We finally close with
some concluding remarks in Section 10.

To Appear in ECAI-2020

2 Classifiers, Decisions and Prime Implicants
We represent a classifier by a propositional formula ∆ whose mod-
els (i.e., satisfying assignments) correspond to positive instances.
The negation of the formula characterizes negative instances. Classi-
fiers C1 and C2 of Figure 1 are represented by the following formulas:

∆1 = E ∧ (¬F ∨G ∨W)

∆2 = E ∧ (¬F ∨G ∨W ∨R)

We use ∆(α) to denote the decision (0 or 1) of classifier ∆ on in-
stance α (that is, ∆(α) = 1 iff α |= ∆ and ∆(α) = 0 iff α |= ¬∆).
We also define ∆α = ∆ if the decision is positive and ∆α = ¬∆
if the decision is negative. This notation is critical and we use it fre-
quently later noting that α |= ∆α and ∆(α) = ∆(β) iff ∆α = ∆β .

A literal is a variable (positive literal) or its negation (negative lit-
eral). A term is a consistent conjunction of literals. Term τi subsumes
term τj , written τj |= τi, iff τj includes the literals of τi. For exam-
ple, term E ∧ ¬F subsumes term E ∧ ¬F ∧ G. We treat a term as
the set of its literals so we may write τi ⊆ τj to also mean that τi
subsumes τj . We sometimes refer to a literal as a characteristic and
to a term τ as a property (of an instance). We use τ to denote the
property resulting from negating every characteristic in property τ .
We sometimes use a comma (,) instead of a conjunction (∧) when
describing properties and instances (e.g.,E,¬F instead ofE∧¬F).

An implicant τ of propositional formula ∆ is a term that satisfies
∆, written τ |= ∆. A prime implicant is an implicant that is not
subsumed by any other implicant. For example, E ∧ ¬F ∧ G is an
implicant of ∆1 but is not prime since it is subsumed by another
implicant E ∧ ¬F , which happens to be prime. Classifier C1 has the
following prime implicants:

∆1 : (E ∧ ¬F) (E ∧G) (E ∧W)

¬∆1 : (¬E) (F ∧ ¬G ∧ ¬W)

Classifier C2 has the following prime implicants:

∆2 : (E ∧ ¬F) (E ∧G) (E ∧W) (E ∧R)

¬∆2 : (¬E) (F ∧ ¬G ∧ ¬W ∧ ¬R)

The set of prime implicants for a propositional formula can
be quite large, which motivated the notion of a prime implicant
cover [25, 21, 26]. A set of terms τ1, . . . , τn is prime implicant cover
for propositional formula ∆ if each term τi is a prime implicant of
∆ and τ1 ∨ . . . ∨ τn is equivalent to ∆. A cover may not include
all prime implicants, with the missing ones called redundant. While
covers can be useful computationally, they may not always be ap-
propriate for explaining classifiers as they may lead to incomplete
explanations (more on this later).

We will make use of the conditioning operation on propositional
formula. To condition formula ∆ on literals τ , denoted ∆|τ , is to
replace every literal l in ∆ with 1 if l ∈ τ and with 0 if ¬l ∈ τ . We
will also use existential quantification: ∃X∆ = (∆|X) ∨ (∆|¬X).

In the next few sections, we introduce the notions of sufficient,
complete and necessary reasons behind a decision. We use these no-
tions later to define decision and classifier bias in addition to giving
semantics to counterfactual statements relating to decisions.

3 Sufficient Reasons
Prime implicants have been studied and utilized extensively in the AI
and computer science literature.3 However, their active utilization in
3 One classical application of prime implicants in AI has been in the area of

model-based diagnosis, where they have been used to formalize the notion

explaining decisions is more recent, e.g., [30, 14, 15, 19], and intro-
duced a key connection to properties of instances that we highlight
next and exploit computationally later.

Definition 1 (Sufficient Reason [30]). A sufficient reason for deci-
sion ∆(α) is a property of instance α that is also a prime implicant
of ∆α (recall ∆α is ∆ if the decision is positive and ¬∆ otherwise).

A sufficient reason identifies characteristics of an instance that jus-
tify the decision: The decision will stick even if other characteristics
of the instance were different. A sufficient reason is minimal: None
of its strict subsets can justify the decision. A decision can have mul-
tiple sufficient reasons, sometimes a very large number of them.4

There is a key difference between prime implicants and sufficient
reasons: the latter must be properties of the given instance. This has
significant computational implications that we exploit in Section 8.

Sufficient reasons were introduced in [30] under the name of PI-
explanations. The new name we adopt is motivated by further dis-
tinctions that we draw later and was also used in [19]. We will also
sometimes say “a reason” to mean “a sufficient reason.”

Greg passed the entrance exam, is not a first time applicant, does
not have a high GPA but has work experience (α = E,¬F,¬G,W).
Classifier C1 admits Greg, a decision that can be explained using
either of the following sufficient reasons:

• Passed the entrance exam and is not a first time applicant (E,¬F).
• Passed the entrance exam and has work experience (E,W).

Since Greg passed the entrance exam and has applied before, he will
be admitted even if his other characteristics were different. Similarly,
since Greg passed the entrance exam and has work experience, he
will be admitted even if his other characteristics were different.

Proposition 1. Every decision has at least one sufficient reason.

Proof. Consider decision ∆(α). We have α |= ∆α, which means
∆α is consistent and must have at least one prime implicant (the
empty term if ∆α is valid). Moreover, at least one of these prime
implicants must be a property of instance α since α |= ∆α and since
∆α is equivalent to the disjunction of its prime implicants. Hence,
we have at least one sufficient reason for the decision.

A classifier may make the same decision on two instances but for
different reasons (i.e., disjoint sufficient reasons). However, if two
decisions on distinct instances share a reason, they must be equal.

Proposition 2. If decisions ∆(α) and ∆(β) share a sufficient rea-
son, the decisions must be equal ∆(α) = ∆(β).

Proof. Suppose the decisions share sufficient reason τ . Then τ is
property of both α and β and τ is a prime implicant of both ∆α and
∆β . Hence, ∆α = ∆β since τ is consistent and ∆(α) = ∆(β).

We will see later that sufficient reasons can provide insights about
a classifier that go well beyond explaining its decisions.

of kernel diagnoses [10]. A kernel diagnosis is defined for a given de-
vice behavior and is a minimal term representing the health of some device
components. Any system state that is compatible with a kernel diagnosis
is feasible under the given system behavior. Moreover, the set of kernel
diagnoses characterize all feasible system states under the given behavior.

