
A Structure-Based Variable Ordering Heuristic for SAT

Jinbo Huang and Adnan Darwiche
Computer Science Department

University of California, Los Angeles, CA 90095
{jinbo,darwiche}@cs.ucla.edu

Abstract

We propose a variable ordering heuristic for SAT,
which is based on a structural analysis of the SAT
problem. We show that when the heuristic is
used by a Davis-Putnam SAT solver that employs
conflict-directed backtracking, it produces a divide-
and-conquer behavior in which the SAT problem
is recursively decomposed into smaller problems
that are solved independently. We discuss the im-
plications of this divide-and-conquer behavior on
our ability to provide structure-based guarantees on
the complexity of Davis-Putnam SAT solvers. We
also report on the integration of this heuristic with
ZChaff—a state-of-the-art SAT solver—showing
experimentally that it significantly improves per-
formance on a range of benchmark problems that
exhibit structure.

1 Introduction
The class of Boolean satisfiability (SAT) problems has been
of perpetual interest to researchers in many areas of com-
puter science. Although these problems have a potentially
exponential complexity, fresh techniques have continued to
be proposed and implemented, allowing an increasing num-
ber of (previously) intractable problems to be solved in rea-
sonable amounts of time.

Most existing complete SAT solvers are based on the
Davis-Putnam (DP) procedure [Davis and Putnam, 1960;
Davis et al., 1962], which formulates the SAT problem as
a systematic search problem in the space of variable instanti-
ations, and uses depth-first search to find a solution. Various
techniques are employed by DP solvers in an attempt to prune
the search space, or to focus it on regions that promise earlier
discovery of a solution. It has been noted that, among other
things, the order in which variables are instantiated has a great
effect on the resulting complexity of the SAT algorithm; see
[Li and Anbulagan, 1997] for example.

We propose a new variable ordering heuristic for SAT,
which is based on a structural analysis of the SAT problem.
We show that when the suggested ordering heuristic is used
by a DP solver that employs conflict-directed backtracking
[Silva and Sakallah, 1996], it produces a divide-and-conquer

behavior in which the SAT problem is recursively decom-
posed into smaller problems that are solved independently.
The general concept is that while the initial SAT problem may
not be decomposable, it can be broken into independent sub-
problems after instantiating a certain number of variables that
can be determined structurally. Hence, putting such a decom-
posing set of variables first in the ordering leads to an early
decomposition of the problem. The key, however, is that this
process can be repeated recursively, allowing one to recur-
sively decompose the SAT problem down to single clauses.
The other key point which we establish analytically is that it
is critical for the DP solver to employ conflict-directed back-
tracking for the suggested order to have this recursive decom-
positional effect.1

By way of experimentation, we incorporated this technique
in the publicly available ZChaff program [ZChaff, URL] and
tested both the original and modified programs on a range of
SAT benchmarks. Our results indicate a significant improve-
ment in speed on the majority of the instances.

The rest of the paper is structured as follows. We start with
a brief review of DP solvers in Section 2. We then turn in Sec-
tion 3 to the proposed variable ordering heuristic, where we
define it formally in terms of a graphical model, known as a
dtree (decomposition tree). We then describe in Section 4 our
integration of the new heuristic with ZChaff [ZChaff, URL],
and provide experimental results that illustrate its effective-
ness. We then consider a theoretical analysis of the pro-
posed ordering heuristic in Section 5, where we show that
when coupled with conflict-directed backtracking, the pro-
posed ordering generates a behavior which is equivalent to a
divide-and-conquer search algorithm that recursively decom-
poses the given SAT problem all the way to single clauses.
This correspondence allows us to provide some guarantees
on the complexity of the resulting search, depending on the
structure of the given SAT problem. We finally close in Sec-
tion 6 with some concluding remarks.

2 Davis-Putnam (DP) Search
We start by reviewing the basic DP search for the satisfiability
problem. As is customary, a propositional theory is expressed
in Conjunctive Normal Form (CNF). Recall that to satisfy a

1See [Bayardo and Pehoushek, 2000] for an example where (dy-
namic) decomposition is used, but in the context of model counting.

