
On the Tratable Counting of Theory Modelsand its Appliation to Truth Maintenane andBelief RevisionAdnan DarwiheComputer Siene DepartmentUniversity of CaliforniaLos Angeles, Ca 90095darwihe�s.ula.eduABSTRACT. We address the problem of ounting the models of a proposi-tional theory, under inremental hanges to the theory. Spei�ally, we showthat if a propositional theory � is in a speial form that we all smooth,deterministi, deomposable negation normal form (sd-DNNF), then for anyonsistent set of literals S, we an simultaneously ount, in time linear in thesize of �, the models of:� � [ S;� � [ S [ flg: for every literal l 62 S;� � [ S n flg: for every literal l 2 S;� � [ S n flg [ f:lg: for every literal l 2 S.We present two results relating to the time and spae omplexity of ompil-ing propositional theories into sd-DNNF. First, we show that if a onjuntivenormal form (CNF) has a bounded treewidth, then it an be ompiled intoan sd-DNNF in time and spae whih are linear in its size. Seond, we showthat propositional theories whih an be polynomially represented using sd-DNNF form a strit superset of the theories whih an be polynomially rep-resented using FBDDs (a generalization of OBDDs that result from relaxingthe variable{ordering restrition). Finally, we disuss some appliations of theounting results to truth maintenane systems, belief revision, and model-baseddiagnosis (prediting the behavior of failed devies in partiular).KEYWORDS: Counting models, belief revision, truth maintenane, diagnosis,knowledge ompilation.



1 IntrodutionA propositional sentene is in negation normal form (NNF) if it is onstrutedfrom literals using only the onjoin and disjoin operators [1℄. A pratial rep-resentation of NNF sentenes is in terms of rooted, direted ayli graphs(DAGs), where eah leaf node in the DAG is labeled with a literal, true orfalse; and eah non-leaf (internal) node is labeled with a onjuntion ^ or adisjuntion _. Figure 1 depits a rooted DAG representation of an NNF, wherethe hildren of eah node are shown below it in the graph.1We have reently proposed a deomposability property, whih turns NNFinto a highly tratable form, known as deomposable negation normal form(DNNF) [6, 7℄. DNNF permits polynomial-time implementations of the follow-ing operations: deiding satis�ability, deiding lausal entailment, projetion2,omputing minimum{ardinality3, minimization aording to minimum{ardinality4,and model enumeration [6, 7℄.In this paper, we identify two additional properties for DNNF, alled deter-minism and smoothness and show a number of results about these two prop-erties. First, given a propositional theory � in smooth, deterministi, DNNF(denoted sd-DNNF), we show that for any onsistent set of literals S, we ansimultaneously ount (in time linear in the size of �) the models of:� � [ S;� � [ S [ flg: for every literal l 62 S;� � [ S n flg: for every literal l 2 S;� � [ S n flg [ f:lg: for every literal l 2 S.These ounting operations allow one to develop linear-time, omplete truthmaintenane systems one a theory is put in sd-DNNF. Moreover, we showthat sd-DNNF an be minimized in linear time, whih allows one to developlinear-time, belief revision systems, and diagnosti systems that an preditthe omplete behavior of a failed devie in time linear in its (sd-DNNF) modelsize. Our �nal set of results is related to the time and spae omplexity ofompiling propositional theories into sd-DNNF. In partiular, we show that ifa onjuntive normal form (CNF) has a bounded treewidth, then it an beompiled into an sd-DNNF in time and spae whih are linear in its size (whihis a strengthening of our results in [7℄). Seond, we show that propositionaltheories whih an be polynomially represented using sd-DNNF form a strit1We adopt this onvention throughout the paper, therefore, eliminating the need to showthe diretionality of edges in DAGs.2To projet a theory on a set of atoms is to ompute the strongest sentene entailed bythe theory on these atoms.3The ardinality of a model is the number of atoms that are set to false in the model.The minimum{ardinality of a theory is the minimum{ardinality of any of its models.4To minimize a theory is to produe another theory whose models are exatly theminimum-ardinality models of the original theory.
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~A ~BB C ~D D ~CAFigure 1: A theory in sd-DNNF. The theory has eight models (theodd-ardinality models): f:A;B;C;Dg; fA;:B;C;Dg; fA;B;:C;Dg;fA;B;C;:Dg; f:A;:B;:C;Dg; f:A;:B;C;:Dg; f:A;B;:C;:Dg; andfA;:B;:C;:Dg.superset of the theories whih an be polynomially represented using FBDDs(a generalization of OBDDs that result from relaxing the variable{orderingrestrition) [4, 13, 17℄.This paper is strutured as follows. Setion 2 reviews DNNF and introduesthe lass of smooth, deterministi DNNF. Setion 3 presents the new operationsfor model ounting based on this lass of propositional theories. Setions 4-5 disuss the appliation of these ounting operations to truth maintenane,belief revision, and model-based diagnosis. Setion 6 presents the ompilationalgorithms from CNF into sd-DNNF and disusses related omplexity results.Setion 7 loses with some onluding remarks. Proofs of all results are givenin Appendix B.2 Smooth, Deterministi DNNFWe start with the formal de�nition of NNF, whih is the basis of other logialforms we de�ne next.De�nition 1 Let X be a �nite set of propositional atoms. A sentene in NNFis a rooted, direted ayli graph (DAG) where eah leaf node is labeled withtrue, false, X or :X, X 2 X; and eah internal node is labeled with ^ or _.The size of a sentene in NNF is the number of its DAG edges.We will now present three onditions on NNF. The �rst of whih is deom-posability and is probably the most inuential:De�nition 2 (Deomposability) [6, 7℄ A deomposable NNF, written DNNF,is an NNF � satisfying the following property: for every onjuntion � =