4 The LIME [27] and Anchor [28] systems can be viewed as computing
approximations of sufficient reasons. The quality of these approximations
has been evaluated on some datasets and corresponding classifiers in [16],
where an approximation is called optimistic if it is a strict subset of a suffi-
cient reason and pessimistic if it is a strict superset of a sufficient reason.

4 Complete Reasons

A sufficient reason identifies a minimal property of an instance that
can trigger a decision. The complete reason behind a decision char-
acterizes all properties of an instance that can trigger the decision.

Definition 2 (Complete Reason). The complete reason for a deci-
sion is the disjunction of all its sufficient reasons.

The complete reason for decision ∆(α) captures every property
of instance α, and only properties of instance α, that can trigger the
decision. It precisely captures why the particular decision is made.

Theorem 1. Let R be the complete reason for decision ∆(α). If
instance β does not satisfy R and ∆(β) = ∆(α), then no sufficient
reason for decision ∆(β) can be a property of instance α.

Proof. Suppose β 6|= R and ∆(β) = ∆(α). Then ∆β = ∆α. Let
τ be a sufficient reason for decision ∆(β). Then τ is a property of
instance β and a prime implicant of both ∆β and ∆α. If τ were
a property of instance α, then τ is a sufficient reason for decision
∆(α), τ |= R and β |= τ |= R, a contradiction. Hence, τ cannot be
a property of instance α.

We will sometimes say “the reason” to mean “the complete rea-
son.” Classifier C1 admits Greg (α = E,¬F,¬G,W) for the reason
R = E ∧ (¬F ∨ W). Greg was admitted because he passed the
entrance exam and satisfied one of two additional requirements: he
applied before and has work experience. Classifier C1 also admits Su-
san (β = E,F,G,¬W). Susan does not satisfy the reasonR. There
is one sufficient reason for admitting Susan: she passed the entrance
exam and has a good GPA (E,G), which is not a property of Greg.
The classifier admitted Greg and Susan for different reasons.

The complete reason for a decision is unique up to logical equiva-
lence and can be used to enumerate its sufficient reasons.5

Theorem 2. Let R be the complete reason for decision ∆(α). The
prime implicants ofR are the sufficient reasons for decision ∆(α).

Proof. Let τ1, . . . , τn be the sufficient reasons for decision ∆(α)
and hence R = τ1 ∨ . . . ∨ τn. The key observation is that terms τi
are properties of instance α. Hence, for every two terms τi and τj ,
term τi cannot contain some literalX while term τj containing literal
¬X . The DNF τ1 ∨ . . . ∨ τn is then closed under consensus.6 Since
no term τi subsumes another term τj , the DNF τ1∨ . . .∨τn contains
all prime implicants of R. Hence, the prime implicants of complete
reasonR are precisely the sufficient reasons of decision ∆(α).

5 Necessary Properties and Reasons

The necessary property of a decision is a maximal property of an
instance that is essential for explaining the decision on that instance.

Definition 3 (Necessary Characteristics and Properties). A char-
acteristic is necessary for a decision iff it appears in every sufficient
reason for the decision. The necessary property for a decision is the
set of all its necessary characteristics.

5 Pierre Marquis observed that the complete reason can be formulated using
the notion of literal forgetting which is a more fine grained notion than
variable forgetting (also known as existential quantification) [20, 18, 11].

6 The consensus rule infers the term δ1∧δ2 from termsX∧δ1 and ¬X∧δ2.
One can convert a DNF into its set of prime implicants by closing the DNF
under consensus and then removing subsumed terms; see [6, Chapter 3].

The necessary property is unique but could be empty (when the
decision has no necessary characteristics).

If an instance ceases to satisfy one necessary characteristic, the
corresponding decision is guaranteed to change.

Proposition 3. If instance β disagrees with instance α on only one
characteristic necessary for decision ∆(α), then ∆(α) 6= ∆(β).

Proof. Suppose α and β are as premised. If ∆(α) = ∆(β) then
∆α = ∆β and τ = α∩β is an implicant of ∆α by consensus on the
flipped characteristic ρ. Moreover, τ does not contain characteristic
ρ so it cannot be necessary, a contradiction.

If an instance ceases to satisfy more than one necessary charac-
teristic, the decision does not necessarily change. However, if the
decision sticks then it would be for completely different reasons.

Theorem 3. Let β be an instance that disagrees with instance α on
at least one characteristic necessary for decision ∆(α). Decisions
∆(α) and ∆(β) must have disjoint sufficient reasons.

Proof. Let σ be the necessary characteristics of decision ∆(α) that
instances α and β disagree on. A sufficient reason τ of ∆(α) cannot
be a property of instance β since σ ⊆ τ and β contains σ. Hence, τ
cannot be a sufficient reason for decision ∆(β) and the two decisions
must have disjoint sufficient reasons.

Consider a classifier ∆ = (X ∧ Y ∧ Z) ∨ (¬X ∧ ¬Y ∧ Z) and
instance α = X,Y, Z. The decision ∆(α) is positive with X,Y, Z
as the only sufficient reason. Hence, all three characteristics of α
are necessary: Flipping any single characteristic of instance α will
lead to a negative decision. However, flipping the two characteristics
X and Y preserves the positive decision but leads to a new, single
sufficient reason ¬X,¬Y,Z.

The complete reason for a decision has enough information to
compute its necessary characteristics and necessary property.

Proposition 4. A characteristic is necessary for a decision iff it is
implied by the decision’s complete reason.

Proof. Follows from Definition 3 and Theorem 2.

We can now define the notion of necessary reason.

Definition 4 (Necessary Reason). The necessary property of a de-
cision is called the necessary reason for the decision iff it is the only
sufficient reason for the decision.

There may be no necessary reason for a decision as there may be
no instance property that is both sufficient and necessary for trigger-
ing the decision. We next highlight how the complete reason for a
decision, being a condition on an instance instead of a property, is
always necessary and sufficient for explaining the decision.

Consider the complete reasonR for decision ∆(α) and recall that
it characterizes all properties of instance α that can trigger the deci-
sion:R ≡ ∨

τ |=∆α
τ,where τ is a property of instanceα. The reason

R is then a logical condition that triggers the decision (R |= ∆α).
If the complete reason is weakened into a conditionRw that contin-
ues to trigger the decision (R |= Rw |= ∆α), then Rw will admit
properties not satisfied by instance α. Moreover, if it is strengthened
into a condition Rs, then Rs will continue to trigger the decision
(Rs |= R |= ∆α) but will stop admitting some properties of in-
stance α that can trigger the decision. Hence, the complete reason
R is a necessary and sufficient condition (not necessarily a property)
for explaining the decision on instance α.