Algorithm 1 sat(Theory : C)

1: if there is an inconsistent clause in C then
2: return false (unsatisfiable)
3: if there is no uninstantiated variable in C then
4: return true (satisfiable)
5: select an uninstantiated variable v in C
6: return sat(C|v=true) ∨ sat(C|v=false)

propositional theory in CNF each of its clauses simultane-
ously has to be satisfied. We will use C = {c1, c2, . . . , cm} to
denote our target theory having m clauses where ci denotes its
ith clause. We will write C|v=true (C|v=false) to represent
the theory obtained by replacing the occurrences of variable
v with true (false) in the theory C. Algorithm 1 provides a
recursive description of the basic DP algorithm except that it
omits the use of unit propagation which we discuss later.

This algorithm is often implemented iteratively instead of
recursively, where it explores the search space by instantiat-
ing variables one at a time (we will call these instantiations
decisions and the corresponding variables decision variables).
Each of these decisions is pushed onto the decision stack and
the theory is updated to reflect the new variable assignments.
When inconsistency is discovered in the theory it goes back
on the stack to the last decision whose variable has not been
tried both ways, flips it, and proceeds therefrom. In case all
previous decision variables have been tried both ways, it de-
clares the theory as unsatisfiable. The theory is declared sat-
isfiable if all variables have been successfully instantiated, or
if all clauses have been subsumed (satisfied by the current,
possibly partial, variable assignment).

Note that there is no need to attempt both recursive calls on
Line 6 in case one of the calls succeeds. Hence, one opportu-
nity for optimization is to first try the most promising disjunct
in Line 6. Note also that we did not specify how to choose the
next variable on Line 5. In fact, a different chain of decisions
can often lead to a remarkable difference in complexity [Li
and Anbulagan, 1997].

We describe in the next section a variable ordering heuris-
tic based on a structural analysis of the SAT problem. We
then provide an experimental and a theoretical analysis of the
heuristic in later sections.

3 A Variable Group Ordering
Recall that C = {c1, c2, . . . , cm} is our target propositional
theory in CNF. We have alluded to our desire of decompos-
ing C into disconnected components. However, if we simply
split C into two arbitrary subsets CL and CR, these two sub-
theories will in general have some variables in common and
hence not qualify as disconnected components.

To overcome this difficulty we propose the following
method. Let VL and VR denote the sets of variables men-
tioned in CL and CR, respectively. We start the DP search on
CNF C, but insist that it only make decisions on variables in
VL ∩ VR at this stage. If unsatisfiable is declared during
this process, we are done; otherwise all variables in VL ∩ VR

will at some point have been instantiated.
Observe that the resulting sub-theories C ′

L and C ′

R now

{u,z}

{w}

{y} { } {v}

u V x V y x V ¬z ¬u V w V z v V ¬w V z

{x}

{ }

Figure 1: A dtree for a four-clause CNF.

have disjoint sets of (uninstantiated) variables: V ′

L = VL −
VL ∩ VR and V ′

R = VR − VL ∩ VR; they are hence com-
pletely independent sub-problems. Ordering one set of vari-
ables before the other therefore seems a good strategy from
this point on. We have thus obtained a constraint on the order
of variables: variables VL ∩ VR are processed first, followed
by V ′

L, and then V ′

R.2 Note that V ′

L and V ′

R can each be re-
cursively broken up in a similar fashion, until all variables
are partitioned into a sequence of groups, which serves as our
proposed variable ordering. Within each of these groups, the
algorithm is free to use any variable order.

To generate such a variable group sequence we will need to
specify how the theory C is to be partitioned into sub-theories
CL and CR, how the sub-theories in turn are to be partitioned,
and so on. A graphical model known as a dtree serves nicely
for this purpose, as it allows us to offer guarantees on the
complexity of the resulting search [Darwiche, 2002].

A dtree (decomposition tree) for a CNF C is a full binary
tree whose leaves correspond to the clauses of C; see Fig-
ure 1. Each internal node represents a subset of C corre-
sponding to all the leaves under it; the root in particular rep-
resents the original theory C. Such a tree naturally induces
a recursive decomposition scheme, partitioning a theory into
two parts represented by the node’s two children.

A number of properties can be defined for the nodes of a
dtree [Darwiche and Hopkins, 2001].

Definition 3.1 The variables of an internal dtree node is the
set of variables mentioned in the clauses represented by the
leaves under that node; the variables of a leaf node is the set
of variables mentioned in the clause it represents.