�1 ^ : : : ^ �n appearing in �, no atoms are shared between the onjunts of �;that is, atoms(�i) \ atoms(�j) = ; for i 6= j.The NNF (A _ B) ^ (:A _ C) is not deomposable sine atom A is sharedby the two onjunts. But the NNF in Figure 1 is deomposable. It has tenonjuntions and the onjunts of eah share no atoms.Deomposability is a very powerful property as it permits a number ofinteresting logial operations to be implemented in polynomial-time on DNNF,inluding satis�ability, lausal entailement, projetion, minimization and modelenumeration [6, 7℄.We now introdue another property of NNF, whih permits even more op-erations to be implemented in polynomial-time:De�nition 3 (Determinism) A deterministi NNF, written d-NNF, is anNNF � satisfying the following property: for every disjuntion � = �1_: : :_�nappearing in �, every pair of disjunts in � is logially inonsistent; that is,�i ^ �j j= false for i 6= j.For example, (A ^ B) _ C is an NNF but is not deterministi sine the dis-junts A ^ B and C are onsistent. However, the NNF (A ^ B) _ (:A ^ C)is deterministi.5 A deterministi, deomposable NNF will be denoted by d-DNNF. As we shall see, determinism permits one to ount the number of theorymodels in polynomial time. It also allows one to enumerate models in outputlinear time.Our last property on NNF is that of smoothness. It is not a ruial propertyexept that it simpli�es the formal treatment of NNF operations onsiderably.De�nition 4 (Smoothness) A smooth NNF, written s-NNF, is an NNF �satisfying the following property: for every disjuntion � = �1 _ : : :_ �n in �,we have atoms(�) = atoms(�i) for every i.A smooth, deterministi, deomposable NNF will be denoted by sd-DNNF.The d-DNNF in Figure 1 is smooth. We an easily smooth an NNF asfollows. For eah disjuntion � = �1 _ : : : _ �n, if atoms(�i) 6= atoms(�),we an replae the disjunt �i in � with �i ^ VA2�(A _ :A), where � =atoms(�) � atoms(�i). This operation preserves equivalene, deomposabilityand determinism of an NNF. Moreover, the size of resulting s-NNF is O(mn),where n is the size of original NNF andm is the number of propositional atoms.One way to view the sd-DNNF representation of a theory � is as a nestedfatoring of the sum-of-produt representation of �. The sd-DNNF represen-tation gives us most of the powerful properties of the sum-of-produt repre-sentation, yet it does not require as muh spae. To appreiate this point, welist a number of theories in Table 1 together with the size of their CNF repre-sentation, the size of their sd-DNNF representation, and the number of their5Note that although every disjuntive normal form (DNF) is a DNNF, not every DNF isa d-DNNF.



Theory Models# CNF sd-DNNFVars#/Cls# Nodes# Edges# Nodes# Edges#Solenoid 27 11/19 42 68 84 172Valve 24 13/50 77 241 83 171Four-pipes 25 27/110 165 395 126 302Chandra21 2097152 24/21 70 102 82 176Chandra24 16777216 27/24 79 120 87 272Adder-4 256 17/57 92 258 110 241Adder-100 2200 401/1401 2204 6402 3182 8017Table 1: Some propositional theories and their CNF and sd-DNNF represen-tations. Note that CNF is a speial lass of NNF, hene, the size of a CNF isreported as the size of its orresponding NNF representation.models.6 The theories were obtained from http://www.li.fr/KC/. Note thatsome of these theories have a very large number of models, yet a very ompatsd-DNNF representation. In fat, for most theories in this ase, the size of thesd-DNNF representation is very lose to the size of the CNF representation, ifnot better.We lose this setion by showing how the models of an sd-DNNF an beenumerated in output linear time, whih is a slight improvement on the modelenumeration of DNNF [7℄. Spei�ally, suppose that a model is represented asa set of literals and suppose that � is Cartesian produt on sets of models:fN1; : : : ; Nng � fM1; : : : ;Mmg def= fN1 [M1; : : : ; Nn [Mmg:Then the models of sd-DNNF an be enumerated as follows:1. models(l) = fflgg where l is a literal.2. models(�1 _ : : : _ �n) = models(�1) [ : : : [models(�n).3. models(�1 ^ : : : ^ �n) = models(�1)� : : :�models(�n).By deomposability, two sets of partial models are multiplied by � only if theyshare no atoms. By determinism, two sets of partial models are unioned only ifthey ontain no dupliates. Hene, the time and spae omplexity of the aboveproedure is linear in the number of models returned.3 Counting the Models of sd-DNNFThe polynomial-time operations on NNF whih are permitted by the deom-posability property have been disussed at length elsewhere [6, 7℄. In this6These sd-DNNFs have been omputed using a variation of the algorithm in Setion 6,whih is optimized using unit resolution.