6 Decision Counterfactuals
We mentioned Susan earlier who passed the entrance exam, is a
first time applicant, has a high GPA but no work experience (α =
E,F,G,¬W). Classifier C1 admits Susan because she passed the
entrance exam and has a high GPA. Greg was also admitted by this
classifier. His application is similar to Susan’s except that he applied
before and has work experience (β = E,¬F,G,W). We cannot
pinpoint a single property of Greg that triggered admission, so we
cannot issue a “because” statement when explaining this decision.

Definition 5 (Because). Consider decision ∆(α) and let τ be a
property of instance α. The decision is made “because τ” iff τ is
the complete reason for the decision.

Proposition 5. A decision is made because τ iff τ is the necessary
reason for the decision (i.e., the only sufficient reason).

Proof. Follows from Definitions 1, 2 and 4.

One may be interested in statements that provide insights into a
decision beyond the reasons behind it. For example, how the classi-
fier may have decided if some instance characteristics were different.

An example statement is the one we mentioned in Section 1: Su-
san would have been admitted even if she did not have a high GPA
because she comes from a rich hometown and passed the entrance
exam. This statement exemplifies counterfactuals of the following
form: The decision will stick even if ρ because τ , where ρ and τ are
properties of the given instance.

Definition 6 (Even-If-Because). Consider decision ∆(α) and let ρ
and τ be properties of instance α. The decision sticks “even if ρ be-
cause τ” iff τ is the complete reason for the decision after changing
property ρ of instance α to ρ (i.e., flipping all characteristics in ρ).

Let β be the result of replacing property ρ of instance α by ρ
and suppose that τ is the complete reason for decision ∆(β). Then
τ is the only sufficient reason for decision ∆(β) by Definition 2.
Hence β |= τ and properties ρ and τ must be disjoint. Moreover,
α |= τ |= ∆β so ∆α = ∆β and ∆(α) = ∆(β). Hence, the decision
sticks “even if ρ because τ .”

Applicant Susan discussed earlier (α = E,F,G,¬W,R) is ad-
mitted by classifier C2. The decision will stick even if Susan had a
low GPA (¬G) because she comes from a rich hometown and passed
the entrance exam (E,R). This statement is justified sinceE,R is the
complete reason for decision ∆(β) where β = E,F,¬G,¬W,R is
the result of replacing characteristic G by ¬G in instance α.

Jackie did not pass the entrance exam, is not a first time applicant,
has a low GPA but has work experience (α = ¬E,¬F,¬G,W).
Jackie is denied admission by classifier C1. The decision will stick
even if Jackie had a high GPA (G) because she did not pass the en-
trance exam (¬E). This statement is justified since ¬E is the com-
plete reason for decision ∆(β) where β = ¬E,¬F,G,W is the
result of replacing characteristic ¬G by G in instance α.

7 Decision Bias and Classifier Bias
We will now discuss the dependence of decisions on certain features,
with a particular application to detecting decision and classifier bias.

Intuitively, a decision is biased if it depends on a protected feature:
one that should not be used when making the decision (e.g., gender,
zip code, or ethnicity).7 We formalize bias next while making a dis-
tinction between classifier bias and decision bias: A classifier may be

7 A protected feature may have been unprotected during classifier design.

biased in that it could make biased decisions, but the particular deci-
sions it already made may have been unbiased. While classifier bias
can always be detected by examining its decision function, we will
show that it can sometimes be detected by examining the complete
reason behind one of its unbiased decisions.

Definition 7 (Decision Bias). Decision ∆(α) is biased iff ∆(α) 6=
∆(β) for some β that disagrees with α on only protected features.

Bias can be positive or negative. For example, an applicant may
be admitted because they come from a rich hometown, or may be
denied admission because they did not come from a rich hometown.

The following result provides a necessary and sufficient condition
for detecting decision bias.

Theorem 4. A decision is biased iff each of its sufficient reasons
contains at least one protected feature.

Proof. Suppose decision ∆(α) is biased yet has a sufficient reason τ
with no protected features. We will now show a contradiction. Since
the decision is biased, there must exist an instance β that disagrees
with instance α on only protected features and ∆(α) 6= ∆(β). Since
τ is a property of α and β, we have α |= τ |= ∆α and β |= τ |= ∆α.
Hence, ∆α = ∆β and ∆(α) = ∆(β), which is a contradiction.

Suppose every sufficient reason of decision ∆(α) contains at least
one protected feature. Let X be these protected features and τ be the
characteristics of instance α that do not involve features X. Assume
∆(α) = ∆(β) for every instance β that agrees with instance α on
characteristics τ (that is, β disagrees with α only on features in X).
Term τ must then be an implicant of ∆α and a subset σ of τ must
be a prime implicant of ∆α (could be τ itself). Since τ is a property
of instance α, decision ∆(α) has sufficient reason σ that does not
include a protected feature in X, which is a contradiction. Hence,
∆(α) 6= ∆(β) for some instance β that disagrees with instance α on
only protected features in X, and decision ∆(α) is biased.

Theorem 4 does not require sufficient reasons to share a protected
feature, only that each must contain at least one protected feature.

Consider classifier C3, which admits applicants who have a good
GPA (G) as long as they pass the entrance exam (E), are male (M)
or come from a rich hometown (R):

∆3 = (G ∧ E) ∨ (G ∧M) ∨ (G ∧R). (1)

Bob has a good GPA, did not pass the entrance exam and comes
from a rich hometown (α = G,¬E,M,R). He is admitted with two
sufficient reasons:G,M andG,R. The decision is biased since each
sufficient reason contains a protected feature. This classifier will not
admit Nancy who has similar characteristics but does not come from
a rich hometown: β = G,¬E,¬M,¬R. It will also admit Scott who
has the same characteristics as Nancy: γ = G,¬E,M,¬R.

Even though this classifier is biased, some of its decisions may
be unbiased. If an applicant has a good GPA and passes the en-
trance exam (G,E), they will be admitted regardless of their pro-
tected characteristics. Moreover, if an applicant does not have a good
GPA (¬G), they will be denied admission regardless of their other
characteristics, including protected ones.

Definition 8 (Classifier Bias). A classifier is biased iff at least one
of its decisions is biased.

A classifier may be biased, but some of its decisions may be unbi-
ased. Moreover, one can sometimes infer classifier bias by inspecting
the sufficient reasons behind one of its unbiased decisions.

Theorem 5. A classifier is biased iff one of its decisions has a suffi-
cient reason that includes a protected feature.

Proof. Suppose classifier ∆ is biased. By Definition 8, some deci-
sion ∆(α) is biased. By Theorem 4, every sufficient reason of deci-
sion ∆(α) must contain at least one protected feature.