Definition 3.2 The cutset of an internal dtree node is the in-
tersection of its children’s variables, minus all its ancestors’
cutsets; the cutset of a leaf node is its variables minus all its
ancestors’ cutsets.3

Figure 1 depicts a dtree for a four-clause CNF theory. The
clauses are listed at the bottom below their corresponding
leaves. The cutset is shown inside of each node.

2We assume the left-right order. Choice between the two orders
affords another opportunity for applying heuristics, but is beyond
the scope of this paper.

3A cutset is usually not defined for a leaf node in a dtree, but we
extend the definition here for convenience.

Recall that each dtree node t corresponds to a part of the
CNF theory; hence the variables of a dtree node are simply
the variables of that part of the CNF theory; and the cutset
represents all variables that need to be instantiated before the
two sub-theories become disconnected (assuming that all cut-
sets of t’s ancestors have been instantiated). The following
two concepts will help formally state our proposed heuristic
for ordering variables.

Definition 3.3 A variable group ordering of set V is a parti-
tion of variables V into an ordered sequence of subsets.

With respect to the set of variables in Figure 1, the follow-
ing is a possible variable group ordering: {u, v, w}, {x, y},
{z}; which dictates that variables {u, v, w} should be consid-
ered before {x, y}, and {x, y} before {z}. Note that a strict
variable ordering is a special case of variable group ordering
in which all groups have size one.

Definition 3.4 The variable group ordering (v.g.o.)
induced by a dtree is one obtained recursively as fol-
lows: output the cutset of the root; output the v.g.o. of its left
child; output the v.g.o. of its right child; discard empty sets.

Our proposed variable ordering scheme can now be stated
as simply the variable group ordering induced by the dtree.
The variable group ordering induced by the dtree in Figure 1,
for example, is {u, z}, {x}, {y}, {w}, {v}.

So far we have not discussed how dtrees are to be con-
structed. There are obviously many distinct dtrees for any
nontrivial CNF theory. To reduce the complexity of the SAT
algorithm we have adopted a heuristic that calls for relatively
balanced dtrees with small cutsets. A good balance ensures
a near-logarithmic tree height, which allows the recursive de-
composition to finish faster. And smaller cutsets lead to min-
imizing the number of cases that may need to be considered
for each decomposition. Hence, both of these strategies will
help reduce the overall complexity.

To generate dtrees with the above properties, we employ
the same hypergraph partitioning technique as described in
[Darwiche and Hopkins, 2001]. Our hypergraph for a CNF
theory C is constructed by having a node for each clause in
C and having a hyperedge for each variable in C connect-
ing all nodes (clauses) that mention the variable. The hyper-
graph partitioning tool recursively partitions the set of nodes
into two (balanced) parts while attempting to minimize the
number of edges across. A small number of crossing edges
translates into a small number of variables shared between
two sets of clauses. Hence the resulting dtree is expected to
have relatively small cutsets. The degree of balance is con-
trolled by specifying what is called the balance factor. We
have used a balance factor of 35 in our experiments, which
tells the program not to let the ratio of the two partitions in
size (large over small) exceed 50+35

50−35
= 85

15
. The reader is

refered to [Darwiche and Hopkins, 2001] for a more detailed
description of this technique.

4 Experimental Results
To evaluate the effectiveness of our proposed ordering tech-
nique, we decided to integrate it with an existing SAT solver
to see whether it would improve performance on a variety of

benchmarks. Our choice of SAT solver is ZChaff [ZChaff,
URL] as it has ranked first in the recent (2001 and 2002) SAT
Competitions [SATEX, URL].

Our additions and modifications to ZChaff consist of 1)
the package that implements dtree generation; 2) a separate
chunk of code that extracts a variable group ordering from
the dtree; and 3) change to the ZChaff code such that the pro-
gram is given the variable group ordering as a second input
(the first being the CNF) and forced to select variables from
the same group, one group at a time following the specified
group order. Within the same variable group, ZChaff is left
to use its own heuristic, known as the Variable State Inde-
pendent Decaying Sum decision heuristic [Moskewicz et al.,
June 2001]. The new code is in the form of add-on and re-
placement files that compile with the original ZChaff package
to produce the modified program; it is available for download
at http://reasoning.cs.ucla.edu/dtree sat/.

