Supervised Learning with Background
Knowledge

Yizuo Chen and Arthur Choi and Adnan Darwiche

University of California, Los Angeles CA 90024, USA
yizuo.chen@ucla.edu, aychoi@cs.ucla.edu, darwiche@cs.ucla.edu

Abstract. We consider the task of supervised learning while focusing
on the impact that background knowledge may have on the accuracy and
robustness of learned classifiers. We consider three types of background
knowledge: causal domain knowledge, functional dependencies and logi-
cal constraints. Our findings are set in the context of an empirical study
that compares two classes of classifiers: Arithmetic Circuit (AC) clas-
sifiers compiled from Bayesian network models with varying degrees of
background knowledge, and Convolutional Neural Network (CNN) clas-
sifiers. We report on the accuracy and robustness of such classifiers on
two tasks concerned with recognizing synthesized shapes in noisy images.
We show that classifiers that encode background knowledge need much
less data to attain certain accuracies and are more robust against noise
level in the data and also against mismatches between noise patterns in
the training and testing data.

Keywords: Supervised learning; Bayesian networks, neural networks, arith-
metic circuits; background knowledge.

1 Introduction

Supervised learning has become very influential recently and stands behind most
real-world applications of Al In supervised learning, one learns a function from
labeled data, a practice that is now dominated by the use of neural networks;
see [12, 13} [23]. Supervised learning can be applied in other contexts as well,
such as causal models in the form of Bayesian networks [19, 20} 2], 26, [I1]. Given
a Bayesian network, one can compile an Arithmetic Circuit (AC) that maps
evidence (inputs) to the posterior distribution on labels of interest (output) [6,
141 28] 2, 17, 27, 3, [8]. AC parameters, which correspond to Bayesian network
parameters, can then be learned from labeled data using gradient descent [24], [6],
16]. Hence, like a neural network, the AC is a circuit that computes a function
whose parameters can be learned from labeled data.

The use of ACs in this fashion can be viewed as model-based supervised learn-
ing, in contrast to model-free supervised learning using neural networks. Model-
based supervised learning is attractive since it integrates background knowledge,
which has a number of advantages: a reduced reliance on data, improved ro-
bustness and the ability to provide data-independent guarantees on the learned

2 Yizuo Chen and Arthur Choi and Adnan Darwiche

function. Despite these promises, this type of model-based supervised learning is
not very common today and, hence, the underlying promises rarely exhibit con-
cretely through empirical studies or real-world applications. There are a number
of reasons for the missed opportunities. Some are profound and pertain to the
fact that circuits compiled from causal models may not be expressive enough to
capture the data-generating function when the used causal model is incomplete
(e.g., missing nodes or edges) [28] 29, [15] 10, ©9]. While a proposal has been ex-
tended recently to address this barrier [5, 4], two major barriers remain even
when the causal model is complete. The first barrier pertains to the complexity
of compiling ACs, which is PP-hard and can be quite challenging even for causal
models of moderate size. The second barrier relates to the complexity of train-
ing circuits from large datasets [30]. This barrier is shared with neural networks,
except that significant advances have been made on that front. Such advances
have been applied to the training of ACs only very recently; see, e.g., [18] 22} [§].
This particularly includes the use of tensor graphs which is standard for neural
networks and can lead to orders of magnitude savings in training time.

Motivated by recent advances on compiling and training ACs [8], we perform
an empirical study in which we compare classifiers based on neural networks with
ones based on ACs compiled from causal modelsEWe consider tasks for recogniz-
ing synthesized shapes in noisy images, and causal models that include different
types of background knowledge: independence, functional dependencies, and log-
ical constraints. We show that classifiers which integrate background knowledge
need much less data to attain certain accuracies and are more robust against
noise level in the data and also against mismatches between noise patterns in
the training and testing data. While these results may appear intuitive and ex-
pected, the underlying experiments that support these conclusions were only
possible due to the recent advances we mentioned earlier.

We start with some background material in Section [2] and follow by a de-
scription of the considered classification tasks in Section[3] The Bayesian network
models we use for these tasks and corresponding AC classifiers are discussed in
Section [with neural network classifiers discussed in Section 5] We then discuss
data generation and training in Section [6] followed by experimental results in
Sections [7] and [8] Motivated by the promise and relative scale of the reported
experiments, we conclude by laying out in Section [9] a road map of further de-
velopments that are needed to advance the promises of model-based supervised
learning so it reaches a level of practicality that model-free supervised learning
has attained recently.

2 Background

A Bayesian Network (BN) is specified by a directed acyclic graph (DAG) and
a set of Conditional Probability Tables (CPTs). The CPT for variable X with
parents U specifies conditional probabilities 6, = Pr(x|u), known as network

! Some preliminary results are reported in [8], which had a narrower scope that did
not include neural networks.

Supervised Learning with Background Knowledge 3

\/
Q

s=1f+ 0
A
Z=1=W=0
(a) BN with logical constraints (b) AC that computes query O = Pr(y|z,w).
(0/1 parameters) Here, o = Pr(y,z,w) and 8 = Pr(g,z,w)

Fig.1. The AC uses adders (+), multipliers (*), inverters (o), 1 — 6 units (e), and
normalizing units (X = 1). Excluding the X unit (division), which is not strictly needed
for classification, we can emulate o and e units using adders. The AC parameters
01,...,04 correspond to Bayesian network parameters (the AC implicitly integrates
the 0/1 parameters of the Bayesian network).