setion, we disuss the new operations permitted by the additional propertiesof determinism and smoothness. As we shall see, these operations on sd-DNNFhave impliations on a number of AI appliations, inluding truth maintenane,belief revision and diagnosis. Spei�ally, given an sd-DNNF � and a set ofliterals S, we desribe two traversal operations eah taking linear time. By theend of the �rst traversal, we will be able to ount the models of �[ S. By theend of the seond traversal, we will be able to ount the models of:1. � [ S [ flg for every literal l 62 S;2. � [ S n flg for every literal l 2 S;3. � [ S n flg [ f:lg for every literal l 2 S.That is, one we traverse the sd-DNNF twie, we will be able to obtain eahof these ounts using onstant-time, lookup operations.The traversal will not take plae on the sd-DNNF itself, but on a seondarystruture that we all the ounting graph. The ounting graph of an sd-DNNFis a funtion of many variables represented as a rooted DAG.De�nition 5 The ounting graph of an sd-DNNF is a labeled, rooted DAG. Itontains a node labeled with l for eah literal l, a node labeled with + for eahor-node, and a node labeled with � for eah and-node in the sd-DNNF. Thereis an edge between two nodes in the ounting graph i� there is an edge betweentheir orresponding nodes in the sd-DNNF.Figure 2 depits the ounting graph of the sd-DNNF in Figure 1. The size of aounting graph is therefore equal to the size of its orresponding sd-DNNF. Wewill see now how suh a graph an be used to perform the ounting operationswe are interested in.De�nition 6 The value of a node N in a ounting graph under a onsistentset of literals S is de�ned as follows:- val(N) = 0 if N is labeled with literal l and :l 2 S;- val(N) = 1 if N is labeled with literal l and :l 62 S;- val(N) = Qi val(Ni) if N is labeled with �, where Ni are the hildrenof N ;- val(N) =Pi val(Ni) if N is labeled with +, where Ni are the hildrenof N .The value of a ounting graph G under literals S, written G(S), is the value ofits root under S.From here on, we will use G to denote both the ounting graph itself and thefuntion represented by this graph.Here's our �rst ounting result.
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Figure 2: A ounting graph of the sd-DNNF � in Figure 1 evaluated underS = A;:B. The evaluation indiates that �[S has two models (fA;:B;C;Dgand fA;:B;:C;:Dg in this ase).Theorem 1 Let � be an sd-DNNF, S be a onsistent set of literals, and let Gbe the ounting graph of �. The value of G under S is the number of modelsof � [ S: G(S) = Models#(� [ S):Note that G(S) > 0 i� �[S is onsistent. Therefore, by traversing the ountinggraph one we an test the onsisteny of sd-DNNF � onjoined with any set ofliterals S. Figure 2 depits the ounting graph of the sd-DNNF � in Figure 1,evaluated under the literals S = A;:B. This indiates that � [ fA;:Bg hastwo models.We now present the entral result in this paper. First, we note that whenviewing a ounting graph G as a funtion of many variables, we will use Vl todenote the variable (node) labeled with literal l. Seond, we an talk about thepartial derivative of funtion G with respet to any of its variables Vl, �G=�Vland we an also talk about the value of this derivative under a set of literalsS, �G(S)=�Vl. Due to the deomposability of DNNF, the funtion G is linearin eah of its variables. Therefore, the hange to the ount G(S) as a resultof adding, removing or ipping a literal in S an be obtained from the partialderivatives, without having to re-evaluate the ounting graph G. This leads tothe following result:Theorem 2 Let � be an sd-DNNF, S be a onsistent set of literals, and let Gbe the ounting graph of �. We have:Assertion: When :l 62 S:Models#(� [ S [ flg) = �G(S)=�Vl:



