
A Differential Approach to Inference in Bayesian Networks

Adnan Darwiche

Computer Science Department

University of California

Los Angeles, Ca 90095

darwiche@cs.ucla.edu

We present a new approach to inference in Bayesian networks which is based on representing the network using a polynomial
and then retrieving answers to probabilistic queries by evaluating and differentiating the polynomial. The network polynomial
itself is exponential in size, but we show how it can be computed efficiently using an arithmetic circuit that can be evaluated
and differentiated in time and space linear in the circuit size. The proposed framework for inference subsumes one of the most
influential methods for inference in Bayesian networks, known as the tree–clustering or jointree method, which provides a deeper
understanding of this classical method and lifts its desirable characteristics to a much more general setting. We discuss some
theoretical and practical implications of this subsumption.

1. INTRODUCTION

A Bayesian network is a compact, graphical model of a probability distribution [Pearl 1988]. It consists
of two parts: a directed acyclic graph which represents direct influences among variables, and a set of
conditional probability tables that quantify the strengths of these influences. Figure 1 depicts an example
Bayesian network relating to a scenario of potential fire in a building. This Bayesian network has six
Boolean variables, leading to sixty–four different variable instantiations. The network is interpreted as a
complete specification of a probability distribution over these instantiations. And one can easily construct
this distribution using the chain rule for Bayesian networks which we will discuss later.

Our concern in this paper is with the efficient computation of answers to probabilistic queries posed to
Bayesian networks. For example, in Figure 1, we may want to know the probability of fire given that people
are reported to be leaving, or the probability of smoke given that the alarm is off. More generally, if a given
Bayesian network induces a probability distribution Pr , then we are interested in computing probabilities of
events based on the distribution Pr . A brute force approach which constructs the distribution Pr in tabular
form and then uses it to answer queries is usually prohibitive as the table size is exponential in the number
of variables in the Bayesian network. There has been much research, however, over the last two decades to
develop efficient algorithms for inference in Bayesian networks, which are not necessarily exponential in the
number of network variables. We review three classes of such algorithms next.

The first class of algorithms is based on the notion of conditioning, or case analysis. It is well known that
when the value of a network variable is observed, the topology of the network can be simplified by deleting
edges that are outgoing from that variable [Pearl 1988; Darwiche 2001]. Even if the variable’s value is not
observed, one can still exploit this fact by performing a case analysis on the variable. Some conditioning
algorithms attempt to reduce the network into a tree structure, which is tractable, leading to what is known
as cutset conditioning [Pearl 1988]. Other conditioning algorithms attempt to decompose the network into
smaller networks that are solved recursively, leading to what is known as recursive conditioning [Darwiche
2001]. Conditioning algorithms work by carefully choosing a set of variables on which to perform case
analysis and are, therefore, started by some sort of graph theoretic analysis of the given Bayesian network.
For example, recursive conditioning starts by building a dtree (decomposition tree) which it uses to control
case analysis at each level of the recursion [Darwiche 2001].

The second class of algorithms for inference in Bayesian networks is based on the notion of variable
elimination. The basic idea here is to take a probabilistic model over n variables and reduce it to a model
over n− 1 variables, while maintaining the ability of the model to answer queries of interest [Shachter et al.
1990; Dechter 1996; Zhang and Poole 1996]. The process is repeated until we have a trivial model from which
we can look up answers immediately. The complexity of the algorithm is then governed by the amount of
work it takes to eliminate a variable, which is known to be very sensitive to the order in which variables
are eliminated. Hence, the key step in variable elimination algorithms is the choice of a particular variable

2 ·

Fire Tampering

Alarm

Smoke

Leaving

Report

Fire Pr(Fire)

true .01
false .99

Fire Smoke Pr(Smoke|Fire)

true true .9
true false .1
false true .01
false false .99

Alarm Leaving Pr(Leaving|Alarm)

true true .88
true false .12
false true .001
false false .999

Tampering Pr(Tampering)

true .02
false .98

Fire Tampering Alarm Pr(Alarm|Fire,Tampering)

true true true .5
true true false .5
true false true .99
true false false .01
false true true .85
false true false .15
false false true .0001
false false false .9999

Leaving Report Pr(Report |Leaving)

true true .75
true false .25
false true .01
false false .99

Fig. 1. A Bayesian network over six Boolean variables. The network has two parts: a directed acyclic graph over variables
of interest, and a conditional probability table (CPT) for each variable in the network. The CPT for a variable provides the
distribution of that variable given its parents.

elimination order, which is also based on some graph theoretic analysis of the given Bayesian network.
A third class of algorithms for inference in Bayesian networks is based on the notion of tree clustering and

capitalizes on the tractibility of inference with respect to tree structures [Shenoy and Shafer 1986; Pearl 1988;
Jensen et al. 1990]. This class of algorithms converts the original Bayesian network into a tree structure,
known as a jointree, and then performs tree–based inference on the resulting jointree. The caveat here is that
the jointree is a tree over compound variables, where a compound variable corresponds to a set of variables
known as a cluster, and the complexity of inference is exponential in the size of such compound variables.
Hence, the first step in such algorithms is to build a good jointree, one which minimizes the size of the largest
compound variable.

The computational complexity of the three classes of algorithms discussed above can be related through the
influential notion of treewidth [Bodlaender 1993; Bodlaender 1996], which is a measure of graph connectivity
and is defined for both directed and undirected graphs. Suppose we have a Bayesian network with n
nodes and bounded treewidth w. Suppose further that our interest is in computing the probability of
some instantiation e of variables E in the network. One can compute the probability of e in O(n exp(w))
time and space, using either conditioning, variable elimination or clustering. One of the main benefits of
conditioning, however, is that it facilitates the tradeoff between time and space. For example, one can
answer the previous query using O(n) space only, but at the expense of O(n exp(w log n)) time—a complete
tradeoff spectrum is also possible [Darwiche 2001]. One of the main benefits of variable elimination is its

· 3

A B

A θA

true θa = .3

false θā = .7

A B θB|A
true true θb|a = .1

true false θb̄|a = .9

false true θb|ā = .8

false false θb̄|ā = .2

Fig. 2. A Bayesian network.

simplicity, which makes it the method of choice for introductory material on the subject of inference in
Bayesian networks. Clustering algorithms, however, enjoy a key feature which makes them quite common
in large scale implementations: by only expending O(n exp(w)) time and space, these algorithms not only
compute the probability of instantiation e, but also compute other useful probabilistic quantities including the
posterior marginals Pr(x|e) for every variable X in the Bayesian network. Hence, tree–clustering algorithms
provide the largest amount of probabilistic information about the given Bayesian network, assuming that we
are willing to commit O(n exp(w)) time and space only.

We propose in this paper a new approach to inference in Bayesian networks, which subsumes tree–clustering
approaches based on jointrees. According to the proposed approach, the probability distribution of a Bayesian
network is represented as a polynomial and probabilistic queries are answered by evaluating and differen-
tiating the polynomial. The polynomial itself is exponential in size, so it cannot be represented explicitly.
Instead, it is represented in terms of an arithmetic circuit which can be evaluated and all its partial deriva-
tives computed in time and space linear in its size. Hence, the proposed approach works by first building
an arithmetic circuit that computes the network polynomial, and then performs inference by evaluating and
differentiating the constructed circuit. As we show later, one can build an arithmetic circuit for a Bayesian
network in O(n exp(w)) time and space. Moreover, the probabilistic information that one can retrieve from
the partial derivatives of such a circuit include all that can be obtained using jointree methods.

