On the Tractable Counting of Theory Models
and its Application to Truth Maintenance and
Belief Revision

Adnan Darwiche

Computer Science Department
University of California

Los Angeles, Ca 90095
darwiche@cs.ucla.edu

ABSTRACT. We address the problem of counting the models of a proposi-
tional theory, under incremental changes to the theory. Specifically, we show
that if a propositional theory A is in a special form that we call smooth,
deterministic, decomposable negation normal form (sd-DNNF), then for any
consistent set of literals S, we can simultaneously count, in time linear in the
size of A, the models of:

e AUS;

e AUSU/{l}: for every literal | ¢ S;

e AUS\ {l}: for every literal l € S;

e AUS\ {I}U{~l}: for every literal | € S.

We present two results relating to the time and space complexity of compil-
ing propositional theories into sd-DNNF. First, we show that if a conjunctive
normal form (CNF) has a bounded treewidth, then it can be compiled into
an sd-DNNF in time and space which are linear in its size. Second, we show
that propositional theories which can be polynomially represented using sd-
DNNF form a strict superset of the theories which can be polynomially rep-
resented using FBDDs (a generalization of OBDDs that result from relaxing
the variable-ordering restriction). Finally, we discuss some applications of the
counting results to truth maintenance systems, belief revision, and model-based
diagnosis (predicting the behavior of failed devices in particular).

KEYWORDS: Counting models, belief revision, truth maintenance, diagnosis,
knowledge compilation.

1 Introduction

A propositional sentence is in negation normal form (NNF) if it is constructed
from literals using only the conjoin and disjoin operators [1]. A practical rep-
resentation of NNF sentences is in terms of rooted, directed acyclic graphs
(DAGS), where each leaf node in the DAG is labeled with a literal, true or
false; and each non-leaf (internal) node is labeled with a conjunction A or a
disjunction V. Figure 1 depicts a rooted DAG representation of an NNF, where
the children of each node are shown below it in the graph.!

We have recently proposed a decomposability property, which turns NNF
into a highly tractable form, known as decomposable negation normal form
(DNNF) [6, 7]. DNNF permits polynomial-time implementations of the follow-
ing operations: deciding satisfiability, deciding clausal entailment, projection?,
computing minimum-cardinality®, minimization according to minimum-cardinality?,
and model enumeration [6, 7].

In this paper, we identify two additional properties for DNNF, called deter-
minism and smoothness and show a number of results about these two prop-
erties. First, given a propositional theory A in smooth, deterministic, DNNF
(denoted sd-DNNF), we show that for any consistent set of literals S, we can
simultaneously count (in time linear in the size of A) the models of:

e AUS;

e AUSU/{l}: for every literal [¢ S;

e AUS\ {l}: for every literal | € S;

e AUS\ {I} U{~l}: for every literal | € S.

These counting operations allow one to develop linear-time, complete truth
maintenance systems once a theory is put in sd-DNNF. Moreover, we show
that sd-DNNF can be minimized in linear time, which allows one to develop
linear-time, belief revision systems, and diagnostic systems that can predict
the complete behavior of a failed device in time linear in its (sd-DNNF) model
size. Our final set of results is related to the time and space complexity of
compiling propositional theories into sd-DNNF. In particular, we show that if
a conjunctive normal form (CNF) has a bounded treewidth, then it can be
compiled into an sd-DNNF in time and space which are linear in its size (which
is a strengthening of our results in [7]). Second, we show that propositional
theories which can be polynomially represented using sd-DNNF form a strict

IWe adopt this convention throughout the paper, therefore, eliminating the need to show
the directionality of edges in DAGs.

2To project a theory on a set of atoms is to compute the strongest sentence entailed by
the theory on these atoms.

3The cardinality of a model is the number of atoms that are set to false in the model.
The minimum-—cardinality of a theory is the minimum-cardinality of any of its models.

4To minimize a theory is to produce another theory whose models are exactly the
minimum-cardinality models of the original theory.

or
/ar]d\/\/arld\
or or or or
and and and and and and and and
~A B ~B A C ~D D ~C

Figure 1: A theory in sd-DNNF. The theory has eight models (the
odd-cardinality models): {-A4,B,C,D}; {A,-B,C,D}; {A,B,-C,D};
{A,B,C,—!D}; {—|A,—|B,—|C,D}; {—|A,—|B,C,—|D}; {ﬂA,B,—!C,—!D}; and
{A,—LB,—!C,—!D}.

superset, of the theories which can be polynomially represented using FBDDs
(a generalization of OBDDs that result from relaxing the variable—ordering
restriction) [4, 13, 17].