Suppose some decision ∆(α) has a sufficient reason τ that con-
tains protected features X 6= ∅. For any instance β such that β |= τ ,
we must have ∆(β) = ∆(α). We now show that there is an instance
β |= τ and instance γ that disagrees with β on only features X such
that ∆(β) 6= ∆(γ). Suppose the contrary is true: for all such β and
γ, we have ∆(β) = ∆(γ) = ∆(α). Then τ \ ρ is an implicant of
∆α, where ρ are the protected characteristics in τ . This is impossible
since τ is a prime implicant of ∆α. Hence, ∆(β) 6= ∆(γ) for some
β and γ with the stated properties and the classifier is biased.

If decision ∆(α) has protected features in some but not all of its
sufficient reasons, the decision is not biased according to Theorem 4.
But classifier ∆ is biased according to Theorem 5 as we can prove
that it will make a biased decision on some other instance β 6= α.

Consider classifier C3 in (1) and Lisa who has a good GPA, passed
the entrance exam and comes from a rich hometown (G,E,¬M,R).
The classifier will admit Lisa for two sufficient reasons: G,E and
G,R. The decision is unbiased: any applicant who has similar un-
protected characteristics will be admitted. However, since one of the
sufficient reasons contains a protected feature, the classifier is bi-
ased as it can make a biased decision on a different applicant. The
proof of Theorem 5 suggests that the classifier will make different
decisions on two applicants with a good GPA that disagree only on
whether they come from a rich hometown. Nancy (G,¬E,¬M,¬R)
and Heather (G,¬E,¬M,R) are such applicants.

The following theorem shows how one can detect decision bias
using the complete reason behind the decision. We use this theorem
(and Theorem 7) when discussing algorithms in Section 8.

Theorem 6. A decision is biased iff ∃(X1, . . . , Xn)R is not valid
where X1, . . . , Xn are all unprotected features and R is the com-
plete reason behind the decision.

Proof. Let τ1, . . . , τn be the decision’s sufficient reasons and hence
R = τ1 ∨ . . . ∨ τn. Existentially quantifying variables Xi from a
DNF is done by replacing their literals with 1. The result is valid
iff some term τi contains only variables in X1, . . . , Xn. Hence,
∃X1, . . . , XnR is not valid iff each term τi contains variables be-
yondXi (i.e., each sufficient reason contains protected features).

The following result shows how classifier bias can sometimes be
detected based on the complete reason behind an unbiased decision.

Theorem 7. A classifier is biased if R|X 6≡ R|¬X where X is a
protected feature andR is the complete reason for some decision.

Proof. Given Theorems 2 and 5, it is sufficient to show thatR|X 6≡
R|¬X iff feature X appears in some prime implicant of R. Let
τ1, . . . , τn be the prime implicants of R. Feature X appears either
positively or negatively in these prime implicants since terms τi are
all properties of the same instance. Suppose without loss of gener-
ality that feature X appears positively in terms τi (if any). Then
R|X ≡ ∨

X 6∈τi τi ∨
∨
X∈τi τi \ {X} and R|¬X ≡ ∨

X 6∈τi τi.
HenceR|X 6≡ R|¬X iff X ∈ τi for some prime implicant τi.

Theorem 7 follows from Theorems 2 and 5 and a known result: A
Boolean function depends on a variableX iffX appears in one of its
prime implicants. We include the full proof for completeness.

8 Computing Reasons and Related Queries
The enumeration of PI-explanations (sufficient reasons) was treated
in [30] by modifying the algorithm in [4] for computing prime impli-
cant covers; see also [5, 22]. The modified algorithm optimizes the
original one by integrating the instance into the prime implicant enu-
meration process, but we are unaware of a complexity bound for the
original algorithm or its modification. Moreover, since the algorithm
is based on prime implicant covers, it is incomplete. Consider classi-
fier ∆ = (X ∧ Z) ∨ (Y ∧ ¬Z), which has three prime implicants:
(X ∧ Z), (Y ∧ ¬Z) and (X ∧ Y). The last prime implicant is re-
dundant and may not be generated when computing a cover. Instance
α = X,Y, Z leads to a positive decision and two sufficient reasons:
(X ∧ Z) and (X ∧ Y). An algorithm based on covers may miss the
sufficient reason (X ∧ Y) and is therefore incomplete. This can be
problematic for queries that rely on examining all sufficient reasons,
such as decision and classifier bias (Definitions 7 and 8).

We next propose a new approach based on computing the com-
plete reason R for a decision (Definition 2), which characterizes all
sufficient reasons, and then use it to compute multiple queries. For
example, we can enumerate all sufficient reasons using the reasonR
(Theorem 2). We can also use it to compute the necessary reason for
a decision (Proposition 4) and to detect decision bias (Theorem 6).
Even classifier bias can sometimes be inferred directly using the rea-
sonR (Theorem 7) among other queries.

Assuming the classifier is represented using a suitable tractable
circuit (e.g., OBDD), our approach will compute the complete rea-
son for a decision in linear time regardless of how many sufficient
reasons it may have (could be exponential). Moreover, it will ensure
that the computed complete reason is represented by a tractable cir-
cuit, allowing us to answer many queries in polytime.

8.1 Computing Complete Reasons
Our approach is based on Decision-DNNF circuits, obtained using
compilers such as C2D8 [8], MINI C2D9 [23, 24] and D410 [17].

Definition 9 (Decision-NNF Circuit). A DNNF circuit has literals
or constants as inputs and two type of gates: and-gates and or-gates,
where the subcircuits feeding into each and-gate share no variables.
It is called a Decision-DNNF circuit if every or-gate has exactly two
inputs of the form: X ∧ µ and ¬X ∧ ν, where X is a variable.

DNNF circuits were introduced in [7]. Decision-DNNF circuits
were identified in [12, 13] and include Ordered Binary Decision Di-
agrams (OBDDs) [1, 13]. Figure 3 depicts an OBDD and its corre-
sponding Decision-DNNF circuit. The circuit is obtained by mapping
each OBDD node with variable X , high child µ and low child ν into
the circuit fragment (X ∧ µ) ∨ (¬X ∧ ν) (two and-gates and one
or-gate). For more on DNNF circuits and OBDD, see [9, 23].

We compute the reason behind decision ∆(α) by applying two
operations to a Decision-DNNF circuit ∆α: consenus then filtering.

Definition 10 (Consensus Circuit). The consensus circuit of
Decision-DNNF circuit Γ is denoted consensus(Γ) and obtained by
adding input µ ∧ ν to every or-gate with inputs X ∧ µ and ¬X ∧ ν.