Fig. 2. A neural network structure, a neuron, and two activation functions.

parameters. If parameter 0, = 0, the CPT contains a logical constraint (instan-
tiation zu is impossible). If all CPT parameters are in {0, 1}, the CPT specifies
a functional dependency (the state of X is determined by the state of U).

We consider Bayesian network and neural network classifiers in this paper.
A classifier is a function ¢ that maps a feature vector x to a class label y. A
Bayesian network classifier is induced by designating some network variables
X as features and some network variable Y as the class. The corresponding
classification function typically has the form: c(x) = argmax, Pr(y|x), which
selects a class label that attains the highest conditional probability. A neural
network classifier, in contrast, tries to approximate the function ¢(x) directly by
fitting a function to data.

The classification function of a Bayesian network can be represented using an
AC (see Figure[l)), which can be compiled from the Bayesian network; see, e.g., [0,
2,[8]. The classification function of a neural network can also be represented using
a circuit with the addition of activation nodes. In particular, a neural network
is composed of neurons, where each neuron computes (>, w;x;). Here, w; is
called a neuron’s weight and o is called an activation function; see Figure 2}

Both approaches can learn their classifier parameters from data. In a Bayesian
network, the learned parameters are conditional probabilities that populate the
network CPTs. In a neural network, the learned parameters are the weights of
the neurons. A Bayesian network typically represents a model that can encode

4 Yizuo Chen and Arthur Choi and Adnan Darwiche

certain types of background knowledge such as cause-and-effect relationships,
functional dependencies between variables, and logical constraints. Moreover,
when compiling a Bayesian network into an AC, any background knowledge
encoded in the network carries over to the AC as well; see [7]. In contrast, the
neural network approach assumes that the most salient relationships between
the features and the label can be learned from the data.

3 Classification Tasks: Recognizing Shapes

We consider two classification tasks, for rectangles (left) and digits (right).

bl

We first consider the task of detecting rectangles in 10 x 10 black-and-white noisy
images. A rectangle is characterized by the row and col of its upper-left corner,
its width and height. A rectangle can have a shape, which is either tall (height >
width) or wide (height < width). Variables row and col have integer values from
1 to 10 corresponding to the coordinate of the upper-left corner. Variables width
and height also have integer values from 1 to 10. We train classifiers that predict
rectangle properties in noisy images. Each classifier has 100 inputs corresponding
to the image pixels, and outputs for shape, row, col, width and height.

Our second task is to classify a seven-segment digit in a 10 x 10 black-and-
white noisy image. A seven-segment digit is composed of a selection of three
horizontal segments and four vertical segments. For example, digit 8 is gener-
ated by selecting all seven segments and digit 0 is generated by selecting all
segments but the middle horizontal segment. We want to train a classifier that
predicts which digit is rendered in a noisy image. Each classifier has 100 inputs
corresponding to the image pixels, and one output for each digit from 0 to 9.

4 AC Classifiers from Bayesian Network Models
Our first classifiers are based on generative models (Bayesian networks).

Rectangle Model We consider the generative model of rectangles shown in Fig-
ure The value of height is limited by the value of row, and the value of width
is limited by the value of col. Variable row; indicates whether the rectangle will
render in row i so it is determined by the values of row and height. Similarly,
each colj is determined by the values of col and width. Finally, each variable
pixelij is determined by row; and col; where pixel;j=on iff row;=on and col;=on.
However, to generate noisy rectangle images, we would need a distribution for

2 Haiying Huang proposed this particular rectangle model.

Supervised Learning with Background Knowledge 5

2n nodes

n? nodes

n? nodes
. .

Fig. 3. Generative models for rectangles (top) and seven-segment digits (bottom).

each variable pixel;j that is conditioned on the values of row; and col;, where such
distributions are learned from data. The other distributions that get learned
from data are the prior distributions for row and col (upper-left corner of the
rectangle) in addition to the conditional distributions for height and width.

Beyond the causal structure that connects variables, there are two types of
background knowledge that we can inject into the rectangle model. First, con-
sider knowledge that manifests as logical constraints. Given the row and column
of the upper-left corner, we may be able to infer bounds on the heights and widths
of the rectangle. For example, if the upper-left corner of a rectangle is on the
third row, then its height is at most 8. We can thus fix the corresponding CPT
parameters in the model: P(height=9|row=3) = P(height=10jrow=3) = 0.
Similarly, we can fix some of the CPT parameters for both P(width|col) and
P(shape|width, height) to zero. Next, consider knowledge that manifests as func-
tional dependencies, where the value of a node is uniquely determined by the val-
ues of its direct causes. If we consider the CPT parameter P(row;|row, height), we
find that the value of the binary variable row; is uniquely determined by the row
of the upper-left corner and the height of the rectangle. In particular, row; =on
iff row < row; < row 4 height and similarly col;=on iff col < colj < col 4 width so
each variable col; is also a function of col and width.