Retration: When l 2 S:Models#(� [ S n flg) = �G(S)=�Vl + �G(S)=�V:l:Flipping: When l 2 S:Models#(� [ S n flg [ f:lg) = �G(S)=�V:l:Therefore, if we an ompute the partial derivatives of G with respet to eahof its variables, and evaluate these derivatives at S, we an then ount themodels of � [ S under the assertion of new literals not in S, and under theretration or ipping of literals in S. Figure 3 depits the value of eah ofthese partial derivatives for the sd-DNNF in Figure 1. The ounting graph isevaluated under literals S = A;:B;C and the partial derivatives are shownbelow eah variable. Aording to these derivatives, we have:Assertion: Models#(� [ S [ fDg) = 1 and Models#(� [ S [ f:Dg) = 0.This immediately tells us that � [ S j= D.Retration: Models#(� [ S n fAg) = 1 + 1 = 2; Models#(� [ S n f:Bg) =1 + 1 = 2; and Models#(� [ S n fCg) = 1+ 1 = 2. Therefore, retratingany literal in S inreases the number of models to 2.Flipping: Models#(�[SnfAg[f:Ag) = 1;Models#(�[Snf:Bg[fBg) = 1;Models#(� [ S n fCg [ f:Cg) = 1. Therefore, ipping any literal in Swill not hange the number of models (although it does hange the modelitself).For another example, onsider Figure 4(a) whih depits an sd-DNNF for thetheory � = (A � B)^(B � C), and Figure 4(b) whih depits its orrespondingounting graph. The value of this ounting graph for S = ; is shown, and itspartial derivatives are also omputed. Aording to this Figure, � has 4 models.Moreover, by Theorem 2:� � [ fAg has 1 model sine �G(S)=�VA = 1. The model is: fA;B;Cg.� �[f:Cg has 1 model sine �G(S)=�V:C = 1. The model is: f:A;:B;:Cg.� �[fBg has 2 models sine �G(S)=�VB = 2. The models are: fA;B;Cgand f:A;B;Cg.There is one missing link now: How do we ompute the partial derivativesof a ounting graph with respet to eah of its variables? This atually turnsout to be easy due to results in [14, 16℄ whih show how to evaluate andsimultaneously ompute all partial derivatives of a funtion by simply traversingits omputation graph in linear time. Although [16℄ asts suh omputationin terms of summing weights of paths in suh a graph, we present a morediret implementation here. In partiular, if we let pd(N) denote the partial
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1 1 1 1 1 1 10Figure 3: A ounting graph of the sd-DNNF � in Figure 1 evaluated underliterals S = A;:B;C, indiating one model of � [ S (fA;:B;C;Dg in thisase). Partial derivatives are shown below the leaves.derivative of G with respet to a node N in the ounting graph, then pd(N) isthe summation of ontributions made by parents M of N :pd(N) = 8<: 1; N is the root node;XM pd(M;N); otherwise;where the ontribution of parent M to its hild N is omputed as follows:pd(M;N) =8<: pd(M); M is a +node;pd(M) YK 6=N val(K); M is a ?node;whereK is a hild ofM . This omputation an be performed by �rst traversingthe ounting graph one to evaluate it, assigning val to eah node N , and thentraversing it a seond time, assigning pd for eah node N . We are then mainlyinterested in val(N) where N is the root node, and pd(N) where N is a leafnode.Therefore, both the value of a ounting graph under some literals S and thevalues of eah of its partial derivatives under S an be omputed by traversingthe graph twie. One to ompute the values, and another to ompute thepartial derivatives.We lose this setion by pointing out that partial di�erentiation turns outto play a key role in probabilisti reasoning as well. Spei�ally, we present aomprehensive framework for probabilisti reasoning in [8℄ based on ompilinga Bayesian network into a polynomial and then reduing a large number of
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Figure 4: An sd-DNNF for the theory A � B;B � C, and its orrespondingounting graph evaluated and di�erentiated under S = ;.probabilisti queries into the omputation of partial derivatives of the ompiledpolynomial.4 Complete, Linear-Time Truth MaintenaneWe now turn to some appliations of the results in the previous setion. We�rst onsider truth maintenane systems and show how our results allow us toimplement omplete truth maintenane systems whih take time linear in thesize of an sd-DNNF theory.A truth maintenane system takes a set of lauses � and a set of literals Sand tries to determine for eah literal l whether � [ S j= l. The most ommontruth maintenane system is the one based on losing �[S under unit resolution[12℄. Suh a system takes linear time, but is inomplete. Given that the set ofliterals in S hanges to S0, the goal of a truth maintenane system is then toupdate the truth of eah literal under the new \ontext" S0. Sometimes, lausesin � are retrated and/or asserted. A truth maintenane system is expeted toupdate the truth of literals under suh lausal hanges too.Our model-ounting results allow us to implement a omplete truth main-tenane system as follows. We ompile the theory � into an sd-DNNF � andonstrut the ounting graph G of �. Given any set of literal S, we evaluate Gunder S and ompute its partial derivatives also under S. This an be done intime linear in the size of �. We are now ready to answer all queries expetedfrom a truth maintenane system by simple, onstant-time, look-up operations:Literal l is entailed by �[S i� �[S[f:lg has no models: �G(S)=�V:l = 0.Retrating literal l from S will render � [ S onsistent i� � [ S n flg has atleast one model: �G(S)=�Vl + �G(S)=�V:l > 0.Flipping literal l in S will render �[S onsistent i� �[S n flg[ f:lg has at



least one model: �G(S)=�V:l > 0. 7If we want to reason about the e�et of asserting and retrating lauses intheory �, we an replae eah lause � in � by C� � �, where C� is a newatom. We then ompile the extended theory � into sd-DNNF �. To assert alllauses initially, we have to inlude all atoms C� in the set of literals S. Theassertion/retration of lauses an then be emulated by the assertion/retrationof atoms C�. For example, in ase of a ontradition, we an ask whetherretrating a lause � will resolve the ontradition by asking whether � [ S nfC�g has more than one model:�G(S)=�VC� + �G(S)=�V:C� > 0:5 Complete, Linear-Time Belief RevisionWe now turn to a seond major appliation of model ounting on sd-DNNF:the implementation of a very ommon lass of belief revision systems, whihis adopted in model-based diagnosis and in ertain forms of default reasoning[15, 11℄. The problem here is as follows. We have a set of speial atomsD = fd1; : : : ; dng in the theory � whih represent defaults. Typially, weassume that all of these defaults are true, allowing us to draw some defaultonlusions. We then reeive some evidene S (a set of onsistent literals)whih is inonsistent with � [D. We therefore know that not all defaults aretrue and some must be retrated|that is, some dis will have to be replaed by:di in D. Our goal then is to identify a set of literals D0 suh that1. di 2 D0 or :di 2 D0 for all i;2. � [D0 [ S is onsistent;3. the number of negative literals in D0 is minimized;and then report the truth of every literal under the new set of defaults D0.Note that there may be more than one set of defaults D0 that satis�es theabove properties. In suh a ase, a literal holds after the revision proess onlyif it holds under � [D0 [ S for every D0.This revision proess is a speial ase of what is known as ardinality-maximizing base revision. Deiding entailment after suh a revision proessis known to be �p2[O(log n)℄-omplete [15, 11℄.One way to formalize this revision proess is throughD-minimization, whihis a generalization of the operation of minimization that we de�ned in [7℄ (whereD ontains all atoms).De�nition 7 If D is a set of atoms, then the D-ardinality of a model m,written ard(m;D), is the number of atoms in D that the model sets to false.7Note that the ipping of literals is outside the sope of lassial truth maintenanesystems in the sense that they must retrat l and then assert :l, taking linear time, toperform the above operation.
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Figure 5: Assigning a D-ardinality to eah node in an sd-DNNF with D =fA;B;C;Dg.De�nition 8 Let � be a propositional theory and let D be a set of atoms in�. The D-minimization of theory �, written minimize(�;D), is de�ned as atheory with the following models:models(minimize(�;D)) = fm j= � : m0 j= � only if ard(m;D) � ard(m0;D)g:Here, the models m and m0 are over atoms(�).Therefore, the belief revision proess an be viewed as D-minimizing �[Sand then losing the result under literal entailment. We will next show howto onjoin an sd-DNNF � with literals S, and then how to D-minimize theresult while guaranteeing that the �nal outome remains to be an sd-DNNF.We an then use the tehnique disussed in the previous setions to lose theminimization under literal entailment.First, we show how to onjoin an sd-DNNF � with a set of literals S toyield another sd-DNNF equivalent to �[S (whih we will also write as �^S).For this we need the notion of onditioning:De�nition 9 (Conditioning) [6, 7℄ Let � be a propositional sentene, andlet S be a onsistent set of literals. The onditioning of � on S, written � j S,is the sentene obtained by replaing eah atom X of � by true (resp. false) ifX (resp. :X) is a positive (resp. negative) literal of S.For example, onditioning the DNNF (:A^:B)_ (B ^C) on fB;Dg gives(:A^:true)_ (true^C), and onditioning it on f:B;Dg gives (:A^:false)_(false ^ C). In what follows, we assume that :true will be written as false andthat :false will be written as true.Theorem 3 [6, 7℄ � ^ S is equivalent to (� j S) ^ S.