Our experiments were carried out on a Redhat system
with a 930MHz CPU and 700MB of memory. The origi-
nal ZChaff program and its modified version, which we call
Dtree-ZChaff, were run on the same sets of CNFs. We re-
port in Table 1 the comparative performance of these two
programs. Note that only those instances that were solved
by both programs are included. Instances on which Dtree-
ZChaff succeeded but ZChaff ran out of memory are reported
in Table 3; the reverse case did not happen for the given test
suite. Some of our benchmarks are from [Aloul, URL]; others
are from the SATLIB website [SATLIB, URL].

The times shown are in seconds and each represent the total
time for all instances in the group. We generated two dtrees
per CNF and chose the one with smaller width4. During the
generation of each dtree, we repeated each hypergraph parti-
tioning step twice and chose the smaller cut. The reported
“Dtree Time” includes the time to thus obtain a dtree and
that to compute a variable group ordering from it. Adding
“Dtree Time” and “Dtree-ZChaff Time” gives the actual run-
ning time of Dtree-ZChaff, which is compared with that of the
original ZChaff. Figures in bold highlight the benchmarks on
which the proposed ordering lead to an improvment. Scores
on a single-instance basis are shown in the last column. Con-
sidering whole groups, we observe that Dtree-ZChaff leads
to improvement on seven out of the ten groups by a factor of
between 1.1 and 7.8. Considering individual instances, it also
leads to improvement on the majority of them. For a more de-
tailed picture, we have included in Table 2 individual results
on a select number of typical instances from each group.

We would like to point out that most of these CNFs are rel-
atively “hard” instances for ZChaff—they require more than a
few seconds. On instances where ZChaff finishes in a flash—
such as ii16, par16, many of those in UF250, and some of
those in Pigeonhole—our proposed ordering was not helpful
since generating the dtree alone could take more time than
that needed by the plain ZChaff to solve the SAT problem.
Finally, to complete the picture, Table 3 reports on instances
(not included in the first two tables) on which ZChaff ran out
of memory but Dtree-ZChaff succeeded. We also note that

4The notion of width captures both the cutset sizes and the degree
of balance; a formal definition can be found in [Darwiche, 2001].

Table 1: Overall results on all benchmarks
Benchmark #Instances SAT/UNSAT Dtree Dtree-ZChaff ZChaff Improved Instances

Time Time Time
Pigeonhole 8 UNSAT 16 944 7368 5

FPGA-UNSAT 9 UNSAT 64 3379 26849 9
URQ 8 UNSAT 6 236 927 8

UUF250 100 UNSAT 533 32040 41292 84
UF250 100 SAT 538 3515 4378 22

FPGA-SAT 11 SAT 38 21251 18207 6
DIFP A 14 SAT 447 54070 142755 13
DIFP W 14 SAT 764 103726 228653 7

ii16 10 SAT 223 73 63 0
par16 10 SAT 33 23 9 0

Table 3: Instances on which ZChaff failed
Instance #Vars/#Clauses Dtree Dtree-ZChaff

Time Time
hole14 210/1485 6 3636
hole15 240/1816 8 14977

fpga11 20 uns rcr 440/4220 17 7041
urq3 5 46/470 1 589
urq3 6 46/470 1 181
urq3 7 46/470 1 577
urq3 8 46/470 1 1366

Algorithm 2 sat(Theory : C, Dtreenode : T)

1: if there is an inconsistent clause in C then
2: return false
3: if T is null then
4: return true
5: V = T.cutset
6: for all instantiations α of V do
7: if sat(C|α, T.left) ∧ sat(C|α, T.right) then
8: return true
9: return false

the total running time of all experiments was about 2 weeks.

5 Decompositional Semantics of the Heuristic
We show in this section that when the proposed variable

ordering heuristic is integrated with a DP solver that employs
conflict-directed backtracking, such as ZChaff, it produces a
divide-and-conquer behavior in which the solver recursively
breaks down the SAT problem into smaller sub-problems that
are then solved independently. Specifically, even though the
solver is using a DP search method, we will show that it em-
ulates Algorithm 2, which explicitly uses the dtree to realize
a divide-and-conquer search. One significance of this corre-
spondence is that we can now offer structure-based guaran-
tees on the complexity of DP solvers that use such orders.
Such guarantees have usually been restricted to DP solvers
based on resolution [Davis and Putnam, 1960; Dechter and
Rish, 1994], which have not been as influential for SAT given
their intractable space complexity [Davis and Putnam, 1960;
Davis et al., 1962].