Suppose now that we wish to build a classifier that predicts the rectangle
shape. We will generate an AC from the Bayesian network model, where variables
pixel; are the AC inputs and variable shape is its output as shown in [§]. The AC
parameters will correspond to Bayesian network parameters: some parameters
will be fixed due to background knowledge, others will be learned from labeled
data. Background knowledge reduces the number of learned parameters and can
be critical for successfully compiling and efficiently training ACs []].

Digits Model The generative model for seven-segment digits is a composition of
the rectangle model; see Figure [3| [§]. If we treat each segment as a rectangle, a
seven-segment digit is a combination of seven rectangle models (called segment
modules). If we know the row & column of the digit’s upper-left corner in addition
to its height & width, we can determine the location of each segment. In our
model, the height of a digit is always seven and its width is always four. Hence,

6 Yizuo Chen and Arthur Choi and Adnan Darwiche

the row & column of the upper-left corner completely determine the bounding
box of the digit in the image, in addition to the location and size of each potential
segment. Moreover, once we know the digit’s identity we also know which of
the seven segments are active. Hence, each variable activey, k € {1,...,7}, is
functionally determined by the variable digit. For each segment module k, we
build a sub-module with the same architecture as the rectangle model, except
that the values of segment pixels also depend on whether the segment is active;
that is, a segment variable pixel!j is turned on only if segment k is active. Finally,
each variable pixel;j for the image is a disjunction of the pixel values for each
segment module. That is, pixelj=on iff pixelilj:on for some segment k. Again,
when generating noisy images, the relation between pixel; and its direct causes
pixeli‘j is probabilistic and the corresponding conditional distributions are learned
from data. The other distributions learned from data are the priors on row,
col and digit. Like the rectangle model, the digit model encodes background
knowledge in the form of logical constraints and functional dependencies. The
compiled AC has variables pixeljj as its input and variable digit as its output.

5 Convolutional Neural Network (CNIN) Classifiers

We use the CNN architecture below for the rectangle and digits classifiers, but
with different outputs: 2 for rectangle shape (wide vs. tall), 10 each for rectangle
height/width/row/column (values), and 10 for digits (one for each digit). We
use “same” convolutions and ReLU activation functions.

Input: (10,10,1) (10,10,8) (5,58) (5,5,16) (3,3.16)

Conv2d(4,4,1,8) MaxPooling(2,2,2,2) Conv2d(3,3,8,16) MaxPooling(2,2,2,2)

The input layer is a 10 x 10 black-and-white image, then (1) a convolutional
layer with eight 4 x 4 filters with stride 1, followed by batch normalization, (2) a
max-pooling layer with 2 x 2 filters with stride 2, followed by dropout (rate 20%),
(3) a convolutional layer with sixteen 3 x 3 filters with stride 1, followed by batch
normalization, (4) a max-pooling layer with 2 x 2 filters with stride 2, followed
by dropout (rate 20% for rectangles, 50% for digits), (5) a fully-connected layerE|

6 Classifiers, Data Generation & Training

We conduct experiments using three types of classifiers that we describe next.

3 We tuned the dropout rate, the number/size of filters and the learning rate. But we
don’t know of a way to guarantee that this is the best performing neural network.

Supervised Learning with Background Knowledge 7

Table 1. Noise levels defined by rectangle noise, pixel noise, and removal noise.

noise level ||null|ignorable|easy|medium|moderate|hard|superhard
rectangle noise|| 0 2 2 5 7 7 10

pixel noise 0 2 5 5 5 7 10
removal noise || 0 0 1 1 1 2 2

e BN classifier: An AC compiled from a Bayesian network that does not
include logical constraints or functional dependencies (i.e., no known parame-
ters). We do exploit the ezistence of functional dependencies when compiling the
network, but without incorporating the corresponding parameters into the ACE|

e BN4BK classifier: An AC compiled from a Bayesian network that en-
codes logical constraints and functional dependencies (i.e., some of the network
parameters are known). This AC has a smaller number of trainable parameters
compared to the AC described above.

e CNN classifier: A convolutional neural network as described in Section [l

The ACs were represented using tensor graphs as described in [§]. The sum
of tensor sizes in the graph is reported next as the AC size. The ACs for pre-
dicting rectangle shape had the following sizes: 3,540,319 (BN) and 3,522,136
(BN+BK). The ACs for predicting digits had the following sizes: 62,185,299
(BN) and 2,256,646 (BN+BK)E| For the rectangle classifiers, the counts of
trainable parameters are: 5,220 (BN), 136 (BN4BK) and 1,642 (CNN). For
the digits classifiers: 48,141 (BN), 275 (BN4BK) and 2,802 (CNN). One rea-
son why BNHBK classifiers had such a small number of parameters, beyond
integrating background knowledge, is that we tied the CPTs of pixels so they
share trainable parameters (more on this later).

In what follows, a clean image is one generated from the model without
adding noise, while a noisy image is a clean image to which noise was added
using one of the methods described below.