In fact, it was shown recently that every jointree can be interpreted as embedding an arithmetic circuit
which computes the network polynomial, and that jointree algorithms are precisely evaluating and differen-
tiating the embedded circuit [Park and Darwiche 2001b]. Therefore, jointree algorithms are a special case
of the framework we are proposing here, where specialization is in the specific method used to build the
arithmetic circuit. We show, however, that there are other fundamentally different methods for constructing
arithmetic circuits. We discuss one particular method in some detail, showing how it can exploit not only the
graphical structure of a Bayesian network, but also its local structure as exhibited in the specific values of
conditional probabilities. We also point to recent experimental results where the new method could construct
efficient arithmetic circuits for networks that are outside the scope of classical jointree methods [Darwiche
2002b]. Hence, the approach we present here not only provides a deeper mathematical understanding of
jointree algorithms, but also lifts their basic characteristics to a much more general setting, allowing us to
significantly increase the scale of Bayesian networks we can handle efficiently.

This paper is structured as follows. We show in Section 2 how each Bayesian network can be represented
as a multi–variate polynomial. We then show in Section 3 how one can obtain answers to a comprehensive
list of probabilistic queries by simply evaluating and differentiating the network polynomial. Section 4 is
then dedicated to the representation of network polynomials using arithmetic circuits, where we also discuss
the evaluation and differentiation of these circuits. We then discuss in Section 5 two methods for generating
arithmetic circuits, and finally close in Section 6 with some concluding remarks.

2. BAYESIAN NETWORKS AS MULTI–LINEAR FUNCTIONS

Our goal in this section is to show that the probability distribution induced by a Bayesian network can be
represented using a multi–linear function that has very specific properties. We then show in the following
sections how this function can be the basis of a comprehensive framework for inference in Bayesian networks.

4 ·

A

B C

A θA

true .5
false .5

A B θB|A
true true 1
true false 0
false true 0
false false 1

A C θC|A
true true .8
true false .2
false true .2
false false .8

Fig. 3. A Bayesian network.

2.1 Technical preliminaries

We will start by settling some notational conventions and providing the formal definition of a Bayesian
network. Variables are denoted by upper–case letters (A) and their values by lower–case letters (a). Sets of
variables are denoted by bold–face upper–case letters (A) and their instantiations are denoted by bold–face
lower–case letters (a). For variable A and value a, we often write a instead of A=a. For a variable A with
values true and false, we use a to denote A=true and ā to denote A=false. Finally, let X be a variable and let
U be its parents in a Bayesian network. The set XU is called the family of variable X, and the variable θx|u
is called a network parameter and is used to represent the conditional probability Pr(x | u); see Figure 2.

A Bayesian network over variables X is a directed acyclic graph over X, in addition to conditional proba-
bility values θx|u for each variable X in the network and its parents U. The semantics of a Bayesian network
are given by the chain rule, which says that the probability of instantiation x of all network variables X is
simply the product of all network parameters θx|u, where xu is consistent with x. More formally,

Pr(x) =
∏

xu∼x

θx|u,

where ∼ denotes the compatibility relation among instantiations (that is, xu ∼ x says that instantiations
xu and x agree on values of their common variables). For example, the probability of instantiation

report , leaving , alarm, tampering , smoke, fire

in Figure 1 is given by the product

θreport|leaving θleaving|alarm θalarm|tampering,fire θtampering θsmoke|fire θfire .

The justification for this particular semantics of Bayesian networks is outside the scope of this paper, but
the reader is referred to other sources for an extensive treatment of the subject [Pearl 1988]. Suffice it to say
here that the chain rule is all one needs to reconstruct the probability distribution specified by a Bayesian
network.

2.2 The network polynomial

We will now define for each Bayesian network a unique multi–linear function over two types of variables:

Evidence indicators: For each network variable X, we have a set of evidence indicators λx.
Network parameters: For each network family XU, we have a set of parameters θx|u.

The multi–linear function for a Bayesian network over variables X has an exponential number of terms, one
term for each instantiation of the network variables. The term corresponding to instantiation x is the product
of all evidence indicators and network parameters that are compatible with the instantiation. Consider the
simple Bayesian network in Figure 2, which has two variables A and B. The multi–linear function for this
network is:

f = λaλbθaθb|a + λaλb̄θaθb̄|a + λāλbθāθb|ā + λāλb̄θāθb̄|ā.

· 5

v λa λā λb λb̄ λc λc̄ θa θā θb|a θb|ā θb̄|a θb̄|ā θc|a θc|ā θc̄|a θc̄|ā
∂f/∂v .1 .4 .1 0 .4 .1 .2 0 .1 0 .1 0 0 0 .5 0

Table 1. Partial derivatives of the network polynomial f of Figure 3 at evidence ac̄. The value of the polynomial at this
evidence is f(ac̄) = .1.

For another example, consider the network in Figure 3. The polynomial of this network has eight terms,
some of which are shown below:

f = λaλbλcθaθb|aθc|a +
λaλbλc̄θaθb|aθc̄|a +
...
λāλb̄λc̄θāθb̄|āθc̄|ā.

In general, for a Bayesian network with n variables, each term in the multi–linear function will contain 2n
variables: n parameters and n indicators. The multi–linear function of a Bayesian network is a multi–variate
polynomial where each variable has degree 1. We will therefore refer to it as the network polynomial.

Definition 1. Let N be a Bayesian network over variables X, and let U denote the parents of variable
X in the network. The polynomial of network N is defined as follows:

f =
∑
x

∏
xu ∼ x

λxθx|u.

The outer sum in the above definition ranges over all instantiations x of the network variables. For each
instantiation x, the inner product ranges over all instantiations of families xu that are compatible with x.

The polynomial f of Bayesian network N represents the probability distribution Pr of N in the following
sense. For any piece of evidence e—which is an instantiation of some variables E in the network—we can
evaluate the polynomial f so it returns the probability of e, Pr(e).

Definition 2. The value of network polynomial f at evidence e, denoted by f(e), is the result of replacing
each evidence indicator λx in f with 1 if x is consistent with e, and with 0 otherwise.

Consider the polynomial,

f = λaλbθaθb|a + λaλb̄θaθb̄|a + λāλbθāθb|ā + λāλb̄θāθb̄|ā,

for the network in Figure 2. If the evidence e is ab̄, then f(e) is obtained by applying the following
substitutions to f : λa = 1, λā = 0, λb = 0, and λb̄ = 1, leading to the probability of e, θaθb̄|a.

Theorem 1. Let N be a Bayesian network representing probability distribution Pr and having polynomial
f . For any evidence (instantiation of variables) e, we have f(e) = Pr(e).

Hence, our ability to represent and evaluate the network polynomial implies our ability to compute probabil-
ities of instantiations. The polynomial has an exponential size, however, and cannot be represented as a set
of terms. But we show in Section 4 that one can represent such polynomials efficiently using arithmetic cir-
cuits, in a number of interesting cases. We also show in Section 3 that the partial derivatives of the network
polynomial contain valuable information, which can be used to answer a comprehensive set of probabilistic
queries.

We close this section by noting that [Russell et al. 1995] has observed that Pr(e) is a linear function in
each network parameter. More generally, it is shown in [Castillo et al. 1996; Castillo et al. 1997] that Pr(e)
can be expressed as a polynomial of network parameters in which each parameter has degree one. In fact,
the polynomials discussed in [Castillo et al. 1996; Castillo et al. 1997] correspond to our network polynomials
when evidence indicators are fixed to a particular value.

We will next attribute probabilistic semantics to the partial derivatives of network polynomials, and then
provide results on the computational complexity of representing them using arithmetic circuits.

6 ·
3. PROBABILISTIC SEMANTICS OF PARTIAL DERIVATIVES

Our goal in this section is to attribute probabilistic semantics to the partial derivatives of a network poly-
nomial. As explained in Section 4, if the network polynomial is represented by an arithmetic circuit, then
all its first partial derivatives can be computed in time linear in the circuit size. This makes the results of
this section especially practical.

We will use the following notation in the rest of the paper. Let e be an instantiation and X be a set of
variables. Then e−X denotes the subset of instantiation e pertaining to variables not appearing in X. For
example, if e = abc̄, then e−A = bc̄ and e−AC = b. We start with the semantics of first partial derivatives.