Theorem 4 If � is sd-DNNF, then (� j S) ^ S is sd-DNNF.Therefore, deomposability, determinism and smoothness are all losed underonditioning. Theorem 3 an then be used to onjoin any sd-DNNF with aonsistent set of literals, to yield another sd-DNNF representing the onjun-tion.We now desribe the proess ofD-minimizing an sd-DNNF �, whih is donein two steps. First, we assign a ardinality to eah node in the sd-DNNF. Thenwe prune some of the edges onneting or-nodes to their hildren.The following two theorems follow immediately from smoothness, determin-ism, and deomposability.Theorem 5 Consider the following funtion, mCard(:;D), de�ned on NNF:� mCard(l;D) = 1 if l is a negative literal whose atom is in D, and = 0otherwise.� mCard(�1 _ : : : _ �n;D) = min(mCard(�1;D); : : : ;mCard(�n;D)).� mCard(�1 ^ : : : ^ �n;D) = mCard(�1;D) + : : :+mCard(�n;D).If � is an sd-DNNF, then mCard(�;D) = minmj=�ard(m;D) where m is amodel over atoms(�).Note that by traversing an sd-DNNF only one, we are able to omputemCard(�;D)for every node � in the sd-DNNF.Theorem 6 We have the following:� minimize(l;D) = l if l is a literal.� minimize(Wi �i;D) = Wiminimize(�i;D), where mCard(�;D) = mCard(�i;D).� minimize(Vi �i;D) = Viminimize(�i;D).Therefore, one we have omputed mCard(�;D) for every node � in an sd-DNNF, we an traverse the sd-DNNF one and end up D-minimizing it bysimply disonneting the edges between any or-node and its hildren that havehigher ardinality. Note that this minimization proess will preserve deom-posability, smoothness and determinism.Figure 5 depits the result of assigning ardinalities to the sd-DNNF ofFigure 1, and Figure 6 depits the result of deleting some of its edges. This isthe minimized sd-DNNF and it has four models: f:A;B;C;Dg; fA;:B;C;Dg;fA;B;:C;Dg; and fA;B;C;:Dg.We lose this setion by pointing out that the above results have diretappliation to model-based diagnosis, where � is the devie desription, S isthe devie observation and D ontains the health modes ok 1; : : : ; okn. Initially,we assume that all devie omponents are working normally, but then �nd someobservation S suh that � [D = fok1; : : : ; okng [ S is inonsistent.



or

or or or or

and and

and and and and and and

~A ~BB C ~D D ~CAFigure 6: A minimized sd-DNNF.To regain onsisteny we must postulate that some of the omponents arenot healthy, therefore, ipping some of the ok is into :ok i in the set D. Assum-ing a smallest number of faults, we want to minimize the number of unhealthyomponents needed to regain onsisteny. A set D0 suh that:1. ok i 2 D0 or :ok i 2 D0 for all i;2. � [D0 [ S is onsistent;3. the number of negative literals in D0 is minimized;is alled a minimum-ardinality diagnosis [5, 9℄.Traditionally, the main goal of model-based diagnosis has been to enumeratesuh diagnoses. Another pratial problem, however, whih has reeived muhless attention in model-based diagnosis is that of prediting the behavior ofthe devie (the values of its ports) given an abnormal observation. If theobservation S is normal, then � [ D [ S is onsistent, and all we need isto lose this theory under literal entailment to �gure out the value of eahport in the devie. However, if the observation S is abnormal, then � [D [S is inonsistent, and we need is to lose minimize(� [ S;D) under literalentailment as shown above. This allows us to predit the value of eah devieport under the (default) assumption that a smallest number of faults haveatually materialized in the broken devie. All of this an be done in lineartime one the original devie model is made available in sd-DNNF.6 Compiling sd-DNNFWe present two omplexity results in this setion.