Generating Rectangle Data A rectangle in an image is defined by the row and
column of its upper-left corner, in addition to its width and height. Hence, we can
generate all clean rectangle images by simply considering all valid combinations

4 The AC compilation algorithm can computationally exploit that a node X is a
function of its parents U, X = f(U), even when the function f is not known;
see [§] for details. Exploiting functional dependencies computationally is necessary
to successfully compile the digits model due to its very high treewidth. However,
since our training algorithm does not guarantee that a functional dependency will
be learned, the resulting AC can be viewed as an approximate compilation.

We employed value propagation and pruning techniques when compiling ACs with
background knowledge. This is quite effective on the digits model as we can infer
that some pixels will never be turned on (the pruning lessens as the image size
gets larger). This explains the significant drop in the digits AC size when adding
background knowledge and why the digits AC is smaller than the rectangle AC on
10 x 10 images (this changes for larger image sizes).

ot

8 Yizuo Chen and Arthur Choi and Adnan Darwiche

of row, column, width and height (we omit squares). We use a black color for
pixels inside the rectangle and a white color for pixels outside the rectangle.

A noisy rectangle image is obtained by adding the following types of noise, in
order. First, there are three parameters x, y and z, in addition to the rectangle
width W, height H and area A = W - H. Remowval noise (x): we choose a random
number k from [0, z] and then flip k& random black pixels to white. Rectangle noise
(y): We add at most y smaller black rectangles to the white background (stop
when no white pixels are left). We first select a random position for the upper-left
corner. In the available white space, we select a random width and height such
that the resulting area is at most A;k. We further guarantee there is at least one
pixel separating each rectangle. Pizel noise (z): We flip z random white pixels
to black. If no further valid perturbations become possible, we stop early. We
assume that z is at most min(W, H)—1 and z is at most min(A—k—1, &), where
R is the count of white pixels left. Table [I] depicts seven levels of noise which
result from setting parameters x, y and z. We will use these noise categories
later in Section [7

While the noise generation model may appear complex, it is meant to avoid
excessive distortion of the original rectangle and to keep it as the largest rect-
angle in the noisy image. Otherwise, it would be difficult even for a human to
recognize these rectangles. Some example noisy rectangles are depicted below
(with increasing noise from left-to-right).

One special type of noise we use is paired noise: an adjacent pair of black
pixels that we add to the white background of a rectangle image. Paired noise
corresponds to a wide or tall rectangle with an area of exactly 2, like in the
following examples.

=N7h g5, ']

We will use paired noise when assessing classifier robustness in Section

Generating Digits Data Generation of digit images is similar to the generation
of rectangles. We first create a clean image of a digit in a random position. We
add noisy images by selecting some number k € {0,2,...,18} of random white
pixels to flip to black.

Training All classifiers were trained using TensorFlow using cross-entropy loss
and the Adam optimizer. For each training set, we set aside 20% of the instances
for validation (we stop gradient descent if the validation loss does not improve

Supervised Learning with Background Knowledge 9

Table 2. Accuracy of detecting rectangle properties while varying training data size.

BN Classifier BN4+BK Classifier CNN Classifier

Data|[Shape| Col |Height|[Shape| Col |Height|Shape| Col |Height
25 |[50.64(29.53| 20.35 || 96.71 |87.23| 81.88 || 72.02 |32.26| 20.72
50 |[53.17(34.77] 19.95 || 93.12 |91.88| 86.79 || 81.73 |49.74| 24.71
100 [| 56.32 |49.67| 24.08 || 94.44 (97.37| 93.04 || 83.73 |75.21| 31.27
250 || 67.54 |63.51| 26.49 || 98.97 |98.42| 97.26 || 86.13 [84.74| 39.09
500 || 77.92|73.02| 31.45 || 99.82 |98.61| 97.38 || 90.05 [91.67| 61.54
1000 |{ 81.20191.93] 69.20 || 99.98 |98.86| 97.56 || 97.12|96.56| 84.54
2000 83.40(98.11| 91.63 || 99.99 [98.90| 97.66 || 98.37 [98.77| 92.52
4000 || 88.99 |98.98| 98.61 [|100.00{98.95| 97.85 || 99.18 [99.39| 96.35
80001| 95.44 [99.79| 99.15 || 99.99 [99.18| 98.01 || 99.64 (99.77| 97.51

Table 3. Accuracy of classifying digits while varying the size of training data.

Training Data| 25 50 100 | 250 | 500 1000 2000 4000 8000
BN 12.68 11.66 17.42|23.57|32.19 42.49 56.35 84.33 91.49
BN+BK [72.07 96.39 98.52(98.56|98.64 98.83 99.10 99.07 99.14
CNN 30.34 29.22 43.45|78.79(95.13 97.29 97.97 98.48 98.48

enough). A separate testing set is used to evaluate classifier accuracy. We report
the best test accuracy obtained from five different runs with random seeds.

For AC classifiers, we used the PYTAC system which compiles Bayesian
networks into ACs, using TensorFlow for training [8]. We used early stopping,
a learning rate with polynomial decay over 100 steps and a batch size of 32
(we start at a rate of 0.05 and end at 0.005, using a polynomial power of 3).
For neural network classifiers, we used a learning rate with exponential decay,
starting at 0.01 with a decay of 0.95 over the first 5,000 batches, using a batch
size of 64. Across 5,000 epochs, we saved the CNN with the best validation loss.