3.1 Derivatives with respect to evidence indicators

Consider the polynomial of the Bayesian network in Figure 2:

f = λaλbθaθb|a + λaλb̄θaθb̄|a + λāλbθāθb|ā + λāλb̄θāθb̄|ā.

Consider now the derivative of this polynomial with respect to evidence indicator λa:

∂f/∂λa = λbθaθb|a + λb̄θaθb̄|a.

The partial derivative ∂f/∂λa results from polynomial f by setting indicator λa to 1 and indicator λā to
0, which means that the derivative ∂f/∂λa corresponds to conditioning the polynomial f on event a. Note
also that the value of ∂f/λa at evidence e is independent of the value that variable A may take in e since
∂f/∂λa no longer contains any indicators for variable A. These observations lead to the following theorem.

Theorem 2. Let N be a Bayesian network representing probability distribution Pr and having polynomial
f . For every variable X and evidence e, we have

∂f

∂λx
(e) = Pr(x, e−X). (1)

That is, if we differentiate the polynomial f with respect to indicator λx and evaluate the result at evidence
e, we obtain the probability of instantiation x, e−X. For an example, consider Table 1, which depicts the
partial derivatives of the network polynomial of Figure 3 evaluated at evidence ac̄. According to Equation 1,
the value of derivative ∂f/∂λā at evidence ac̄, .4, gives us the probability of āc̄.

Therefore, if we evaluate the network polynomial at some evidence e and compute all its first partial
derivatives at this same evidence, then not only do we have the probability of evidence e, but also the
probability of every instantiation e′ which differs with e on the value of one variable. The ability to compute
the probabilities of such modifications on instantiation e efficiently is crucial for approximately solving the
problem of maximum a posteriori hypothesis (MAP) [Park 2002; Park and Darwiche 2001a]. The MAP
problem is that of finding a most probable instantiation e of some variables E. One class of approximate
methods for MAP starts with some instantiation e and then tries to improve on it using local search, by
examining all instantiations that result from changing the value of a single variable in e (called the neighbors
of e). Equation 1 is then very relevant to these approximate algorithms as it provides an efficient method
to score the neighbors of e during local search [Park 2002; Park and Darwiche 2001a].

Another class of queries that is immediately obtainable from partial derivatives is posterior marginals.

Corollary 1. For every variable X and evidence e, X 6∈ E:

Pr(x | e) =
1

f(e)
∂f

∂λx
(e). (2)

Therefore, the partial derivatives give us the posterior marginal of every variable. Given Table 1, where
evidence e = ac̄, we have

Pr(b | e) =
1

f(e)
∂f

∂λb
(e) = 1,

and

Pr(b̄ | e) =
1

f(e)
∂f

∂λb̄

(e) = 0.

The ability to compute such posteriors efficiently is probably the key celebrated property of jointree
algorithms [Huang and Darwiche 1996; Shenoy and Shafer 1986; Jensen et al. 1990], as compared to variable

· 7

elimination algorithms [Shachter et al. 1990; Dechter 1996; Zhang and Poole 1996]. The latter class of
algorithms is much simpler except that they can only compute such posteriors by invoking themselves once
for each network variable, leading to a complexity of O(n2 exp(w)), where n is the number of network
variables and w is the network treewidth. Jointree algorithms can do this in O(n exp(w)) time, however, but
at the expense of a more complicated algorithm. When we discuss complexity in Sections 4 and 5, we will
find that the proposed approach in this paper can also perform this computation in O(n exp(w)) time. In
fact, we will give a deeper explanation of why jointree algorithms can attain this complexity in Section 5,
where we point to recent results showing that they are a special case of the approach presented here (they
also differentiate the network polynomial).

One of the main complications in Bayesian network inference relates to the update of probabilities after
having retracted evidence. This seems to pose no difficulties in the presented framework. For example, we
can immediately compute the posterior marginal of every instantiated variable, after the evidence on that
variable has been retracted.

Corollary 2. For every variable X and evidence e, we have:

Pr(e−X) =
∑

x

∂f

∂λx
(e); (3)

Pr(x′ | e−X) =
∂f

∂λx′
(e)

∑
x

∂f
∂λx

(e)
. (4)

Note that Pr(e−X) can also be obtained be evaluating the polynomial f at evidence e−X, but that would
require many evaluations of f if we are to consider every possible variable X. The main point of the above
corollary is to obtain all these quantities from the derivatives of f at evidence e. Consider Table 1 for an
example of this corollary, where evidence e = ac̄. We have

Pr(e−A) = Pr(c̄) =
∂f

∂λa
(e) +

∂f

∂λā
(e) = .5.

The above computation is the basis of an investigation of model adequacy [Cowell et al. 1999, Chapter 10]
and is typically implemented in the jointree algorithm using the technique of fast retraction, which requires
a modification to the standard propagation method in jointrees [Cowell et al. 1999, Page 104]. As given by
the above theorem, we get this computation for free once we have partial derivatives with respect to network
indicators.

3.2 Derivatives with respect to network parameters

We now turn to partial derivatives with respect to network parameters.

Theorem 3. Let N be a Bayesian network representing probability distribution Pr and having polynomial
f . For every family XU in the network, and for every evidence e, we have

θx|u
∂f

∂θx|u
(e) = Pr(x,u, e). (5)

This theorem has indirectly been shown in [Russell et al. 1995] (since f(e) = Pr(e)) and has major applica-
tions to sensitivity analysis and learning. Specifically, the derivative ∂Pr(e)/∂θx|u is the basis for an efficient
approach to sensitivity analysis that identifies minimal parameter changes necessary to satisfy constraints on
probabilistic queries [Chan and Darwiche 2002]. Another application of this partial derivative is to the learn-
ing of network parameters from data, for which there are two main approaches. The first approach called
APN, for Adaptive Probabilistic Networks, is based on reducing the learning problem to that of optimizing
a function of many variables [Russell et al. 1995]. Specifically, it attempts to find the values of network
parameters which will maximize the probability of data, therefore, requiring that we compute ∂Pr(d)/∂θx|u
for each parameter θx|u and each piece of data d. The second approach for learning parameters is based on
the Expectation Maximization (EM) algorithm [Lauritzen 1995], and requires the computation of posterior
marginals over network families, which can be easily obtained given Equation 5.

8 ·
3.3 Second partial derivatives

We now turn to the semantics of second partial derivatives. Since we have two types of variables in a network
polynomial (evidence indicators and network parameters), we have three different types of second partial
derivatives. The semantics of each derivative is given next.

Theorem 4. Let N be a Bayesian network representing probability distribution Pr and having polynomial
f . For every pair of variables X, Y and evidence e, when x 6= y:

∂2f

∂λx∂λy
(e) = Pr(x, y, e−XY). (6)

For every family XU, variable Y , and evidence e:

θx|u
∂2f

∂θx|u∂λy
(e) = Pr(x,u, y, e− Y). (7)

For every pair of families XU, Y V and evidence e, when xu 6= yv:

θx|uθy|v
∂2f

∂θx|u∂θy|v
(e) = Pr(x,u, y,v, e). (8)

Theorems 2–4 show us how to compute answers to classical probabilistic queries by differentiating the
polynomial representation of a Bayesian network. Therefore, if we have an efficient way to represent and
differentiate the polynomial, then we also have an efficient way to perform probabilistic reasoning. For
example, Equation 6 allows us to compute marginals over pairs of variables using second partial derivatives—
these marginals are needed for identifying conditional independence and for measuring mutual information
between pairs of variables.