A => B B =>C C => D D => EFigure 7: A deomposition tree for the theory A � B, B � C, C � D, D � E.The �rst result is a strengthening of our result in [6, 7℄, where we presentedan algorithm for ompiling a CNF into a DNNF. We show here that the pre-sented algorithm an be modi�ed slightly so it will also ensure the smoothnessand determinism of the resulting NNF, without a�eting its time and spaeomplexity.The seond result is a strengthening of a result we have in [7℄, where weshowed that:1. if a propositional theory has a polynomially-sized FBDD representation,then it has a polynomially-sized DNNF representation;2. the opposite is not true.Here we show that this result is true even with the addition of the smoothnessand determinism properties. Therefore, sd-DNNFs are a stritly more eÆientrepresentation than FBDDs, whih are an important generalization of OBDDs(in whih the restrition of a �xed-variable ordering is removed) [4, 13, 17℄.We start with our �rst result, whih is an extension of a struture-basedalgorithm that we introdued in [6, 7℄ for onverting a CNF into a DNNF.The algorithm utilizes a deomposition tree, whih is a binary tree the leaves ofwhih orrespond to the CNF lauses|see Figure 7. Eah deomposition treehas a width and the omplexity of the algorithm is exponential only in the widthof used tree. The algorithm is given with a slight modi�ation (on Line 04) inFigure 8. The pseudoode is explained in Appendix A for ompleteness. Ourmain onern here, however, is the following result:Theorem 7 Let N be the root of deomposition tree T used in Figure 8. Thennf2sddnnf(N; true) will return � in sd-DNNF, where � ontains the lausesattahed to the leaves of T . Moreover, the time and spae omplexity of thealgorithm is O(nw2w), where n is the number of lauses in � and w is thewidth of deomposition tree T .



Algorithm nf2sddnnf/* N is a node in a deomposition tree *//* � is an instantiation */nf2sddnnf(N;�)01.   projet(�; atoms(N))02. if aheN ( ) 6= nil, return aheN ( )03. if N is a leaf node,04. then  l2sddnnf(N;�)05. else  W�nf2sddnnf(Nl; � ^ �)^06. nf2sddnnf(Nr; � ^ �) ^ �07. where � ranges over all instantiations08. of atoms(Nl) \ atoms(Nr)� atoms(�)09. aheN ( ) 10. return Figure 8: Compiling a CNF into sd-DNNF.The width of a deomposition tree is de�ned in Appendix A. The lass ofCNF theories with bounded treewidth is also given in Appendix A, and we haveshown in [6, 7℄ that for this lass of theories, one an onstrut in linear time adeomposition tree of bounded width. Therefore, one an ompile an sd-DNNFof linear size for this lass of theories. Note that the CNF representation ofn-bit adders has a bounded treewidth, hene, suh devie desriptions an beeasily ompiled into sd-DNNF (see Table 1).We now turn to our seond result, relating to Binary Deision Diagrams(BDDs) whih are among the most suessful representations of propositionaltheories [4℄. A BDD is indeed only a speial ase of an NNF, whih is depitedusing speialized notation [7℄. Figure 9 depits a BDD whih is a DAG in whiheah leaf node is labeled with 0 or 1, and eah internal node is labeled with anatom and has two hildren, labeled low (dashed edge) and high (solid edge).Eah nodeN in a BDD whih is labeled with atomA represents a disjuntion(A ^ �) _ (:A ^ �), where � is the NNF represented by the high-hild of nodeN and � is the NNF represented by the low-hild of node N . The leaf node0 represents false and the leaf node 1 represents true. If a BDD has n nodes,then it an be represented by an NNF of size O(n).It also follows immediately that eah NNF whih results from this trans-lation is deterministi. Therefore, BDDs are a speial ase of deterministiNNFs. A Free BDD (FBDD) [13, 17℄ is a BDD where eah atom appears onlyone on any path from the root of the BDD to any of its leaves. It is not hardto see that this ondition implies that the NNF orresponding to an FBDD isalso deomposable [7℄. Therefore, FBDDs are a speial ase of deterministi,
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Figure 9: A BDD. High edges are solid, low edges are dashed. The NNForresponding to node N is: (:x2 ^ true)_ (x2 ^ (x3 ^ true_:x3 ^ false)), whihsimpli�es to :x2 _ (x2 ^ x3).deomposable NNFs. Sine any NNF an be smoothed in polynomial time, weget the �rst result that any propositional theory that has a polynomial FBDDrepresentation also has a polynomial sd-DNNF representation. The opposite isnot true, however.Theorem 8 [3℄ There are propositional theories �1 and �2 suh that:� eah of �1 and �2 has a polynomial FBDD representation;� �1 ^�2 is inonsistent.� �1 _�2 has no polynomial FBDD representation.Sine �1 and �2 have polynomial FBDD representations, they must also havepolynomial sd-DNNF representations. Let us all these representations �1 and�2. It immediately follows that �1 _ �2 is deomposable, deterministi NNF,whih an be smoothed in polynomial-time, leading to a polynomially-sizedsd-DNNF representation of the theory �1 _�2.We lose this setion by pointing out that sine smooth, deterministi, de-omposable NNF admits a large number of polynomial-time operations, thesalability of this representation may be questionable (the size of theories whenompiled into sd-DNNF). The above results, however, shed strong light on thissalability, showing that sd-DNNFs are stritly more spae eÆient than FB-DDs, whih are stritly more spae eÆient than OBDDs. The latter represen-tation, however, is viewed among the most pratial representations of propo-sitional theories, and has been �nding inreasing usage in AI appliations, suhas planning, diagnosis and Markov deision proesses.