7 Sensitivity of Classifiers to Data Size and Quality

We next assess the impact of size/quality of training data on classifier perfor-
mance. Our first experiment examines how many labeled images we need to get
certain prediction accuracies. Our second experiment assesses the sensitivity of
classifiers to the ratio of clean to noisy images in training data.

Dataset Size We first consider classifier performance as a function of training
data size. For the rectangle model, both training and testing images are 20%
clean with a medium noise level for all noisy images. We vary the training dataset
size from 25 to 8,000 images and report the accuracy of the learned classifiers
on a randomly generated testing dataset of size 10,000. We increment the size of
training data in the same way for the digits model. We use 1% clean images in
both training and testing data and inject 10 noisy pixels when producing noisy
images (there is a limited number of distinct clean images for digits on a 10 x 10
grid). We report classifier accuracy on a testing dataset of size 28,000.

10 Yizuo Chen and Arthur Choi and Adnan Darwiche

Table 4. Standard deviations of classification accuracies for detecting rectangle shape
(top) and recognizing digits (bottom), while varying the size of training data.

Training Data| 25 50 100 250 500 1000 2000 4000 8000
BN 0.92 1.26 1.73 3.10 3.78 2.22 2.46 1.78 2.19
BN4+BK |10.93 16.93 5.75 1.19 0.89 0.23 0.32 0.03 0.03
CNN 5.73 6.01 2.652.34 0.29 0.98 0.41 0.19 0.09

Training Data| 25 50 100 250 500 1000 2000 4000 8000
BN 1.45 1.17 2.46 3.48 2.17 0.78 2.68 3.50 1.72
BN4BK [24.69 1.90 1.25 0.40 0.12 0.21 0.20 0.10 0.08
CNN 5.92 2.53 6.46 2.67 0.72 0.94 0.39 0.14 0.17

The accuracies of all classifiers are shown in Tables |2 and [3| (we omit re-
sults for classifying Row and Width for space limitations). The accuracy in-
creases when the size of training data increases for all classifiers. BN+BK gives
very accurate predictions compared to the other two classifiers: The presence of
background knowledge improves the accuracy significantly especially for small
training data. For instance, for a dataset of size 250, BNHBK significantly out-
performs BN and CNN. The latter outperforms BN in most cases and reaches
a comparable performance to BNHBK when the training data is large enough.

In Table[d] we report some of the standard deviations for accuracies obtained
in our experiments. When the training dataset size is > 1000, the standard
deviations of BNHBK and CNN are decreasing in general and smaller than
the standard deviations of BN. Both BNHBK and CNN have larger standard
deviations than BN when the number of examples is small (< 100), despite their
potential to attain higher accuracies with a small dataset.

Data Quality We now consider how the percentage of noisy images in training
data affects the performance of rectangle classifiers. We fix the size of training
data to 2,000 and the noise level to medium but vary the percentage of noisy
images. We test on 10,000 images that are 20% clean. Tabledepicts the results.
Classification accuracy generally decreases as we decrease the number of noisy
images in training data. This is evident for the BN and CNN classifiers whose
performance rely non-trivially on having a good number of noisy images during
training. However, the BNHBK classifier exhibits much less sensitivity (almost
insensitive) and continues to predict very accurately even as we train it on a
significantly reduced number of noisy images (10%).

8 Robustness of Classifiers

We next assess the robustness of classifiers by varying the amount and type of
noise in testing data. Our first experiment investigates classifier performance on
testing images with noise levels that are different from those in the training data.
Our second experiment keeps the noise level in testing data similar to that in
training data but changes its nature.

Supervised Learning with Background Knowledge 11

Table 5. Classifier accuracy for different percentages of noisy images in training data.

BN Classifier BN+4BK Classifier | CNN Classifier

Noisy%|[Shape| Col |Height|Shape| Col |Height||Shape| Col [Height
90 85.37195.07| 89.03 || 99.94 [98.89| 97.93 || 98.71 |99.04| 91.59
80 85.57197.84| 91.02 [|99.97 [98.95| 97.67 || 98.29 |98.74| 89.72
70 84.15 (93.84| 88.76 || 99.96 [98.83| 97.76 || 98.10 [98.37| 90.31
60 84.42195.21| 90.58 [| 99.89 [99.06| 97.55 || 97.61 |97.52| 89.37
50 84.37|88.99| 88.88 [|99.99 [98.87| 97.76 || 97.75 |96.80| 89.04
40 84.11 (85.61| 85.97 |1 99.91 [98.65| 97.55 || 96.58 [96.25| 87.68
30 80.97|79.00| 84.50 [|99.95 [98.81| 97.62 || 95.53 |95.43| 87.57
20 81.69 |84.68| 79.48 [99.79 199.02| 97.42 || 94.11 |91.54| 81.26
10 78.41|77.45| 74.88 || 99.95 |98.81| 97.38 || 93.04 |88.69| 74.88

Table 6. Classifier accuracy while varying noise level in testing data.