Algorithm 3 sat(Theory : C, Dtreenode : T)

1: if there is an inconsistent clause in C then
2: return false
3: if T is null then
4: return true
5: if there is no uninstantiated variable in T.cutset then
6: return sat(C, T.left) ∧ sat(C, T.right)
7: select an uninstantiated variable v in T.cutset
8: return sat(C|v=true, T) ∨ sat(C|v=false, T)

Given a CNF C and a corresponding dtree, recall that each
dtree node T corresponds to a subset of the CNF C. From
here on, we will use C : T to refer to the set of clauses in CNF
C corresponding to node T . Algorithm 2 takes two inputs: a
CNF C and a corresponding dtree rooted at node T . The
following invariant is maintained by the algorithm: clauses
C : T are disconnected from other clauses. This is true triv-
ially for the very first call to Algorithm 2, and remains true for
recursive calls since cutsets associated with ancestors of node
T must be instantiated by the time the recursive call is made.
Algorithm 2 decomposes the clauses in C : T by setting vari-
ables in the cutset of node T to some value α. Specifically,
clauses C|α : T can now be decomposed into two smaller
sets, C|α : T.left and C|α : T.right which are solved inde-
pendently. If both of these sets of clauses are solved success-
fully for some instantiation α, the original CNF C is declared
satisfiable. Otherwise it is declared unsatisfiable.

Note that cutset variables do not need to be instanti-
ated simultaneously as given on Line 6 of Alogirthm 2—
instantiating these variables one at a time leads to the variant
Algorithm 3. The order in which variables are instantiated
by this algorithm is indeed consistent with the group ordering
induced by the given dtree, as formalized by Definition 3.4.
In fact, the only key difference between Algorithm 3 and a
DP solver that uses the dtree group ordering is that when
all cutset variables of dtree node T are instantiated, Algo-
rithm 3 will spawn two independent computations on T.left
and T.right. However, the DP solver will sequence these
two computations, potentially creating a dependence between
them. That is, if a contradiction is reached while solving
the second problem T.right in the sequence, the search may
backtrack to variables in the first problem T.left, therefore

Table 2: Results on select instances
Instance #Vars/#Clauses SAT/UNSAT Dtree Dtree-ZChaff ZChaff

Time (s) Time (s) Time (s)
hole10 110/561 UNSAT 2 6 19
hole11 132/738 UNSAT 3 22 160
hole12 156/949 UNSAT 3 213 1580

fpga10 15 uns rcr 300/2130 UNSAT 8 388 2279
fpga11 14 uns rcr 308/2030 UNSAT 7 234 3968
fpga10 20 uns rcr 400/3840 UNSAT 15 1859 8912

urq3 9 37/236 UNSAT 1 1 5
urq3 3 43/334 UNSAT 1 48 58
urq4 4 64/356 UNSAT 1 44 465

uuf250-010 250/1065 UNSAT 5 266 436
uuf250-030 250/1065 UNSAT 5 65 119
uuf250-050 250/1065 UNSAT 5 286 301
uuf250-070 250/1065 UNSAT 5 913 1360
uuf250-090 250/1065 UNSAT 5 29 37
uf250-010 250/1065 SAT 5 4 0
uf250-030 250/1065 SAT 5 95 55
uf250-050 250/1065 SAT 5 5 3
uf250-070 250/1065 SAT 5 1 0
uf250-090 250/1065 SAT 5 70 229

fpga10 9 sat rcr 135/549 SAT 2 1 3
fpga12 9 sat rcr 162/684 SAT 3 119 145
fpga13 9 sat rcr 176/759 SAT 3 848 265

difp 19 99 arr rcr 1201/6563 SAT 29 209 401
difp 20 99 arr rcr 1201/6563 SAT 29 9 220
difp 21 99 arr rcr 1453/7967 SAT 37 1393 17968
difp 19 3 wal rcr 1755/10446 SAT 50 294 1041
difp 20 3 wal rcr 1755/10446 SAT 50 49 838
difp 21 3 wal rcr 2125/12677 SAT 66 4206 28495

ii16a1 1650/19368 SAT 34 0 0
par16-1 1015/3310 SAT 6 1 0

eliminating the benefit of decomposition. As we discuss next
though, this is impossible to happen if the solver employs
conflict-directed backtracking, as in ZChaff. Specifically, we
will show that in such a case, the solver will effectively con-
duct two independent searches on the sub-problems corre-
sponding to T.left and T.right. Hence, the combination of
a DP solver, with our ordering heuristic, and conflict-directed
backtracking corresponds to an iterative implementation of
the divide-and-conquer search conducted by Algorithm 3.