Figure 3 depicts a Decision-DNNF circuit and its consensus cir-
cuit (third from left). The consensus operation adds four and-gates
denoted with double circles.
8 http://reasoning.cs.ucla.edu/c2d/
9 http://reasoning.cs.ucla.edu/minic2d/
10 http://www.cril.univ-artois.fr/kc/d4.html

01

CC

BB

A

0 1

¬A A

¬B B

¬C C

and and

or

and and

or

and and

or

and

or

and and

or

0 1

¬A A

¬B B

¬C C

and andand and

or

and

or

and andand

or

andand

or

and andand

or

0 1

¬A A

¬B B

¬C C

and andand and

or

and

or

and andand

or

andand

or

and andand

or

Figure 3. From left to right: OBDD, Decision-DNNF circuit, consensus circuit, and the filtering of consensus circuit by instance ¬A,B,C.

Proposition 6. A Decision-DNNF circuit Γ has the same satisfying
assignments as its consensus circuit consensus(Γ).

Proof. (X ∧µ)∨ (¬X ∧ ν) ≡ (X ∧µ)∨ (¬X ∧ ν)∨ (µ∧ ν).

A consensus circuit can be obtained in time linear in the size of
Decision-DNNF circuit, but is not a DNNF circuit. We next discuss
the filtering of a consensus circuit, which leads to a tractable circuit.

Definition 11 (Filtered Circuit). The filtering of consensus circuit Γ
by instance α, where Γ(α) = 1, is denoted filter(Γ, α) and obtained
by replacing every literal l 6∈ α by constant 0.

Filtering is only defined on consensus circuits and requires an in-
stance that satisfies the circuit. Figure 3 depicts an example. The fil-
tered circuit is on the far right of the figure, where grayed out nodes
and edges can be dropped due to replacing literals by constant 0.

Filtering is also a linear time operation. Consensus preserves mod-
els, but filtering drops some of them. We will characterize the models
preserved by filtering after presenting two required results.

Let Γ be a circuit that results from filtering by instance α. The
circuit is monotone in the following sense. If instance γ agrees with
instance α no less than instance β does, then β |= Γ implies γ |= Γ.
For example, if α = X,Y, Z, β = ¬X,Y,¬Z and γ = ¬X,Y, Z.

Theorem 8. If circuit Γ results from filtering by instance α then
every literal l in Γ appears in α, and Γ(γ) ≥ Γ(β) if γ∩α ⊇ β∩α.

Proof. Filtering removes every literal not in instanceα. Hence, every
literal in the filtered circuit Γ is in α, which implies the next result.

Suppose that γ ∩ α ⊇ β ∩ α and Γ(β) = 1. When evaluating
circuit Γ at γ compared to β, the only literals that change values are
l1 ∈ γ \ β and l2 ∈ β \ γ. Literals l1 change values from 0 to 1
and literals l2 change values from 1 to 0. Changes to the values of
l1 cannot decrease the output of circuit Γ since it is an NNF circuit.
Literals l2 are not in α since γ∩α ⊇ β∩α so do not appear in circuit
Γ and changes to their values do not matter. Hence, Γ(γ) = 1.

We also need the following result which identifies circuit models
that are preserved by filtering due to having applied consensus.

Proposition 7. Consider a Decision-DNNF circuit ∆ and instance
α such that ∆(α) = 1. If τ is an implicant of ∆ and α |= τ then τ
is also an implicant of filter(consensus(∆), α).

Proof. Let Γ = filter(consensus(∆), α), I(∆) = {τ : τ |= ∆}
and I(∆, α) = {τ : τ |= ∆ and α |= τ}. We need to show that
I(∆, α) ⊆ I(Γ). That is, Γ preserves the implicants τ of ∆ that are
satisfied by α. The proof is by induction on the structure of ∆.

(Base Case) If ∆ is a literal l or a constant, then ∆ = Γ since
consensus is not applicable and filtering will not replace literal l by
constant 0 (l ∈ α since ∆(α) = 1). Hence, I(∆, α) ⊆ I(Γ).

(Inductive Step) If ∆ = ∆1 ∧∆2 then Γ = Γ1 ∧ Γ2 where Γ1 =
filter(consensus(∆1), α) and Γ2 = filter(consensus(∆2), α).
Since ∆1 and ∆2 do not share variables (decomposability), I(∆) =
I(∆1) × I(∆2) (Cartesian product). Similarly, I(Γ) = I(Γ1) ×
I(Γ2). By the induction hypothesis, I(∆1, α) ⊆ I(Γ1) and
I(∆2, α) ⊆ I(Γ2). Hence,

I(∆, α) = I(∆1, α)× I(∆2, α) ⊆ I(Γ1)× I(Γ2) = I(Γ).

(Inductive Step) If ∆ = (l ∧ ∆1) ∨ (¬l ∧ ∆2) and literal l ∈ α
then Γ = (l∧Γ1)∨(Γ1∧Γ2) where Γ1 = filter(consensus(∆1), α)
and Γ2 = filter(consensus(∆2), α). Due to decomposability, l and
¬l do not appear in ∆1 or ∆2. Hence, I(∆) = I1 ∪ I2 ∪ Ic where

I1 = {l, τ : τ ∈ I(∆1)}
I2 = {¬l, τ : τ ∈ I(∆2)}
Ic = I(∆1 ∧∆2).

Since I2 ∩ I(∆, α) = ∅ we have

I(∆, α) = {l, τ : τ ∈ I(∆1, α)} ∪ I(∆1 ∧∆2, α).

Moreover, I(Γ) = {l, τ : τ ∈ I(Γ1)} ∪ I(Γ1 ∧ Γ2). By the in-
duction hypothesis, I(∆1, α) ⊆ I(Γ1) and I(∆2, α) ⊆ I(Γ2),
which gives {l, τ : τ ∈ I(∆1, α)} ⊆ {l, τ : τ ∈ I(Γ1)} and
I(∆1 ∧∆2, α) ⊆ I(Γ1 ∧ Γ2). Hence, I(∆, α) ⊆ I(Γ).

The following fundamental result reveals the role of filtering a
consensus circuit. It also reveals our linear-time procedure for com-

puting the complete reason behind a decision as a (tractable) circuit
that compactly characterizes all sufficient reasons.

Theorem 9. Consider a Decision-DNNF circuit ∆ and instance α
such that ∆(α) = 1. Term τ is a prime implicant of ∆ and α |= τ
(that is, τ is a sufficient reason for decision ∆(α)) iff τ is a prime
implicant of filter(consensus(∆), α).

Proof. Let Γ = filter(consensus(∆), α) and observe that Γ |= ∆
since consensus(∆) ≡ ∆ and Γ is the result of replacing some in-
puts of NNF circuit consensus(∆) with constant 0.