BN Classifier BN+BK Classifier CNN Classifier
Noise |[|Shape| Col |Height|Shape| Col |Height|{Shape| Col |Height
Null 93.16 {100.00| 99.08 |{100.00{100.00/100.00({100.00{100.00| 99.16

Ignorable || 88.25| 98.74 | 96.61 || 99.98 | 99.91 | 99.84 || 99.02 | 99.48 | 96.21
Easy 87.30(97.99 | 95.30 || 99.98 | 98.97 | 98.27 || 99.12 | 99.35 | 95.67

Medium || 85.28 | 96.15 | 92.51 || 99.98 | 98.97 | 97.65 || 98.37 | 98.53 | 93.39

Moderate || 83.61 | 94.81 | 89.83 || 99.98 | 98.57 | 97.72 || 98.07 | 97.95 | 91.48
Hard 83.40 | 93.87 | 90.09 || 99.89 | 98.42 | 97.15 || 97.92 | 98.03 | 90.82

Superhard|| 82.22 | 91.80 | 88.24 || 99.89 | 98.30 | 96.56 || 97.17 | 97.30 | 87.93

8.1 Noise Level in Testing Data

For the rectangle model, we first train classifiers on 2,000 labeled images that
are 20% clean and use a medium noise level for images. We then test the trained
classifiers on 2,000 labeled images that are 20% clean but with varying noise
levels (see Table for the definitions of noise levels). Table@depicts the obtained
prediction accuracies. A similar experiment is conducted for the digits model.
We also train classifiers using 2,000 labeled images that are 1% clean. All noisy
images in the training dataset contain 8 noisy pixels. We then generate 28,000
testing images that are also 1% clean while increasing the amount of noise in
testing images. Table [7] depicts the obtained accuracies.

According to the tables, the accuracy for BN+BK and CNN is highest (close
to 100%) when little noise is present in the testing dataset. Among the three
classifiers, BN has the fastest drop in accuracy when more noise is injected in
the testing data than in the training data. BN+BK is the least affected as it has
a slight drop in accuracy even when the testing data is much noisier than the
training data. For the digits experiment, we also observe that BN performs better
when the level of noise seen in testing is more comparable to the level of noise
seen in training. In general, the experiments show that background knowledge
can significantly improve the robustness of a classifier.

12 Yizuo Chen and Arthur Choi and Adnan Darwiche

Table 7. Accuracy of classifying digits while varying noise level in testing data.

noisy pixels| 0 2 4 6 8 10 12 14 16 | 18
BN 48.21 57.77 65.44 68.62 65.61 57.31 48.23 41.52 35.24|29.85
BN4BK [100.00 99.99 99.86 99.70 99.38 99.00 98.40 97.69 97.03/96.12
CNN 100.00 99.95 99.79 99.33 98.74 97.84 96.46 93.97 91.24|86.98

Table 8. Accuracy of classifying rectangles (left) and digits (right) for 10 x 10 images
when the training—testing data have different types of paired noise.

Classifier horizontal-vertical || vertical-horizontal horizontal-| vertical-
Shape| Col [Height|/Shape| Col |Height vertical |horizontal
BN 89.95 | 84.67 | 86.68 || 88.16 [92.14| 86.38 74.03 70.55
BN+BK | 99.81 |100.00| 99.06 || 99.8299.80|100.00 97.25 98.97
CNN |/66.60 | 83.77 | 67.83 || 83.52|78.04| 46.83 90.16 81.16

8.2 Discrepancy Between Training and Testing Data

In our second experiment, we use different types of paired noise in training and
testing data; see Section [f] for the definition of paired noise. There are two com-
binations: train with horizontal paired noise and test with vertical paired noise,
or vice versa. We train and test all classifiers under these combinations, using
2,000 labeled images that are 20% clean for rectangle classifiers and 2,000 labeled
images that are 1% clean for digits classifiers. We test the rectangle classifiers on
10,000 images that are 20% clean and the digits classifiers on 28,000 images that
are 1% clean. The results are shown in Table |8f BN+BK classifiers, which en-
code background knowledge, have the best performance by a very large margin.
The stark difference in robustness revealed by this simple experiment strongly
highlights the promise of supervised learning with background knowledge.

Even though we reported only on 10 x 10 images, we could compile ACs
with background knowledge for 30 x 30 rectangle images (900 AC inputs) and
for 22 x 22 digits images (484 AC inputs). But these ACs were too large to be
trained consistently and effectively by a basic application of gradient descent
on a CPU (the first AC had 21,899 tensor operations and size 680.6M, and the
second AC had 77,702 tensor operations and size 2,552.5M). Moreover, ACs for
these larger images would not compile without background knowledge. For the
experiment in this section though, we managed to train ACs with background
knowledge on 16 x 16 images (AC size is 58.8M) and on 20 x 20 images (AC size
is 224.2M). For comparison, we also ran experiments on CNN classifiers with
the same architecture discussed earlier with the corresponding image sizes. The
results, reported in Table [0} are similar to what we reported for 10 x 10 images
in Table [8f AC classifiers maintained an accuracy > 99% but CNN classifiers
basically failed with the accuracy dropping to as low as 42% in some cases. For
reference, the number of trainable parameters for 20 x 20 images were 466 (AC)
and 2,154 (CNN) for predicting rectangle shape. All of our experiments were run
on a 2.60GHz Intel Xeon E5-2670 CPU with 256 GB of memory.