We start by offering a brief description of conflict-directed
(nonchronological) backtracking and refer the reader to [Silva
and Sakallah, 1996] for more details. In a DP solver, a vari-
able is instantiated either as a decision or as an implication
through unit propagation. In the latter case, the assignments
previously made and causing the clause to become unit are
recorded as the causes of the implication. These recordings
enable a backward construction of an implication graph when
a conflict (contradiction) occurs. With careful analysis of the
implication graph, conflict-directed backtracking chooses a
decision variable such that, by backtracking to it, at least one
of the causes of the conflict is eliminated. One key property
of this form of backtracking is this. Suppose that after in-
stantiating variables V , we split the SAT problem into two
independent pieces: one involving variables VL and the other
involving variables VR. We solve the first problem by instan-

tiating variables VL, and then start solving the second prob-
lem involving variables VR, only to realize that this problem
is not satisfiable under the current settings of variables V ∪VL.
Conflict-directed backtracking is guaranteed not to backtrack
to any of the variables in VL as it is clever enough to realize
that none of these variables are contributing to the contradic-
tion. Instead, conflict-directed backtracking is guaranteed to
immediately backtrack to some variable in V . Hence, even
though the two problems are sequenced, the resulting behav-
ior is similar to that of Line 6 of Algorithm 3.

We will now present an important implication of this corre-
spondence we just established . Suppose that our CNF has a
connectivity graph G, which is known to have a treewidth w.5

It is known that a dtree must then exist whose height is log n,
where n is the number of clauses, and in which every cutset
has size ≤ w [Darwiche, 2001]. It is also known that running
a divide-and-conqueralgorithm, such as Algorithm 3, on such
a dtree will lead to a time complexity of O(n exp(w log n)).
This complexity will then apply to a DP solver that uses the
group ordering derived from the mentioned dtree, and em-

5The connectivity graph G is obtained by including a vertex to
G for each CNF variable, and then adding an edge between two
vertices iff their variables appear in the same clause. Treewidth is a
positive integer that measures graph connectivity: the less connected
the graph, the smaller the treewidth. Trees have treewidth 1.

ploys conflict-directed backtracking.6

The time complexity of divide-and-conquer algorithms,
such as Algorithm 3, can be reduced by caching of results.
Specifically, each time a call is made to sat(C, T), the cut-
sets associated with ancestors of dtree node T are guaranteed
to be instantiated to some α. Moreover, C is a CNF that re-
sults from applying the instantiation α to the original CNF we
started with. It is hence possible that the call sat(C, T) will
be made multiple times for the same C since the original CNF
may lead to the same CNF C under different variable instanti-
ations. In fact, if all results of sat(C, T) are cached and their
re-computation is avoided, the complexity of the divide-and-
conquer algorithm given above drops to O(n exp(w)) [Dar-
wiche, 2001]. This is a linear complexity for any CNF whose
connectivity graph has a bounded treewidth.

It is interesting to note, however, that for unsatisfiable sub-
problems, caching is already in place if the DP solver im-
plements a conflict-based learning mechanism, as is the case
with ZChaff. Hence, not only does the use of our order-
ing heuristic on top of ZChaff correspond to the divide-and-
conquer Algorithm 3, but also to a version of it where unsat-
isfiable sub-problems are cached so they are not conquered
again. There is still an opportunity though to improve perfor-
mance by caching solutions of satisfiable sub-problems, but
that would require a more substantial modification to a DP
solver, which is beyond the scope of this paper.