Suppose τ is a prime implicant of circuit ∆ and α |= τ . Then τ is
an implicant of circuit Γ by Proposition 7, τ |= Γ. If τ is not a prime
implicant of Γ, we must have some term ρ ⊂ τ such that ρ |= Γ.
Therefore ρ |= ∆ since Γ |= ∆, which means that τ is not a prime
implicant of ∆, a contradiction. Hence, τ is a prime implicant of Γ.

Suppose τ is a prime implicant of circuit Γ. Then τ is an implicant
of ∆ since Γ |= ∆. We next show that τ is a prime implicant of ∆
and α |= τ . Let β be an instance such that β |= τ and β disagrees
with α on all variables outside τ . Then Γ(β) = 1 and α ∩ β ⊆ τ .
Every instance γ such that γ |= α ∩ β must satisfy Γ(γ) = 1 since
α ∩ γ ⊇ α ∩ β, leading to Γ(γ) ≥ Γ(β) by Theorem 8. Hence,
α ∩ β is an implicant of Γ. Since τ is a prime implicant of Γ, we
must have α ∩ β = τ and hence α |= τ . Suppose now τ is not a
prime implicant of ∆. Some term ρ ⊂ τ is then a prime implicant of
∆ and α |= ρ. By the first part of this theorem, ρ is a prime implicant
of Γ, a contradiction. Therefore, τ is a prime implicant of ∆.

Definition 12 (Reason Circuit). For classifier ∆, instance α and a
Decision-DNNF circuit Γ for ∆α, circuit filter(consensus(Γ), α) is
called a “reason circuit” and denoted reason(∆, α).

The circuit reason(∆, α) depends on the specific Decision-DNNF
circuit Γ used to represent ∆α but will always have the same models.

8.2 Tractability of Reason Circuits
We next show that reason circuits are tractable. Since we represent
the complete reason for a decision as a reason circuit, many queries
relating to the decision can then be answered efficiently.

Definition 13 (Monotone). An NNF circuit is monotone if every
variable appears only positively or only negatively in the circuit.

Reason circuits are filtered circuits and hence monotone as shown
by Theorem 8. The following theorem mirrors what is known on
monotone propositional formula, but we include it for completeness.

Theorem 10. The satisfiability of a monotone NNF circuit can be
decided in linear time. A monotone NNF circuit can be negated and
conditioned in linear time to yield a monotone NNF circuit.

Proof. The satisfiability of a monotone NNF circuit can be decided
using the following procedure. Constant 0 is not satisfiable. Constant
1 and literals are satisfiable. An or-gate is satisfiable iff any of its in-
puts is satisfiable. An and-gate is satisfiable iff all its inputs are satis-
fiable. All previous statements are always correct except the last one
which depends on monotonicity. Consider a conjunction µ ∧ ν and
suppose every variable shared between the conjuncts appears either
positively or negatively in both. Any model of µ can be combined
with any model of ν to form a model for µ ∧ ν. Hence, the conjunc-
tion is satisfiable iff each of the conjuncts is satisfiable. Conditioning
replaces literals by constants so it preserves monotonicity. To negate
a monotone circuit, replace and-gates by or-gates, or-gates by and-
gates and literals by their negations. Monotonicity is preserved.

Algorithm 1 PI(∆, α)
input: Decision-DNNF circuit ∆, instance α (assumes ∆(α) = 1).
output: Prime implicants of circuit filter(consensus(∆), α).
main:

1: if cache(∆) is set then
2: return cache(∆)
3: else if ∆ is constant 0 then
4: r = {}
5: else if ∆ is constant 1 then
6: r = {{}}
7: else if ∆ = ∆1 ∧∆2 then
8: r = cartesian product(PI(∆1, α),PI(∆2, α))
9: else if ∆ = (X ∧∆1) ∨ (¬X ∧∆2) then

10: (`,Γ) = (X,∆1) if literal X in α else (¬X,∆2)
11: p = cartesian product(PI(∆1, α),PI(∆2, α))
12: q = {{`} ∪ τ for τ ∈ PI(Γ, α)}
13: r = p ∪ q
14: r = remove subsumed(r)
15: cache(∆) = r
16: return r

Given Theorem 10, the validity of a monotone NNF circuit can
be decided in linear time (we check whether the negated circuit is
unsatisfiable).11 We can also conjoin the circuit with a literal in linear
time to yield a monotone circuit since ∆ ∧ l = (∆|l) ∧ l.

Variables can be existentially quantified from a monotone circuit
in linear time, with the resulting circuit remaining monotone. This is
critical for efficiently detecting decision bias as shown by Theorem 6.

Theorem 11. Replacing every literal of variable X with constant 1
in monotone NNF circuit Γ yields a circuit equivalent to ∃XΓ.

Proof. If variable X appears only positively in circuit Γ then
Γ|¬X |= Γ|X and ∃X Γ = (Γ|X) ∨ (Γ|¬X) = Γ|X . If
variable X appears only negatively in Γ then Γ|X |= Γ|¬X and
∃X Γ = (Γ|X) ∨ (Γ|¬X) = Γ|¬X . Variable X can therefore be
existentially quantified by replacing its literals with constant 1.

8.3 Computing Queries

We can now discuss algorithms. To compute the sufficient reasons
for a decision ∆(α): get a Decision-DNNF circuit for ∆α, transform
it into a consensus circuit, filter it by instance α and finally com-
pute the prime implicants of filtered circuit. Algorithm 1 does this in
place, that is without explicitly constructing the consensus or filtered
circuit. It assumes a positive decision (otherwise we pass ¬∆).

Algorithm 1 uses subroutine cartesian product which conjoins
two DNFs by computing the Cartesian product of their terms. It also
uses remove subsumed to remove subsumed terms from a DNF.

Theorem 12. Consider a Decision-DNNF ∆ and instance α. If
∆(α) = 1 then a call PI(∆, α) to Algorithm 1 returns the prime
implicants of circuit filter(consensus(∆), α).

Proof. Consensus and filtering are applied implicitly on Lines 10-11.
Filtered circuit are monotone. We compute the prime implicants of a
monotone circuit by converting it into DNF and removing subsumed
terms [6, Chapter 3]. This is precisely what Algorithm 1 does.

11 Validity can be checked more directly as follows. Constant 1 is valid. Con-
stant 0 and literals are not valid. An and-gate is valid iff all its inputs are
valid. An or-gate is valid iff any of its inputs is valid. The previous state-
ments are always correct except the last one which requires monotonicity.