Supervised Learning with Background Knowledge 13

Table 9. Accuracy of classifying rectangles when the training—testing data have differ-
ent types of paired noise. This experiment uses larger images than the one in Table [§

horizontal-vertical || vertical-horizontal

Classifier Shape| Col |Height||Shape| Col |Height

1616 BN4BK]| 99.80 [99.64| 99.19 || 99.62 |99.68| 99.74
CNN || 71.27|87.72| 64.98 || 67.85 |85.60| 46.58
920x20 BN4BK]| 99.74 {99.59| 99.60 || 99.70 |99.60| 99.61
CNN || 75.06|87.21| 52.46 || 65.00 |88.05| 42.04

9 Challenges and Opportunities

The results we reported show the promise of model-based supervised learning: it
can be significantly less data hungry and can lead to much more robust classifiers.
This is not surprising given that model-based classifiers “understand” the objects
they are classifying compared to model-free classifiers which settle once they
have captured the patterns in data well enough (a process that may not lead
to truly learning a task as we have seen particularly in the last experiment).
What is perhaps surprising is the extent of the gap sometimes revealed in the
experiments we conducted. This all, however, begs the question: Why is model-
based supervised learning not as commonly used in practice and why is model-
free supervised learning so dominant despite its limitations?

As mentioned in the introduction, model-based supervised learning faces a
number of barriers. Some are profound and require further theoretical develop-
ments and some are more mundane, resulting from a lack of enough efforts in
certain directions. Two of the profound barriers are: the acquisition of accurate
models and the compilation of models into circuits. The first barrier has been
discussed in [28] and an initial treatment has already been proposed in [5,4]. In a
nutshell, these works show that incorrect models can lead to ACs that are not ex-
pressive enough to capture the true classifier. Moreover, the proposed treatment
is based on using Testing Arithmetic Circuits (TACs), which represent piecewise
distributions or mixtures of distributions while maintaining the guarantees of-
fered by the underlying causal models. This is a promising direction as it does
not insist on obtaining a fully accurate model, which can be practically impos-
sible in some situations. One would need to advance this or similar directions
further if model-based supervised learning is to become more practical.

The second profound barrier relates to the compilation of ACs from models.
This is an inference task at heart and as such requires fundamental algorithmic
developments. Much progress has been made on this front over the years, but
more progress is needed. The two case studies we discussed provide a concrete
context for relaying this particular point. Despite the simplicity of the tasks, and
the relatively small size of images, the underlying models proved quite challeng-
ing to compile. In fact, compiling and efficiently training these ACs was only
possible due to the recent results reported in [8]. In this work, functional depen-
dencies were exploited to make the compilation feasible, while preserving two

14 Yizuo Chen and Arthur Choi and Adnan Darwiche

properties that are critical in a learning context. First, the resulting ACs were
easily representable as tensor graphs since the proposed compilation algorithm
was based on the use of dense factors. This facilitated the application of gra-
dient descent in a style similar to what is done when training neural networks,
leading to orders of magnitude reduction in training time. Second, the com-
pilation algorithm exploited functional dependencies computationally without
needing to know their identity, therefore allowing one to learn such dependen-
cies from data. This is a stark difference with earlier compilation approaches
which required knowledge of the specific functional dependencies. This work is
a first step and more work is needed along these directions: the computational
exploitation of background knowledge and tensor-based technologies.

Another barrier relates to the application of gradient descent to ACs that
are compiled from models, which tend to have structures and behaviors that are
different from those of neural networks. As a result, the know-how and com-
mon wisdom gathered through much research on training neural networks is not
immediately applicable to training such ACs. For example, for the considered
tasks, ACs are significantly larger in size, have many more layers (i.e., deeper),
and have a much larger compute-to-parameter ratio, all calling for a dedicated
study of gradient descent algorithms in this particular context. Even primitive
tasks, like how to seed gradient descent algorithms, have barely been touched
while much research has been done on this front when training neural networks.
It is worth mentioning two anecdotes on this front. First, given the lack of princi-
pled methods for seeding AC parameters, we ended up trying five seeds for each
run: one uniform seed and four random seeds. We then did a two-step lookahead
on each seed and choose the best to use as a seed for gradient descent, lead-
ing to better results than initially reported in [§]. Despite this improvement, we
still see more outlier runs in comparison to what one sees when training neu-
ral networks. Second, when we experimented with tied CPTs for pixel nodes in
BN4BK classifiers, our initial goal was to reduce the strain on gradient descent
by having it learn a smaller number of parameters. Surprisingly, for the inves-
tigated tasks, this not only enhanced the speed of gradient descent but yielded
better accuracies as reported earlier. We also ran comparisons between BN and
BN4+BK, both with and without tying parameters, which we omit for space.
Briefly, incorporating background knowledge improves accuracy, whether we tie
parameters or not. Generally, tying parameters improves computational perfor-
mance, as well as accuracy, whether we incorporate background knowledge or
not. However, improvements in accuracy were more consistent when incorpo-
rating background knowledge rather than not. These observations suggest that
gaps in performance, whether we incorporate background knowledge or not, or
whether we tie parameters or not, could be partially due to gradient descent
struggling with the larger number of parameters it has to learn in each case.
Again, this all calls for further research on the application of gradient descent
to ACs that are compiled from models.