Another use of Theorems 2–4 is in computing valuable partial derivatives using classical probabilistic
quantities. Therefore, if we need the values of these derivatives but only have access to classical inference
algorithms, then we can use the given identities to recover the necessary derivatives. For example, Equation 8
shows us how to compute the second partial derivative of Pr(e) with respect to two network parameters,
θx|u and θy|v, using the joint probability over their corresponding families, Pr(x,u, y,v, e). We have to
note, however, that expressing partial derivatives in terms of classical probabilistic quantities requires some
conditions: θx|u and θy|v cannot be 0. Therefore, partial derivatives contain more information than their
corresponding probabilistic quantities.

Theorems 2–4 can also facilitate the derivation of results relating to sensitivity analysis. Here’s one
example.

Theorem 5. Let N be a Bayesian network representing distribution Pr and having polynomial f . For
variable Y , family XU and evidence e:

∂Pr(y | e)
∂θx|u

=
1

f(e)2

(
f(e)

∂2f

∂θx|u∂λy
(e)− ∂f

∂θx|u
(e)

∂f

∂λy
(e)

)

=
Pr(y, x,u | e)− Pr(y | e)Pr(x,u | e)

Pr(x | u)
, when Pr(x|u) 6= 0.

This theorem provides an elegant answer to the most central question of sensitivity analysis in Bayesian
networks, as it shows how we can compute the sensitivity of a conditional probability to a change in some
network parameter. The theorem phrases this computation in terms of both partial derivatives and classical
probabilistic quantities—the second part, however, can only be used when Pr(x | u) 6= 0.1

1There seems to be two approaches for computing the derivative ∂Pr(y | e)/∂θx|u, which has been receiving increased attention
recently due to its role in sensitivity analysis and the learning of network parameters [Chan and Darwiche 2002]. We have
just presented one approach where we found a closed form for ∂Pr(y | e)/∂θx|u, using both partial derivatives and classical
probabilistic quantities. The other approach capitalizes on the observation that Pr(y | e) has the form (αθx|u + β)/(γθx|u + δ)
for some constants α, β, γ and δ [Castillo et al. 1996]. According to this second approach, one tries to compute the values of
these constants based on the given Bayesian network and then computes the derivative of (αθx|u + β)/(γθx|u + δ) with respect
to θx|u. See [Jensen 1999; Kjaerulff and van der Gaag 2000] for an example of this approach, where it is shown how to compute
such constants using a limited number of propagations in the context of a jointree algorithm.

· 9

4. ARITHMETIC CIRCUITS THAT COMPUTE MULTI–LINEAR FUNCTIONS

We have shown in earlier sections that the probability distribution of a Bayesian network can be represented
using a polynomial. We have also shown that a good number of probabilistic queries can be answered
immediately once the value and partial derivatives of the polynomial are computed. Therefore, if we have
an efficient way to evaluate and differentiate the polynomial, then we have an efficient and comprehensive
approach to probabilistic inference in Bayesian networks. The goal of this section is to present a particular
representation of the network polynomial which facilitates its evaluation and differentiation.

The network polynomial has an exponential number of terms. Hence, any direct representation of the
polynomial will be infeasible in general. Instead, we will represent or compute the polynomial using an
arithmetic circuit.

Definition 3. An arithmetic circuit over variables Σ is a rooted, directed acyclic graph whose leaf nodes
are labelled with numeric constants or variables in Σ and whose other nodes are labelled with multiplication
and addition operations. The size of an arithmetic circuit is measured by the number of edges that it contains.

An arithmetic circuit is a graphical representation of a function f over variables Σ; see Figure 5. As we
show later, it is sometimes possible to represent a polynomial f of exponential size using an arithmetic
circuit of linear size (exponential and linear in the number of polynomial variables). Hence, arithmetic
circuits can be very compact representations of polynomials, and we shall adopt them as our representation
of network polynomials in this paper. This leaves us with two questions. First, assuming that we have a
compact arithmetic circuit which computes the network polynomial, how can we efficiently evaluate and
differentiate the circuit? Second, how do we obtain a compact arithmetic circuit that computes a given
network polynomial? The first question will be addressed next, while the second question will be delegated
to Section 5.

4.1 Differentiating arithmetic circuits

Evaluating an arithmetic circuit is straightforward: we simply traverse the circuit upward, computing the
value of a node after having computed the values of its children. Computing the circuit derivatives, however,
is a bit more involved. First, we will not distinguish between an arithmetic circuit f and its unique output
node. Let v be an arbitrary node in circuit f . We are interested in the partial derivative of f with respect
to node v, ∂f/∂v. The key observation is to view the circuit f as a function of each and every circuit node
v. If v is the root node (circuit output), then ∂f

∂v = 1. If v is not the root node, and has parents p, then by
the chain rule of differential caclulus:

∂f

∂v
=

∑
p

∂f

∂p

∂p

∂v
.

Suppose now that v′ are the other children of parent p. If parent p is a multiplication node, then

∂p

∂v
=

∂(v
∏

v′ v
′)

∂v
=

∏

v′
v′.

Similarly, if parent p is an addition node,

∂p

∂v
=

∂(v +
∑

v′ v
′)

∂v
= 1.

With these equations, we can recursively compute the partial derivatives of f with respect to any node v.
The procedure is described below in terms of two passes, requiring two registers, vr(v) and dr(v), for each
circuit node v. In the upward–pass, we evaluate the circuit by setting the values of vr(v) registers, and in
the downward–pass, we differentiate the circuit by setting the values of dr(v) registers. From here on, when
we say an upward–pass of the circuit, we will mean a traversal of the circuit where the children of a node are
visited before the node itself is visited. Similarly, in a downward–pass, the parents of a node will be visited
first.

—Initialization: dr(v) is initialized to zero except for root v where dr(v) = 1.
—Upward–pass: At node v, compute the value of v and store it in vr(v).
—Downward–pass: At node v and for each parent p, increment dr(v) by

10 ·

+

+ +

*** *

��
�
�

���� �
��� �

���
�
���

* *

+ +

*** *

�� �
�

���� �
��� �

���
�
���

��
�
���

�
�

1 .1

.1 1

1 .1 0 .4

1 .1 1 0 .2 .5 .8 0

.5 .2 .5 0

.1 1 0 1

0 0 0 .1 1 0 0 .5 0 0 .2 .5 .8 01 .1

1 .1

0 0 0 .1

1 0

1 0 .8 0 .2 0 .2 .5 .8 0

0 .4 1 .1

Fig. 4. An arithmetic circuit for the network polynomial of Figure 3, after it has been evaluated and differentiated under
evidence ac̄. Registers vr are shown on the left, and registers dr are shown on the right.

—dr(p) if p is an addition node;
—dr(p)

∏
v′ vr(v′) if p is a multiplication node, where v′ are the other children of p.

Figure 4 contains an arithmetic circuit that has been evaluated and differentiated under evidence e = ac̄
using the above method. This circuit computes the polynomial of the Bayesian network in Figure 3, and
will be visited again in Section 5 where we discuss the generation of arithmetic circuits.

4.2 The complexity of differentiating circuits

The upward–pass in the above scheme clearly takes time linear in the circuit size, where size is defined as the
number of edges in the circuit. The downward–pass takes linear time only when each multiplication node
has a bounded number of children, otherwise the time to evaluate the term

∏
v′ vr(v′) cannot be bounded by

a constant. This can be addressed by observing that the term
∏

v′ vr(v′) equals vr(p)/vr(v) when vr(v) 6= 0
and, hence, the time to evaluate it can be bounded by a constant if we use division. Even the case where
vr(v) = 0 can be handled efficiently, but that requires two additional bits per multiplication node p: bit1(p)
indicates whether some child of p has a zero value, and bit2(p) indicates whether exactly one child of node p
has a zero value. Moreover, the meaning of register vr(p) is overloaded when the value of p is zero, where it
contains the product of all non–zero values attained by children of node p. This leads to the following more
refined scheme, which is based on [Sawyer 1984] and assumes that the circuit alternates between addition
and multiplication nodes.