7 ConlusionWe have identi�ed the lass of deomposable negation normal form, DNNF, inprevious work and showed that it is highly tratable by identifying a large setof inuential logial operations whih take polynomial time on DNNF. In thispaper, we have identi�ed two extra properties, smoothness and determinism,that inrease the tratability of DNNF, allowing one to ount the models of atheory in time linear in its size and under inremental hanges to its ontent(addition/removal/ipping of literals).Interestingly enough, two of our omplexity results on DNNF ontinue tohold for the lass of smooth, deterministi DNNF, shedding new light on thesalability of this new representation. The new polynomial-time operationspermitted by sd-DNNF have appliations to building linear-time, ompletetruth-maintenane and belief-revision systems, whih we also explored in thispaper.AknowledgementI wish to thank Pierre Marquis for many valuable disussions on this subjetand for his omments on an earlier version of this paper. This work has beenpartially supported by an NSF researh grant number IIS-9988543 and a MURIgrant number N00014-00-1-0617.A Converting CNF to sd-DNNFThe pseudoode in Figure 8 uses a number of notations that we explain below.An instantiation is a onsistent onjuntion of literals. An instantiation overatoms � inludes one literal for eah atom in �. Eah node N in the deom-position tree has an assoiated ahe aheN , whih maps instantiations intosd-DNNFs; Nl and Nr are the left and right hildren of node N , respetively;lause(N) returns the lause attahed to leaf node N ; atoms(N) are the atomsof lauses appearing under node N ; atoms(�) returns the atoms appearingin instantiation �; projet(�;�) returns the subset of instantiation � pertain-ing to atoms �; and l2sddnnf(N;�) returns an sd-DNNF of lause(N) j �mentioning all atoms in atoms(lause(N)).For ompleteness, we inlude the de�nitions of width for a deompositiontree and a CNF.For internal node N in a deomposition tree, atoms l(N) are atoms thatappear in the left subtree of node N ; atomsr(N) are atoms that appear in theright subtree of node N ; atomsp(N) are atoms that appear in lauses attahedto leaves not in the subtree rooted at node N .De�nition 10 [6, 7℄ Let N be a node in a deomposition tree T . The lusterof node N is de�ned as follows:� If N is a leaf node, then its luster is atoms(lause(N)).



� If N is an internal node, then its luster is (atoms l(N) \ atomsr(N)) [(atomsp(N) \ atoms(N)).The width of a deomposition tree is the size of its maximal luster minus one.De�nition 11 [10℄ Let � be a propositional theory in lausal form. Theinteration graph for � is the undireted graph G onstruted as follows. Thenodes of G are the atoms of �. There is an edge between two atoms in G i�the atoms appear in the same lause of �. The treewidth of � is the treewidthof its onnetivity graph.The treewidth of an undireted graph is a standard notion of graph theory|see[2℄ for example.B ProofsProof of Theorem 1The proof is by indution on the struture of the sd-DNNF and its orrespond-ing ounting graph. We want to show that if N is a node in the ounting graphwhih orresponds to subsentene � in the sd-DNNF, then the value of N rep-resents Models#(f�g [ S�), where S� is the subset of S whih atoms appearin �. If � is the given sd-DNNF, then S� = S.The base ase follows immediately from De�nition 6. For the indutivestep, suppose that this holds for the onjunts/disjunts �i of some onjun-tion/disjuntion �. Let N;Ni be the ounting graph nodes orresponding to �and �i. We have two ases:1. � = Vi �i: Note that S� is partitioned into S�i . Moreover, sine theonjunts �i do not share atoms, we have thatModels#(f�g [ S�) = Models#(f î �ig [ S�)= Yi Models#(f�ig [ S�i)= Yi val(Ni)= val(N):2. � = Wi �i: Note that S� = S�i . Moreover, sine the disjunts �i arelogially disjoint, we have thatModels#(f�g [ S�) = Models#(f_i �ig [ S�)= Xi Models#(f�ig [ S�i)



= Xi val(Ni)= val(N):Proof of Theorem 2First, note that by the deomposability of DNNFs:� the funtion represented by the ounting graph G is linear in eah of itsvariables Vl, whih orrespond to a leaf node in G.� the funtion will never multiply two expressions, one ontaining Vl andthe other ontaining V:l.Hene, the partial derivative with respet to Vl does not depend on the valueof either Vl or V:l.Seond, we have:Models#(� [ S) = Models#(� [ S [ f:lg) +Models#(� [ S [ flg):Suppose that :l 62 S, and let S0 = S [ f:lg. The di�erene between theounting graph G evaluated at S and S0 is that the leaf node Vl will have thevalue 1 under S and the value 0 under S0. Therefore:Models#(� [ S [ f:lg) =Models#(� [ S) + (�1)�G(S)=�Vl:Hene,�G(S)=�Vl = Models#(�[S)�Models#(�[S[f:lg) = Models#(�[S[flg):This proves the �rst part of the theorem.The third part follows similarly: suppose l 2 S and let S0 = S n flg [ f:lg.The di�erene between the ounting graph G evaluated at S and S0 is that� the leaf node V:l will have the value 0 under S and the value 1 under S0;� the leaf node Vl will have the value 1 under S and the value 0 under S0.Hene,Models#(�[Snflg[f:lg) = Models#(�[S)+(+1)�G(S)=�V:l+(�1)�G(S)=�Vl:We also haveModels#(�[S[flg) =Models#(�[S) sine l 2 S,Models#(�[S [ flg) = �G(S)=�Vl by the �rst part and :l 62 S, and, hene, Models#(� [S) = �G(S)=�Vl. Hene,Models#(� [ S n flg [ f:lg)= Models#(� [ S) + (+1)�G(S)=�V:l + (�1)�G(S)=�Vl= Models#(� [ S) + (+1)�G(S)=�V:l + (�1)Models#(� [ S)= �G(S)=�V:l:



We now prove the seond part. Let S0 = S n flg. ThenModels#(� [ S0) =Models#(� [ S0 [ flg) +Models#(� [ S0 [ f:lg):Moreover, Models#(� [ S0 [ flg) = Models#(� [ S [ flg), whih equals�G(S)=�Vl by the �rst part. Similarly,Models#(�[S0[f:lg) = Models#(�[S n flg [ f:lg), whih equals �G(S)=�V:l by the third part. Hene,Models#(� [ S n flg) = �G(S)=�Vl + �G(S)=�V:l:Proof of Theorem 4We have shown in [6, 7℄ that if � is a DNNF, then (� j S) ^ S is also aDNNF. That (� j S) ^ S is smooth follows immediately, sine atoms(� j S) =atoms(�) � atoms(S). Hene, if atoms(�) = atoms(�), then atoms(� j S) =atoms(� j S). That (� j S) ^ S is deterministi follows from the followingproperty of onditioning: the models of � j S are the models of �^S after havingremoved from them atoms(S).8 Now suppose that atoms(�) = atoms(�),� ^ � j= false, m1 is a model of �, and m2 is a model of �. Then m1 and m2must be oniting. Moreover, we must have two ases:1. m1 and m2 are oniting on an atom appearing in S.Then either m1 6j= � j S or m2 6j= � j S.2. m1 and m2 are oniting on an atom not appearing in S.Then modelsm1 andm2 will remain to be oniting even after removingatoms(S) from them.Given the two ases, every model of � j S will be oniting with every modelof � j S and, hene, (� j S) ^ (� j S) j= false.Proof of Theorem 5This theorem follows immediately from the following property of sd-DNNF:1. models(l) = fflgg where l is a literal.2. models(�1 _ : : : _ �n) = models(�1) [ : : : [models(�n).3. models(�1 ^ : : : ^ �n) = models(�1)� : : :�models(�n).Spei�ally, sine literal l has a single model flg, the minimum D-ardinality ofl is simply the D-ardinality of the model flg. The models of a disjuntion aresimply the union of its disjunts' models. Hene, its minimum D-ardinalityis the minimum D-ardinality of any of its disjunts. Finally, the models of aonjuntion are simply the Cartesian produt of its onjunts' models, whihshare no variables. Therefore, the minimum D-ardinality of a onjuntion isthe sum of the minimum D-ardinalities of its onjunts.8To see this, represent � as a disjuntion of its models, m1 _ : : :_mn, and then onditionon S. This onditioning will eliminate any models that are inonsistent with S. For thosemodels that are onsistent with S, eah literal whih appears in S will be replaed by true.



Proof of Theorem 6This theorem follows immediately from the following property of sd-DNNF:1. models(l) = fflgg where l is a literal.2. models(�1 _ : : : _ �n) = models(�1) [ : : : [models(�n).3. models(�1 ^ : : : ^ �n) = models(�1)� : : :�models(�n).Spei�ally, sine a literal l has only a single model flg, we havemodels(minimize(l;D)) = fflgg aording to De�nition 8 and Theorem 6. Theremaining two ases follow diretly from smoothness and deomposability.Proof of Theorem 7The only di�erene between this version and the one in [6, 7℄ is that we havel2sddnnf(N;�) instead of lause(N) j � on Line 04, therefore, onvertinga lause to an sd-DNNF at the boundary ondition. The omplexity and or-retness (with respet to DNNF) is therefore unhanged. The only thing weneed to show is that the resulting NNF is also smooth and deterministi.Determinism follows beause the only plae where a disjuntion is intro-dued by the algorithm is on Line 04 and 05. For disjuntions introdued onLine 04, the disjunts are logially inonsistent by de�nition of l2sddnnf(N;�).For disjuntions introdued on Line 05, the disjunts are logially inonsistentsine the di�erent �'s are logially inonsistent.Smoothness follows by indution on the struture of a deomposition tree.First, for disjuntions introdued on Line 04, the disjunts mention the sameset of atoms by de�nition of l2sddnnf(N;�). Seond, for disjuntions in-trodued on Line 05, it suÆe to show that atoms(nf2sddnnf(N;�)) =atoms(nf2sddnnf(N;�0)) when atoms(�) = atoms(�0), whih we will showby indution. WhenN is leaf, this follows from the de�nition of l2sddnnf(N;�).Suppose that N is not leaf. Then nf2sddnnf(N;�) =_� nf2sddnnf(Nl; � ^ �) ^ nf2sddnnf(Nr; � ^ �) ^ �;and nf2sddnnf(N;�0) =_� nf2sddnnf(Nl; �0 ^ �) ^ nf2sddnnf(Nr; �0 ^ �) ^ �:Hene, atoms(nf2sddnnf(N;�)) = atoms(nf2sddnnf(N;�0)) follows fromthe indution hypothesis.Proof of Theorem 8Consider the following two propositional theories from [3℄, whih are de�nedover a set of variables Xij where 1 � i; j � n:
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