To summarize and close: Advancing model-based supervised learning not
only requires further theoretical developments, but it also requires reducing the

Supervised Learning with Background Knowledge 15

know-how gap with the model-free community as far as gradient descent and the
exploitation of tensor-based technologies. This requires a broad and sustained
enough effort by the model-based community which we hope it will heed.

Bibliography

1]

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise
training of deep networks. In: Advances in Neural Information Processing
Systems 19 (NIPS). pp. 153-160 (2006)

Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable
elimination. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI). pp. 2443-2449 (2007)

Choi, A., Darwiche, A.: On relaxing determinism in arithmetic circuits.
In: Proceedings of the Thirty-Fourth International Conference on Machine
Learning (ICML). pp. 825-833 (2017)

Choi, A., Darwiche, A.: On the relative expressiveness of Bayesian and
neural networks. In: PGM. pp. 157-168 (2018)

Choi, A., Wang, R., Darwiche, A.: On the relative expressiveness of Bayesian
and neural networks. International Journal of Approximate Reasoning 113,
303-323 (2019)

Darwiche, A.: A differential approach to inference in Bayesian networks.
Journal of the ACM (JACM) 50(3), 280-305 (2003)

Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge
University Press (2009)

Darwiche, A.: An advance on variable elimination with applications to
tensor-based computation. In: ECAI (2020), https://arxiv.org/abs/
2002.09320

Elidan, G., Friedman, N.: Learning hidden variable networks: The informa-
tion bottleneck approach. J. Mach. Learn. Res. 6, 81-127 (2005)

van Engelen, R.A.: Approximating Bayesian belief networks by arc removal.
PAMI 19(8), 916-920 (1997)

Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Ma-
chine Learning 29(2-3), 131-163 (1997)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep
belief nets. Neural Computation 18(7), 1527-1554 (2006)

Jaeger, M.: Probabilistic decision graphs — combining verification and Al
techniques for probabilistic inference. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 12, 19-42 (2004)

Kjeerulff, U.: Reduction of computational complexity in Bayesian networks
through removal of weak dependences. In: UAL pp. 374-382 (1994)

Lowd, D., Domingos, P.M.: Learning arithmetic circuits. In: Proceedings
of the 24th Conference in Uncertainty in Artificial Intelligence (UAI). pp.
383-392 (2008)

https://arxiv.org/abs/2002.09320
https://arxiv.org/abs/2002.09320

16

[17]

[18]

[23]

[24]

Yizuo Chen and Arthur Choi and Adnan Darwiche

Mateescu, R., Dechter, R., Marinescu, R.: AND/OR multi-valued decision
diagrams (AOMDDs) for graphical models. J. Artif. Intell. Res. (JAIR) 33,
465-519 (2008)

Molina, A., Vergari, A., Stelzner, K., Peharz, R., Subramani, P., Mauro,
N.D., Poupart, P., Kersting, K.: SPFlow: An easy and extensible library for
deep probabilistic learning using sum-product networks (2019)

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. MK (1988)

Pearl, J.: Causality. Cambridge University Press (2000)

Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and
Effect. Basic Books (2018)

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A., Trapp, M., den
Broeck, G.V., Kersting, K., Ghahramani, Z.: Einsum networks: Fast and
scalable learning of tractable probabilistic circuits. CoRR abs/2004.06231
(2020)

Ranzato, M., Poultney, C.S., Chopra, S., LeCun, Y.: Efficient learning of
sparse representations with an energy-based model. In: NIPS. pp. 1137-1144
(2006)

Russell, S.J., Binder, J., Koller, D., Kanazawa, K.: Local learning in prob-
abilistic networks with hidden variables. In: Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, (IJCAI). pp. 1146—
1152 (1995)

Sanner, S., McAllester, D.A.: Affine algebraic decision diagrams (AADDs)
and their application to structured probabilistic inference. In: Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence
(IJCATI). pp. 1384-1390 (2005)

Schwalb, E.: Compiling bayesian networks into neural networks. In: Pro-
ceedings of the Tenth International Conference on Machine Learning
(ICML). pp. 291-297 (1993)

Shen, Y., Choi, A., Darwiche, A.: Tractable operations for arithmetic cir-
cuits of probabilistic models. In: Advances in Neural Information Processing
Systems 29 (NIPS) (2016)

Shen, Y., Huang, H., Choi, A., Darwiche, A.: Conditional independence in
Testing Bayesian Networks. In: ICML. pp. 5701-5709 (2019)

Suermondt, H.J.: Explanation in Bayesian Belief Networks. Ph.D. thesis,
Stanford (1992)

Thiesson, B., Meek, C., Heckerman, D.: Accelerating EM for large
databases. Mach. Learn. 45(3), 279-299 (2001)

	Supervised Learning with Background Knowledge