—Initialization: dr(v) is initialized to zero except for root v where dr(v) = 1.
—Upward–pass: At node v with children c,

—if v is an addition node, set vr(v) to
∑

bit1(c)=0

vr(c)

—if v is a multiplication node,
set vr(v) to

∏

vr(c)6=0

vr(c);

set bit1(v) to 1 if vr(c) = 0 for some child c, and to 0 otherwise;
set bit2(v) to 1 if vr(c) = 0 for exactly one child c, and to 0 otherwise.

· 11

A

λλλλAθθθθA

AC

λλλλCθθθθC|A

AB

λλλλBθθθθB|A

AA

root

+

+ +

*** *

��
�
�

���� �
��� �

���
�
���

* *

+ +

*** *

�� �
�

���� �
��� �

���
�
���

�� �
��� �

�

Fig. 5. A jointree for the Bayesian network in Figure 3 and its corresponding arithmetic circuit.

—Downward–pass: At node v and for each parent p,
—if p is an addition node, increment dr(v) by dr(p);
—if p is a multiplication node, increment dr(v) by

dr(p)vr(p)/vr(v) if bit1(p) = 0;
dr(p)vr(p) if bit2(p) = 1 and vr(v) = 0.

When the downward–pass of the above method terminates, we are guaranteed that the value of every addition
node v is stored in vr(v), and the value of every multiplication node v is stored in vr(v) if bit1(v) = 0, and is
0 otherwise. We are also guaranteed that the derivative of f with respect to every node v is stored in dr(v).
Finally, the method takes time which is linear in the circuit size.

4.3 Rounding errors

We close this section by pointing out that once a circuit is evaluated and differentiated, it is possible to
bound the rounding error in the computed value of the circuit output under a particular model of error
propagation. Specifically, let δ be the local rounding error generated when computing the value of an
addition or multiplication node in the upward–pass. It is reasonable to assume that |δ| ≤ ε|v|, where:

– v is the value we would obtain for the node when using infinite–precision to add/multiply its children
values;

– ε is a constant representing the machine–specific relative error occurring in the floating–point representa-
tion of a real number.

We can then bound the rounding error in the computed value of the circuit f by ε
∑

v v∂f/∂v, where v ranges
over all internal nodes in the circuit [Iri 1984]. This bound can be computed easily as the downward–pass
is being executed, allowing us to bound the rounding error in the computed probability of evidence as this
corresponds to the value of the circuit output.

5. COMPILING ARITHMETIC CIRCUITS

Our goal in this section is to present algorithms for generating arithmetic circuits that compute network
polynomials. The goal is to try to generate the smallest circuit possible, and to offer guarantees on the
complexity of generated circuits whenever possible. We will discuss two classes of methods for this purpose.
The first class exploits the global structure of a Bayesian network (its topology) and comes with a complexity
guarantee in terms of the network treewidth. The second class of algorithms can also exploit local structure
(the specific values of conditional probabilities), and could be quite effective in situations where the first
approach is intractable. But first, we present a new notion of complexity for Bayesian networks which is
motivated by algebraic complexity theory [von zur Gathen 1988]:

Definition 4. The circuit complexity of a Bayesian network N is the size of the smallest arithmetic
circuit that computes the network polynomial of N .

12 ·
5.1 Circuits that exploit global structure

We will now present a method for generating arithmetic circuits assuming that we have a jointree for the
given network [Huang and Darwiche 1996; Pearl 1988; Jensen 1999]. A jointree for a Bayesian network N
is a labelled tree (T ,L), where T is a tree and L is a function that assigns labels to nodes in T . A jointree
must satisfy three properties:

(1) each label L(i) is a set of variables in the Bayesian network;
(2) each family XU in the network must appear in some label L(i);
(3) if a variable appears in the labels of jointree nodes i and j, it must also appear in the label of each node

k on the path connecting them.

Nodes in a jointree, and their labels, are called clusters. Similarly, edges in a jointree, and their labels, are
called separators, where the label of edge ij is defined as L(i) ∩ L(j). Figure 5 depicts a jointree for the
Bayesian network of Figure 3, which contains three clusters.

A jointree is the key data structure in a class of influential algorithms for inference in Bayesian networks
[Shenoy and Shafer 1986; Jensen et al. 1990]. Before a jointree is used by these algorithms, each CPT θX|U
must be assigned to a cluster that contains family XU. Moreover, evidence on a variable X is captured
through a table λX over variable X which is also assigned to a cluster that contains X. Finally, a cluster
in the jointree is chosen and designated as the root, allowing us to direct the tree and define parent/child
relationships between neighboring clusters and separators. The jointree in Figure 5 depicts the root cluster,
in addition to the assignment of CPTs and evidence tables to various clusters. We will show next that
each jointree embeds an arithmetic circuit that computes the network polynomial. Later, we point to recent
results showing that classical jointree algorithms actually evaluate and differentiate the embedded circuit
and are, therefore, subsumed by the framework discussed here.

Definition 5. Given a root cluster, a particular assignment of CPT and evidence tables to clusters, the
arithmetic circuit embedded in a jointree is defined as follows. The circuit includes:

- one output addition node f ;
- an addition node s for each instantiation of a separator S;
- a multiplication node c for each instantiation of a cluster C;
- an input node λx for each instantiation x of variable X;
- an input node θx|u for each instantiation xu of family XU.

The children of the output node f are the multiplication nodes c generated by the root cluster; the children
of an addition node s are all compatible multiplication nodes c generated by the child cluster; the children of
a multiplication node c are all compatible addition nodes s generated by child separators, in addition to all
compatible inputs nodes θx|u and λx for which CPT θX|U and evidence table λX are assigned to cluster C.

Figure 5 depicts a jointree and its embedded arithmetic circuit. Note the correspondence between addition
nodes in the circuit (except the output node) and instantiations of separators in the jointree. Note also the
correspondence between multiplication nodes in the circuit and instantiations of clusters in the jointree. Some
jointree algorithms maintain a table with each cluster and separator, which are indexed by the instantiations
of corresponding cluster or separator [Huang and Darwiche 1996; Jensen et al. 1990]. These algorithms are
then representing the addition/multiplication nodes of the embedded circuit explicitly. One useful feature of
the circuit embedded in a jointree, however, is that it does not require that we represent its edges explicitly
as these can be inferred from the jointree structure. This leads to less space requirements, but increases the
time for evaluating and differentiating the circuit given the overhead needed to infer these edges.2 Another
useful feature of the circuit embedded in a jointree is the guarantees one can offer on its size.

Theorem 6. Let J be a jointree for Bayesian network N with n clusters, a maximum cluster size c, and
a maximum separator size s. The arithmetic circuit embedded in jointree J computes the network polynomial
for N and has O(n exp(c)) multiplication nodes, O(n exp(s)) addition nodes, and O(n exp(c)) edges.

2Some optimized implementations of jointree algorithms maintain indices that associate cluster entries with compatible entries
in their neighboring separators, in order to reduce jointree propagation time [Huang and Darwiche 1996]. These algorithms are
then representing both the nodes and edges of the embedded circuit explicitly.

· 13

+

��

�
�

* *

+ +

*** *

��
�
�

��
�
�

.2 .8

*

.5

Fig. 6. An arithmetic circuit that exploits local structure. The circuit computes the polynomial of the Bayesian network in
Figure 3.

It is well known that if the directed graph underlying a Bayesian network has n nodes and treewidth w, then
a jointree for N exists which has no more than n clusters and a maximum cluster size of w + 1. Theorem 6
is then telling us that the circuit complexity of such networks is O(n exp(w)).

We note here that the arithmetic circuit embedded in a jointree has a very specific structure: it alternates
between addition and multiplication nodes, and each multiplication node has a single parent. This specific
structure permits more efficient schemes for circuit evaluation and differentiation than we have proposed
earlier (since the partial derivative with respect to a multiplication node and its single parent must be equal).
Two such methods are discussed in [Park and Darwiche 2001b], where it is shown that these methods require
less space than is required by the methods of Section 4.