Consider a decision ∆(α) and its complete reason R =
reason(∆, α) as a monotone NNF circuit obtained by consensus then
filtering. Let n be the size of circuit R and m be the number of fea-
tures. We next show how to compute various queries using circuitR.

Sufficient Reasons. By Theorems 2 and 12, the call PI(∆α, α) to
Algorithm 1 will return all sufficient reasons for decision ∆(α), as-
suming ∆α is a Decision-DNNF circuit. The number of sufficient
reasons can be exponential, but we can actually answer many ques-
tions about them without enumerating them directly as shown below.

Necessary Property. By Proposition 4, characteristic (literal) l is
necessary for decision ∆(α) iff R |= l. This is equivalent to R|¬l
being unsatisfiable, which can be decided in O(n) time given The-
orem 10. The necessary property (all necessary characteristics) can
then be computed in O(n ·m) time.

Necessary Reason. To compute the necessary reason (if any) we
compute the necessary property and check whether it satisfies the
complete reason. This can be done in O(n ·m) time.

Because Statements. To decide whether decision ∆(α) was made
“because τ” we check whether property τ is the complete reason for
the decision (Definition 5): τ |= R andR |= τ . We have τ |= R iff
(¬R)|τ is unsatisfiable. Moreover, R |= τ iff R|¬l is unsatisfiable
for every literal l in τ . All of this can be done in O(n · |τ |) time.

Even if, Because Statements. To decide whether decision ∆(α)
would stick “even if ρ because τ” we replace property ρ with ρ in
instance α to yield instance β (Definition 6). We then compute the
complete reason for decision ∆(β) and check whether it is equiva-
lent to τ . All of this can be done O(n · |τ |) time.

Decision Bias. To decide whether decision ∆(α) is biased we ex-
istentially quantify all unprotected features from circuit R and then
check the validity of the result (Theorem 6). All of this can be done
in O(n) time given Theorems 10 and 11.

9 Another Admissions Classifier

We now consider a more refined admission classifier to illustrate the
notions and concepts we introduced more comprehensively.

This classifier highly values passing the entrance exam and being
a first time applicant. However, it also gives significant leeway to
students from a rich hometown. In fact, being from a rich hometown
unlocks the only path to acceptance for those who failed the entrance
exam. The classifier is depicted as an OBDD in Figure 4. It corre-
sponds to the following Boolean formula, which is not monotone
(the previous classifiers we considered were all monotone):

∆ = [E ∧ [(F ∧ (G ∨W)) ∨ (¬F ∧R)]] ∨ [G ∧R ∧W].

The classifier has the following prime implicants, some are not es-
sential (all prime implicants of a monotone formula are essential):

(E,F,W)(E,F,G)(G,R,W)(E,¬F,R)(E,R,W)(E,G,R).

We will consider applicants Scott, Robin and April in Figure 5, where
feature R is protected (whether the applicant comes from a rich
hometown). The complete reasons for the decisions on these appli-
cants are shown in Figure 6. These are reason circuits produced as
suggested by Definition 12, except that we simplified the circuits by
propagating and removing constant values (a reason circuit is satisfi-
able as it must be satisfied by the instance underlying the decision).

01

F F

G G

G

W W

W

R

R

E

Figure 4. Admission
classifier.

Applicant
Scott

R
obin

A
pril

Entrance Exam 3 3 3
First Time Applicant 7 3 3

Good GPA 3 3 3
Work Experience 3 3 3
Rich Hometown 3 3 7

Decision 1 1 1

Figure 5. Applicants and
their characteristics.

¬F G

or W

or andR

and andE

and and

or

FG

and

W

or

and

or

and

R

and and

or

and

E

andand

or

FG

and

W

or and

or ¬R

andand

or E

and

Figure 6. From left to right: Reason circuit for the decision on applicants
Scott, Robin and April (Figure 5).

The decision on applicant Scott is biased. To check this, we can ex-
istentially quantify unprotected features E,F,G,W from the reason
circuit in Figure 6 and then check its validity (Theorem 6). Existen-
tial quantification is done by replacing the literals E,¬F,G,W in
the circuit with constant 1. The resulting circuit is not valid. We can
also confirm decision bias by considering the sufficient reasons for
this decision, which all contain the protected feature R (Theorem 4):

(E,G,R) (E,R,W) (E,R,¬F) (G,R,W)

If we flip the protected characteristic R to ¬R, the decision will flip
with the complete reason being ¬F,¬R so Scott would be denied
admission because he is not a first time applicant and does not come
from a rich hometown (Definition 5).

The decision on Robin is not biased. If we existentially quantify
unprotected features E,F,G,W from the reason circuit (by replac-
ing their literals with constant 1), the circuit becomes valid. We can
confirm this by examining the decision’s sufficient reasons:

(E,F,G) (E,F,W) (E,G,R) (E,R,W) (G,R,W)

Two of these sufficient reasons do not contain the protected feature
so the decision cannot be biased (Theorem 4). The decision will be
the same on any applicant with the same characteristics as Robin
except for the protected feature R. However, since some of the suffi-
cient reasons contain a protected feature, the classifier must be biased
(Theorem 5): It will make a biased decision on some other applicant.

This illustrates how classifier bias can be inferred from the complete
reason behind one of its unbiased decisions. This method is not com-
plete though: the classifier may still be biased even if no protected
feature appears in a sufficient reason for one of its decisions.

The decision on April is not biased even though the protected fea-
ture R appears in the reason circuit (the circuit is valid if we exis-
tentially quantify all features but R). Moreover, E,F are all the nec-
essary characteristics for this decision (i.e., the necessary property).
Flipping either of these characteristics will flip the decision. Recall
that violating the necessary property may either flip the decision or
change the reason behind it (Theorem 3) but flipping only one neces-
sary characteristic is guaranteed to flip the decision (Proposition 3).

The decision on April would stick even if she were not to have
work experience (¬W) because she passed the entrance exam (E),
has a good GPA (G) and is a first time applicant (F). April would be
denied admission if she were to also violate one of these characteris-
tics (Definition 6 and Proposition 3).

We close this section by an important remark. Even though most
of the notions we defined are based on prime implicants, our pro-
posed theory does not necessarily require the computation of prime
implicants which can be prohibitive. Reason circuits characterize all
relevant prime implicants and can be obtained in linear time from
Decision-DNNF circuits. Reason circuits are also monotone, allow-
ing one to answer many queries about the embedded prime impli-
cants in polytime. This is a major contribution of this work.

10 Conclusion
We introduced a theory for reasoning about the decisions of Boolean
classifiers, which is based on the notions of sufficient, necessary and
complete reasons. We presented applications of the theory to explain-
ing decisions, evaluating counterfactual statements about decisions
and identifying decision bias and classifier bias. We also presented
polytime and linear-time algorithms for computing most of the intro-
duced notions based on the new and tractable class of reason circuits.