We close this section by a note on static versus dynamic
variable ordering heuristics. A static heuristic is one which
fixes the variable order before search has started. A dy-
namic heuristic computes the order during search and is more
promising from a pruning viewpoint since the ordering of
variables can be done in the context of existing variable set-
tings. However, dynamic heuristics can incur substantial
overhead. Our proposed ordering heuristic is neither static
nor dynamic, since the order of variables within a group
is decided dynamically, while the order of groups is deter-
mined statically. A related static variable ordering heuristic is
MINCE [Aloul et al., Nov 2001], which is mostly for OBDDs
but applies to SAT problems as well. MINCE is also a struc-
tural heuristic, but has a different semantics than that of our
heuristic. Moreover, although the integration of MINCE with
ZChaff has been attempted, no experimental results are pro-
vided to this effect in [Aloul et al., Nov 2001] except for say-
ing “Our preliminary experiments with the recently published
Chaff SAT solver indicate that MINCE is not helpful on most
standard benchmarks.” MINCE was shown to be quite help-
ful in conjunction with GRASP [Silva and Sakallah, 1996]
though, but the benchmarks used appear too easy for ZChaff.
In particular, MINCE did best on pigeonhole, ii16 and par16
which are among the more difficult problems tried, but they
become easy problems for ZChaff; see Table 1.

6We are assuming here that time used by conflict-directed back-
tracking is dominated by the mentioned complexity, which appears
to be a reasonable assumption given the low overhead recorded for
this type of backtracking [Silva and Sakallah, 1996].

6 Conclusion
We have proposed a structure-based variable ordering heuris-
tic for use by SAT solvers based on Davis-Putnam search.
We have shown that when the ordering heuristic is used by
a solver that employs conflict-directed backtracking, it leads
to a divide-and-conquer behavior in which the SAT problem
is divided recursively into smaller problems that are solved
independently. Based on this decompositional behavior, one
can then provide formal guarantees on the complexity of DP
solvers in terms of the structure of given SAT problems. We
have implemented this heuristic on top of the fastest SAT
solver published—ZChaff—where we demonstrated its effec-
tiveness in significantly boosting performance on a range of
benchmarks. The proposed ordering works particularly well
on the Pigeonhole, FPGA-UNSAT, and URQ instances, all of
which are unsatisfiable theories with structure.

Acknowledgment
This work has been partially supported by NSF grant IIS-
9988543 and MURI grant N00014-00-1-0617.

References
[Aloul et al., Nov 2001] Fadi Aloul, Igor Markov, and Karem

Sakallah. Faster sat and smaller bdds via common function struc-
ture. In ICCAD’01.

[Aloul, URL] http://www.eecs.umich.edu/˜faloul/benchmarks.html.
[Bayardo and Pehoushek, 2000] Roberto Bayardo and Joseph Pe-

houshek. Counting models using connected components. In
AAAI’00.

[Darwiche and Hopkins, 2001] Adnan Darwiche and Mark Hop-
kins. Using recursive decomposition to construct elimination
orders, jointrees and dtrees. In Trends in Artificial Intelligence,
Lecture notes in AI, 2143, pages 180–191. Springer-Verlag, 2001.

[Darwiche, 2001] Adnan Darwiche. Recursive conditioning. Arti-
ficial Intelligence, 126(1-2):5–41, 2001.

[Darwiche, 2002] Adnan Darwiche. A compiler for deterministic
decomposable negation normal form. In AAAI’02.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam. A
computing procedure for quantification theory. JACM, 7:201–
215, 1960.

[Davis et al., 1962] Martin Davis, George Logemann, and Don-
ald Loveland. A machine program for theorem proving. JACM,
(5)7:394–397, 1962.

[Dechter and Rish, 1994] Rina Dechter and Irina Rish. Directional
resolution: The Davis-Putnam procedure, revisited. In KR’94.

[Li and Anbulagan, 1997] Chu Min Li and Anbulagan. Heuristics
based on unit propagation for satisfiability problems. In IJ-
CAI’97.

[Moskewicz et al., June 2001] Matthew Moskewicz, Conor Madi-
gan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engi-
neering an efficient sat solver. In DAC’01.

[SATEX, URL] http://www.lri.fr/˜simon/satex.
[SATLIB, URL] http://www.intellektik.informatik.tu-

darmstadt.de/SATLIB.
[Silva and Sakallah, 1996] Joao Silva and Karem Sakallah. Grasp–

a new search algorithm for satisfiability. In ICCAD’96.

[ZChaff, URL] http://www.ee.princeton.edu/˜chaff/zchaff.php.