Definition 5 provides a method for generating arithmetic circuits based on jointrees, but it also serves as
a connection between the approach proposed here and the influential inference approaches based on jointree
propagation. According to these approaches, one performs inference by passing messages in two phases:
an inward phase where messages are passed towards the root cluster and then an outward phase where
messages are passed away from the root cluster. It was shown recently that the inward phase of jointree
propagation corresponds to an evaluation of the embedded circuit, and the outward phase corresponds to
a differentiation of the circuit [Park and Darwiche 2001b]. Specifically, it was shown that the two main
methods for jointree propagation, known as Shenoy–Shafer [Shenoy and Shafer 1986] and Hugin [Jensen
et al. 1990] propagation, do correspond precisely to two specific numeric methods for circuit differentiation
that have different time/space properties.

These findings have a number of implications. First, they provide a deeper understanding of jointree
algorithms, allowing us to extract more information from them than was previously done—see [Park and
Darwiche 2001b] for some examples. Second, they suggest that building a jointree is one specific way
of accomplishing a more general task, that of building an arithmetic circuit for computing the network
polynomial. This leaves us with the question: What other methods can one employ for accomplishing this
purpose? We address this question in the following section, where we sketch a new approach for building
arithmetic circuits that reduces the problem to one of logical reasoning [Darwiche 2002b].

5.2 Circuits that exploit local structure

The arithmetic circuits embedded in jointrees come with a guarantee on their size. This guarantee, however,
is only a function of the network topology and is both an upper and a lower bound. Therefore, if the jointree
has a cluster of large size, say 40, then the embedded arithmetic circuit will be intractable.

The key point to observe here is that one can generate arithmetic circuits of manageable size even when the
jointree has large clusters, assuming the conditional probabilities of the Bayesian network exhibit some local

14 ·

^ ^

v

v v

^^^ ^

��

���

�
�

��

�
�

��
�

�
�

�
�

��

^
^ ^ ^

�� �
�

���

���
���

���

��

���

���

���

��
�

* *

+

+ +

*** *��

��

�
�

�
���

�
���

�
�

�
�

��

* * * *

Fig. 7. On the left, a negation normal form that satisfies smoothness, determinism, and decomposability. On the right, the
corresponding arithmetic circuit after removing leaf nodes labelled with 1. The negation normal form encodes the polynomial
of a Bayesian network A → C ← B, where each node has two values, and C is an exclusive–or of A and B. That is, θc|ab = 0
and θc|āb̄ = 0 which imply that θc̄|ab = 1 and θc̄|āb̄ = 1.

structure. By local structure, we mean information about the specific values that conditional probabilities
attain; for example, whether some probabilities equal 0 or 1, and whether some probabilities in the same
table are equal. The Bayesian network of Figure 3 exhibits some local structure in the previous sense. If
one exploits this local structure, then one can build the smaller arithmetic circuit in Figure 6, instead of
the larger circuit in Figure 5. The difference between the two circuits is that one is valid for any particular
values of the network parameter, while the other is valid for the specific values given in Figure 3.

We now turn to a recent approach for generating arithmetic circuits which can exploit local structure,
and works by reducing the problem to one of logical reasoning as logic turns out to be useful for specifying
information about local structure [Darwiche 2002b]. The approach is based on three conceptual steps. First,
the network polynomial is encoded using a propositional theory. Next, the propositional theory is factored
by converting it to a special logical form. Finally, an arithmetic circuit is extracted from the factored
propositional theory. The first and third steps are representational, but the second step is the one involving
computation. We will next explain each step in some more details.

Step 1: Encoding a multi–linear function using a propositional theory. The purpose of this step is to
specify the network polynomial using a propositional theory. To illustrate how a multi–linear function can
be specified using a propositional theory, consider the following function f = αγ + αβγ + γ over real–valued
variables α, β, γ. The basic idea is to specify this multi–linear function using a propositional theory that has
exactly three models, where each model encodes one of the terms in the function. Specifically, suppose we
have the Boolean variables Vα, Vβ , Vγ . Then the propositional theory ∆f = (Vα ∨ ¬Vβ) ∧ Vγ encodes the
multi–linear function f since it has three models:

—σ1 : Vα = true, Vβ = false, Vγ = true;
—σ2 : Vα = true, Vβ = true, Vγ = true;
—σ3 : Vα = false, Vβ = false, Vγ = true.

Each one of these models σi is interpreted as encoding a term ti in the multi–linear function f as follows. A
real–valued variable appears in term ti iff model σi sets its corresponding Boolean variable to true. Hence,
the first model encodes the term αγ; the second model encodes the term αβγ; and the third model encodes
the term γ. The theory ∆f then encodes the multi–linear function that results from adding up all these
terms: f = αγ + αβγ + γ. This method of specifying network polynomials allows one to easily capture
local structure; that is, to declare certain information about values of polynomial variables. For example,
if we know that variable α has a zero value, then we can exclude all terms that contain α by conjoining
¬Vα with our encoding. The reader is referred to [Darwiche 2002b] for an efficient method which generates
propositional theories that encode network polynomials.

Step 2: Factoring the propositional encoding. If we view the conversion of a network polynomial into an
arithmetic circuit as a factoring process, then the purpose of this second step is to accomplish a similar task

· 15

but at the logical level. Instead of starting with a polynomial (set of terms), we start with a propositional
theory (set of models). And instead of building an arithmetic circuit that computes the polynomial, we
build a Boolean circuit that computes the propositional theory. To compute a propositional theory in this
context is to be able to count its models under any values of propositional variables. One logical form that
permits this computation is Negation Normal Form (NNF): a rooted, directed acyclic graph where leaves are
labelled with constants/literals, and where internal nodes are labelled with conjunctions /disjunctions; see
Figure 7. The NNF must satisfy three properties, which we define next. Let αn denote the logical sentence
represented by the NNF rooted at node n.

—Decomposability: For each and–node with children c1, . . . , cn, sentences αci and αcj cannot share a variable
for i 6= j.

—Determinism: For each or–node with children c1, . . . , cn, sentences αci
and αcj

must contradict each other
for i 6= j.

—Smoothness: For each or–node with children c1, . . . , cn, sentences αci and αcj must mention the same set
of variables for i 6= j.

The NNF in Figure 7 satisfies the above properties, and encodes the network polynomial of a small Bayesian
network. The reader is referred to [Darwiche 2002a] for an algorithm that converts propositional theories
from CNF to NNF, while ensuring the above three properties.3

Step 3: Extracting an arithmetic circuit. The purpose of this last step is to extract an arithmetic circuit
that computes the polynomial encoded by an NNF. If ∆f is a propositional theory that encodes a network
polynomial f , and if ∆f is an NNF that satisfies the properties of smoothness, determinism, and decompos-
ability, then an arithmetic circuit that computes the polynomial f can be obtained easily as follows: replace
and–nodes in ∆f by multiplications; replace or–nodes by additions; and replace each leaf node labelled with
a negated variable by a constant 1. The resulting arithmetic circuit is then guaranteed to compute the
polynomial f [Darwiche 2002b]. Figure 7 depicts an NNF and its corresponding arithmetic circuit. Note
that the generated arithmetic circuit is no larger than the NNF. Hence, if we attempt to minimize the size
of NNF, we are also minimizing the size of generated arithmetic circuit.