ACKNOWLEDGEMENTS
We wish to thank Arthur Choi and Jason Shen for providing valu-
able feedback. This work has been partially supported by NSF grant
#ISS-1910317, ONR grant #N00014-18-1-2561, DARPA XAI grant
#N66001-17-2-4032 and a gift from JP Morgan. The views in this
paper do not necessarily represent those of sponsors.

REFERENCES
[1] Randal E. Bryant, ‘Graph-based algorithms for boolean function ma-

nipulation’, IEEE Trans. Computers, 35(8), 677–691, (1986).
[2] Hei Chan and Adnan Darwiche, ‘Reasoning about bayesian network

classifiers’, in UAI, pp. 107–115. Morgan Kaufmann, (2003).
[3] Arthur Choi, Weijia Shi, Andy Shih, and Adnan Darwiche, ‘Compiling

neural networks into tractable Boolean circuits’, in AAAI Spring Sym-
posium on Verification of Neural Networks (VNN), (2019).

[4] Olivier Coudert and Jean Christophe Madre, ‘Fault tree analysis: 1020

prime implicants and beyond’, in Proc. of the Annual Reliability and
Maintainability Symposium, (1993).

[5] Olivier Coudert, Jean Christophe Madre, Henri Fraisse, and Herve
Touati, ‘Implicit prime cover computation: An overview’, in Proceed-
ings of the 4th SASIMI Workshop, (1993).

[6] Yves Crama and Peter L. Hammer, Boolean Functions - Theory, Algo-
rithms, and Applications, volume 142 of Encyclopedia of mathematics
and its applications, Cambridge University Press, 2011.

[7] Adnan Darwiche, ‘Decomposable negation normal form’, J. ACM,
48(4), 608–647, (2001).

[8] Adnan Darwiche, ‘New advances in compiling CNF into decomposable
negation normal form’, in ECAI, pp. 328–332. IOS Press, (2004).

[9] Adnan Darwiche and Pierre Marquis, ‘A knowledge compilation map’,
J. Artif. Intell. Res., 17, 229–264, (2002).

[10] Johan de Kleer, Alan K. Mackworth, and Raymond Reiter, ‘Character-
izing diagnoses and systems’, Artif. Intell., 56(2-3), 197–222, (1992).

[11] Andreas Herzig, Jérôme Lang, and Pierre Marquis, ‘Propositional up-
date operators based on formula/literal dependence’, ACM Trans. Com-
put. Log., 14(3), 24:1–24:31, (2013).

[12] Jinbo Huang and Adnan Darwiche, ‘DPLL with a trace: From SAT
to knowledge compilation’, in IJCAI, pp. 156–162. Professional Book
Center, (2005).

[13] Jinbo Huang and Adnan Darwiche, ‘The language of search’, J. Artif.
Intell. Res., 29, 191–219, (2007).

[14] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva,
‘Abduction-based explanations for machine learning models’, in
Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), pp.
1511–1519, (2019).

[15] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva, ‘On re-
lating explanations and adversarial examples’, in Advances in Neural
Information Processing Systems 32, 15883–15893, Curran Associates,
Inc., (2019).

[16] Alexey Ignatiev, Nina Narodytska, and João Marques-Silva, ‘On val-
idating, repairing and refining heuristic ML explanations’, CoRR,
abs/1907.02509, (2019).

[17] Jean-Marie Lagniez and Pierre Marquis, ‘An improved decision-dnnf
compiler’, in IJCAI, pp. 667–673. ijcai.org, (2017).

[18] Jérôme Lang, Paolo Liberatore, and Pierre Marquis, ‘Propositional in-
dependence: Formula-variable independence and forgetting’, J. Artif.
Intell. Res., 18, 391–443, (2003).

[19] Felix Lindner and Katrin Möllney, ‘Extracting reasons for moral judg-
ments under various ethical principles’, in KI 2019: Advances in Ar-
tificial Intelligence, eds., Christoph Benzmüller and Heiner Stucken-
schmidt, pp. 216–229, Cham, (2019). Springer International Publish-
ing.

[20] Pierre Marquis, Consequence finding algorithms, volume 5 of Hand-
book on Defeasible Reasoning and Uncertainty Management Systems,
chapter 2, 41–145, Kluwer Academic Publisher, 2000. Moral S. et
Kohlas J. (eds.), Gabbay D. et Smets Ph. (series eds.).

[21] E. J. McCluskey, ‘Minimization of boolean functions’, The Bell System
Technical Journal, 35(6), 1417–1444, (Nov 1956).

[22] Shin-ichi Minato, ‘Fast generation of prime-irredundant covers from
binary decision diagrams’, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 76(6), 967–973,
(1993).

[23] Umut Oztok and Adnan Darwiche, ‘On compiling CNF into decision-
dnnf’, in CP, volume 8656 of Lecture Notes in Computer Science, pp.
42–57. Springer, (2014).

[24] Umut Oztok and Adnan Darwiche, ‘An exhaustive DPLL algorithm for
model counting’, J. Artif. Intell. Res., 62, 1–32, (2018).

[25] W. V. Quine, ‘The problem of simplifying truth functions’, The Ameri-
can Mathematical Monthly, 59(8), 521–531, (1952).

[26] W. V. Quine, ‘On cores and prime implicants of truth functions’, The
American Mathematical Monthly, 66(9), 755–760, (1959).

[27] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin, ‘”why should
I trust you?”: Explaining the predictions of any classifier’, in KDD, pp.
1135–1144. ACM, (2016).

[28] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin, ‘Anchors:
High-precision model-agnostic explanations’, in AAAI, pp. 1527–1535.
AAAI Press, (2018).

[29] Andy Shih, Arthur Choi, and Adnan Darwiche, ‘Formal verification of
bayesian network classifiers’, in PGM, volume 72 of Proceedings of
Machine Learning Research, pp. 427–438. PMLR, (2018).

[30] Andy Shih, Arthur Choi, and Adnan Darwiche, ‘A symbolic approach
to explaining bayesian network classifiers’, in IJCAI, pp. 5103–5111.
ijcai.org, (2018).

[31] Andy Shih, Arthur Choi, and Adnan Darwiche, ‘Compiling bayesian
network classifiers into decision graphs’, in AAAI, pp. 7966–7974.
AAAI Press, (2019).

[32] Andy Shih, Adnan Darwiche, and Arthur Choi, ‘Verifying binarized
neural networks by angluin-style learning’, in SAT, volume 11628 of
Lecture Notes in Computer Science, pp. 354–370. Springer, (2019).