We refer the reader to [Darwiche 2002b] for further details on this approach, and for experimental results
showing how Bayesian networks whose jointrees have clusters with more than 60 variables could be handled
very efficiently, leading to arithmetic circuits of relatively very small size. These networks correspond to
applications involving well–known sequential and combinational digital circuits. They are deterministic in the
sense that all their conditional probabilities are 0/1 except for the probabilities on root nodes. Such networks
are completely outside the scope of the method discussed in Section 5.1 since the sizes of corresponding
jointrees are prohibitive. Note that a simpler approach to handle determinism would have been to build
a circuit as discussed in Section 5.1, identify circuit nodes whose values are stuck at zero, and then prune
such nodes to build a smaller circuit. This approach will work and is capable of having the same effect as
the approach we just discussed, as long as the full circuit (the one before pruning) is manageable.4 This
approach is not feasible, however, for many of the networks that are discussed in [Darwiche 2002b].

6. CONCLUSION

We have presented a comprehensive approach for inference in Bayesian networks which is based on evaluating
and differentiating arithmetic circuits. Specifically, we have shown how the probability distribution of a
Bayesian network can be represented using a polynomial, and how a large number of probabilistic queries
can be retrieved immediately from the value and partial derivatives of such a polynomial. We have also shown

3Note that an Ordered Binary Decision Diagram (OBDD) can be understood as a Boolean circuit, in which case it can be shown
to be an NNF that satisfies the properties of decomposability and determinism [Bryant 1986; Darwiche and Marquis 2002].
Moreover, the property of smoothness can always be ensured in polynomial time. Hence, if one has an algorithm for converting
CNF into OBDD, then one immediately has an algorithm for converting CNF into smooth, deterministic, decomposable NNF
[Darwiche 2002a]. An OBDD, however, satisfies additional properties, leading to larger NNFs than necessary.
4This approach corresponds to the technique of zero–compression in jointree algorithms [Jensen and Andersen 1990], which
performs inference on a jointree to identify and remove cluster and separator entries that are stuck at zero. After such pruning,
however, one must explicitly link cluster entries (multiplication nodes) and separator entries (addition nodes), leading to an
explicit representation of the embedded circuit. In such a case, the jointree as a data structure loses much of its appeal since
it does not provide much value beyond an explicit representation of the circuit.

16 ·
how to represent polynomials efficiently using arithmetic circuits, and how to evaluate and differentiate them
in time and space which is linear in their size. Finally, we have presented two classes of methods for building
arithmetic circuits and discussed their properties.

The approach we have presented here subsumes the jointree approach for inference in Bayesian networks,
which has been shown recently to correspond to circuit evaluation and differentiation as discussed in this
paper. Our proposed framework provides a deeper understanding of the jointree approach and lifts its basic
characteristics to a more general framework, in which the complexity of inference is sensitive to both the
local and global structure of Bayesian networks. This also leads to a more refined notion of computational
complexity for Bayesian network inference, circuit complexity, which is based on both local and global
network structure.

Acknowledgment

This work has been partially supported by NSF grant IIS-9988543 and MURI grant N00014-00-1-0617.

REFERENCES

Bodlaender, H. L. 1993. A tourist guide through treewidth. ACTA CYBERNETICA 11, 1-2, 1–22.

Bodlaender, H. L. 1996. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal of
Computing 25, 6, 1305–1317.

Bryant, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-
35, 677–691.

Castillo, E., Gutiérrez, J. M., and Hadi, A. S. 1996. Goal oriented symbolic propagation in Bayesian networks. In
Proc. AAAI National Conference (1996), pp. 1263–1268.

Castillo, E., Gutiérrez, J. M., and Hadi, A. S. 1997. Sensitivity analysis in discrete Bayesian networks. IEEE
Transactions on Systems, Man, and Cybernetics 27, 412–423.

Chan, H. and Darwiche, A. 2002. When do numbers really matter? Journal of Artificial Intelligence Research 17,
265–287.

Cowell, R., Dawid, A., Lauritzen, S., and Spiegelhalter, D. 1999. Probabilistic Networks and Expert Systems.
Springer.

Darwiche, A. 2001. Recursive conditioning. Artificial Intelligence 126, 1-2, 5–41.

Darwiche, A. 2002a. A compiler for deterministic, decomposable negation normal form. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI) (Menlo Park, California, 2002), pp. 627–634. AAAI Press.

Darwiche, A. 2002b. A logical approach to factoring belief networks. In Proceedings of KR (2002), pp. 409–420.

Darwiche, A. and Marquis, P. 2002. A knowlege compilation map. Journal of Artificial Intelligence Research 17,
229–264.

Dechter, R. 1996. Bucket elimination: A unifying framework for probabilistic inference. In Proceedings of the 12th
Conference on Uncertainty in Artificial Intelligence (UAI) (1996), pp. 211–219.

Huang, C. and Darwiche, A. 1996. Inference in belief networks: A procedural guide. International Journal of Approx-
imate Reasoning 15, 3, 225–263.

Iri, M. 1984. Simultaneous computation of functions, partial derivatives and estimates of rounding error. Japan J. Appl.
Math. 1, 223–252.

Jensen, F. and Andersen, S. K. 1990. Approximations in Bayesian belief universes for knowledge based systems. In
Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence (UAI) (Cambridge, MA, July 1990), pp.
162–169.

Jensen, F. V. 1999. Gradient descent training of Bayesian networks. In Proceedings of the Fifth European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU) (1999), pp. 5–9.

Jensen, F. V., Lauritzen, S., and Olesen, K. 1990. Bayesian updating in recursive graphical models by local compu-
tation. Computational Statistics Quarterly 4, 269–282.

Kjaerulff, U. and van der Gaag, L. C. 2000. Making sensitivity analysis computationally efficient. In Proceedings of
the 16th Conference on Uncertainty in Artificial Intelligence (UAI) (2000).

Lauritzen, S. L. 1995. The EM algorithm for graphical association models with missing data. Computational Statistics
and Data Analysis 19, 191–201.

Park, J. 2002. MAP complexity results and approximation methods. In Proceedings of the 18th Conference on Uncer-
tainty in Artificial Intelligence (UAI) (San Francisco, California, 2002), pp. 388–396. Morgan Kaufmann Publishers,
Inc.

Park, J. and Darwiche, A. 2001a. Approximating MAP using stochastic local search. In Proceedings of the 17th
Conference on Uncertainty in Artificial Intelligence (UAI) (San Francisco, California, 2001), pp. 403–410. Morgan
Kaufmann Publishers, Inc.

Park, J. and Darwiche, A. 2001b. A differential semantics for jointree algorithms. Technical Report D–118, Computer
Science Department, UCLA, Los Angeles, Ca 90095. To appear in NIPS’02.

· 17

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann
Publishers, Inc., San Mateo, California.

Russell, S., Binder, J., Koller, D., and Kanazawa, K. 1995. Local learning in probabilistic networks with hidden
variables. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI) (1995), pp. 1146–1152.

Sawyer, J. W. 1984. First partial differentiation by computer with an application to categorical data analysis. The
American Statistician 38, 4, 300–308.

Shachter, R., D’Ambrosio, B., and del Favero, B. 1990. Symbolic Probabilistic Inference in Belief Networks. In Proc.
Conf. on Uncertainty in AI (1990), pp. 126–131.

Shenoy, P. P. and Shafer, G. 1986. Propagating belief functions with local computations. IEEE Expert 1, 3, 43–52.

von zur Gathen, J. 1988. Algebraic complexity theory. Ann. Rev. Comp. Sci. 3, 317–347.

Zhang, N. L. and Poole, D. 1996. Exploiting causal independence in bayesian network inference. Journal of Artificial
Intelligence Research 5, 301–328.

APPENDIX

A. PROOFS OF THEOREMS

In the following proofs, ∼ will denote the compatibility relationship among variable instantiations. Hence,
x ∼ y means that instantiations x and y are compatible: they agree on every common variable. Also, we
will assume that the Bayesian network variables are Z and that Z is an arbitrary variable in the network
with parents W. Hence, the network polynomial will be written as:

f =
∑
z

∏
zw∼z

θz|wλz.

Proof of Theorem 1

Given

f =
∑
z

∏
zw∼z

θz|wλz,

Definition 2 gives us

f(e) =
∑
z

∏
zw∼z

θz|w

{
1, if z ∼ e;
0, otherwise.

=
∑
z∼e

∏
zw∼z

θz|w

= Pr(e).

Proof of Theorem 2

By definition of partial derivative of a multi–linear function, we have:

∂f

∂λx
=

∑
z∼x

∏
zw∼z

θz|w
∏

z∼z, z 6=x

λz.

Definition 2 then gives us:

∂f

∂λx
(e) =

∑
z∼x

∏
zw∼z

θz|w
∏

z∼z, z 6=x

{
1, if z ∼ e;
0, otherwise.

=
∑

z∼x, z∼e−X

∏
zw∼z

θz|w

= Pr(x, e−X).

Proof of Theorem 3

By definition of partial derivative of a multi–linear function, we have:

∂f

∂θx|u
=

∑
z∼xu

∏

zw∼z, z 6=x

θz|w
∏
z∼z

λz.

18 ·
Definition 2 then gives us:

∂f

∂θx|u
(e) =

∑
z∼xu

∏

zw∼z, z 6=x

θz|w
∏
z∼z

{
1, if z ∼ e;
0, otherwise.

=
∑

z∼xu, z∼e

∏

zw∼z, z 6=x

θz|w.

Multiplying both sides by θx|u, we get:

∂f

∂θx|u
(e)θx|u =

∑
z∼xu, z∼e

∏
zw∼z

θz|w.

= Pr(x,u, e).

Proof of Theorem 4

Proving Equation 6. Since x 6= y, we have:

∂2f

∂λx∂λy
=

∑
z∼xy

∏
zw∼z

θz|w
∏

z∼z, z 6=x,z 6=y

λz.

Definition 2 then gives:

∂2f

∂λx∂λy
(e) =

∑
z∼xy

∏
zw∼z

θz|w
∏

z∼z, z 6=x,z 6=y

{
1, if z ∼ e;
0, otherwise.

=
∑
z∼xy

∏
zw∼z

θz|w

{
1, if z ∼ e−XY ;
0, otherwise.

=
∑

z∼xy, z∼e−XY

∏
zw∼z

θz|w

= Pr(x, y, e−XY).

Proving Equation 7. We have:

∂2f

∂θx|u∂λy
=

∑
z∼xuy

∏

zw∼z, zw 6=xu

θz|w
∏

z∼z, z 6=y

λz.

Definition 2 then gives:

∂2f

∂θx|u∂λy
(e) =

∑

z∼xuy,z∼e−Y

∏

zw∼z, zw 6=xu

θz|w.

Multiplying both sides by θx|u,

θx|u
∂2f

∂θx|u∂λy
(e) =

∑

z∼xuy,z∼e−Y

∏
zw∼z

θz|w.

Hence,

θx|u
∂2f

∂θx|u∂λy
(e) = Pr(x,u, y, e− Y).

Proving Equation 8. Since xu 6= yv, we have:

∂2f

∂θx|u∂θy|v
=

∑
z∼xuyv

∏

zw∼z, zw 6=xu, zw 6=yv

θz|w
∏
z∼z

λz.

Definition 2 then gives:

∂2f

∂θx|u∂θy|v
(e) =

∑
z∼xuyv, z∼e

∏

zw∼z, zw 6=xu, zw 6=yv

θz|w.

· 19

If xu and yv are not compatible, then ∂2f
∂θx|u∂θy|v

(e) = 0, and the equation holds. Suppose now that they are
compatible, and multiply both sides by θx|uθy|v:

θx|uθy|v
∂2f

∂θx|u∂θy|v
(e) =

∑
z∼xuyv, z∼e

∏
zw∼z

θz|w.

Finally,

θx|uθy|v
∂2f

∂θx|u∂θy|v
(e) = Pr(x,u, y,v, e).

Proof of Theorem 5

If Y ∈ E, we have two cases: either e implies y or e contradicts y. It is easy to verify the theorem in each
of the previous cases. Suppose now that Y 6∈ E. We have:

∂Pr(y | e)
∂θx|u

=
∂

∂θx|u

Pr(y, e)
Pr(e)

=
∂

∂θx|u

f(y, e)
f(e)

=
1

f(e)2

[
f(e)

∂f(y, e)
∂θx|u

− f(y, e)
∂f(e)
∂θx|u

]
.

Since
∂f(y, e)
∂θx|u

=
∂f

∂θx|u
(y, e),

and
∂f(e)
∂θx|u

=
∂f

∂θx|u
(e),

we get:

∂Pr(y | e)
∂θx|u

=
1

f(e)2

[
f(e)

∂f

∂θx|u
(y, e)− f(y, e)

∂f

∂θx|u
(e)

]
.

We can now replace all terms by classical probabilistic quantities using Theorems 1–3:

∂Pr(y | e)
∂θx|u

=
1

Pr(e)2

[
Pr(e)Pr(y, e, x,u)

Pr(x | u)
− Pr(y, e)Pr(e, x,u)

Pr(x | u)

]

=
Pr(y, e, x,u)

Pr(x | u)Pr(e)
− Pr(y, e)Pr(e, x,u)

Pr(x | u)Pr(e)2

=
Pr(y, x,u | e)− Pr(y | e)Pr(x,u | e)

Pr(x | u)
.

Or we can replace some of the terms by their corresponding derivatives using Theorems 2–4:

∂Pr(y | e)
∂θx|u

=
1

f(e)2

[
f(e)

∂f

∂θx|u
(y, e)− f(y, e)

∂f

∂θx|u
(e)

]

=
1

f(e)2

[
f(e)

∂f

∂θx|u
(y, e− Y)− f(y, e− Y)

∂f

∂θx|u
(e)

]

=
1

f(e)2

[
f(e)

∂2f

∂θx|u∂λy
(e)− ∂f

∂λy
(e)

∂f

∂θx|u
(e)

]
.

Proof of Theorem 6

That the embedded arithmetic circuit computes the network polynomial is shown in [Park and Darwiche
2001b].

20 ·
By Definition 5, there is a one–to–one correspondence between multiplication nodes and cluster instantia-

tions; hence, the number of multiplication nodes is O(n exp(c)). Similarly, and except for the root node, there
is a one–to–one correspondence between addition nodes and separator instantiations; hence, the number of
addition nodes is O(n exp(s)) since the number of jointree edges is n− 1.

As for the number of edges, note that the circuit alternates between addition and multiplication nodes,
where inputs nodes are always children of multiplication nodes. Hence, we will count edges by simply counting
the total number of neighbors (parents and children) that each multiplication node has. By Definition 5,
each multiplication node will have a single parent. Moreover, the number of children that a multiplication
node c will have depends on the cluster C that generates it. Specifically, the node will have one child s for
each child separator S, will have one child λx for each evidence table λX assigned to cluster C, and one
child θx|u for each CPT θX|U assigned to the same cluster. Now let r be the root cluster; i be any cluster;
ci be the cluster size; ni be the number of its neighbors; ei and pi be the numbers of evidence tables and
CPTs assigned to the cluster, respectively. The total number of neighbors for multiplication nodes is then
bounded by:

exp(cr)(nr + 1 + er + pr) +
∑

i 6=r

exp(ci)(ni + ei + pi).

Note: a multiplication node generated by the root cluster will have one addition parent and nr addition
children, while a multiplication node generated by a non–root cluster will have one addition parent and ni−1
addition children. Since, ci ≤ c for all i, we can bound the number of edges by:

exp(c) + exp(c)
∑

i

(ni + ei + pi).

Note also that the number of edges in a tree is one less than the number of nodes, leading to
∑

i ni = 2(n−1).
Moreover, we have

∑
i ei = n and

∑
i pi = n since we only have n evidence tables and n CPTs. Hence, the

total number of edges can be bounded by (4n− 1) exp(c), which is O(n exp(c)).