This paper is structured as follows. Section 2 reviews DNNF and introduces
the class of smooth, deterministic DNNF. Section 3 presents the new operations
for model counting based on this class of propositional theories. Sections 4-
5 discuss the application of these counting operations to truth maintenance,
belief revision, and model-based diagnosis. Section 6 presents the compilation
algorithms from CNF into sd-DNNF and discusses related complexity results.
Section 7 closes with some concluding remarks. Proofs of all results are given
in Appendix B.

2 Smooth, Deterministic DNNF

We start with the formal definition of NNF, which is the basis of other logical
forms we define next.

Definition 1 Let X be a finite set of propositional atoms. A sentence in NNF
is a rooted, directed acyclic graph (DAG) where each leaf node is labeled with
true, false, X or =X, X € X; and each internal node is labeled with A or V.
The size of a sentence in NNF is the number of its DAG edges.

We will now present three conditions on NNF. The first of which is decom-
posability and is probably the most influential:

Definition 2 (Decomposability) [6, 7] A decomposable NNF, written DNNF,
is an NNF A satisfying the following property: for every conjunction o =

ap A ...\ ay, appearing in A, no atoms are shared between the conjuncts of a;
that is, atoms(c;) N atoms (o) = O for i # j.

The NNF (A vV B) A (mA Vv C) is not decomposable since atom A is shared
by the two conjuncts. But the NNF in Figure 1 is decomposable. It has ten
conjunctions and the conjuncts of each share no atoms.

Decomposability is a very powerful property as it permits a number of
interesting logical operations to be implemented in polynomial-time on DNNF,
including satisfiability, clausal entailement, projection, minimization and model
enumeration [6, 7].

We now introduce another property of NNF, which permits even more op-
erations to be implemented in polynomial-time:

Definition 3 (Determinism) A deterministic NNF, written d-NNF, is an
NNF A satisfying the following property: for every disjunction « = a1V...Vay,
appearing in A, every pair of disjuncts in « is logically inconsistent; that is,
a; A o |=false for i # j.

For example, (A A B) V C is an NNF but is not deterministic since the dis-
juncts A A B and C are consistent. However, the NNF (AA B) V (mAAC)
is deterministic.® A deterministic, decomposable NNF will be denoted by d-
DNNF. As we shall see, determinism permits one to count the number of theory
models in polynomial time. It also allows one to enumerate models in output
linear time.

Our last property on NNF is that of smoothness. It is not a crucial property
except that it simplifies the formal treatment of NNF operations considerably.

Definition 4 (Smoothness) A smooth NNF, written s-NNF, is an NNF A
satisfying the following property: for every disjunction « = a1 V...V ay, in A,
we have atoms(a) = atoms(wy) for every i.

A smooth, deterministic, decomposable NNF will be denoted by sd-DNNF.
The d-DNNF in Figure 1 is smooth. We can easily smooth an NNF as
follows. For each disjunction @ = a1 V...V oy, if atoms(o;) # atoms(a),
we can replace the disjunct a; in a with a; A A 4y, (A V 2A), where ¥ =
atoms(a) — atoms(c;). This operation preserves equivalence, decomposability
and determinism of an NNF. Moreover, the size of resulting s-NNF is O(mn),
where n is the size of original NNF and m is the number of propositional atoms.
One way to view the sd-DNNF representation of a theory A is as a nested
factoring of the sum-of-product representation of A. The sd-DNNF represen-
tation gives us most of the powerful properties of the sum-of-product repre-
sentation, yet it does not require as much space. To appreciate this point, we
list a number of theories in Table 1 together with the size of their CNF repre-
sentation, the size of their sd-DNNF representation, and the number of their

5Note that although every disjunctive normal form (DNF) is a DNNF, not every DNF is
a d-DNNF.

Theory Models# || CNF sd-DNNF
Vars#/Cls# | Nodes# | Edges# || Nodes# Edges#

Solenoid 27 11/19 42 68 84 172
Valve 24 13/50 7 241 83 171
Four-pipes || 25 27/110 165 395 126 302
Chandra2l || 2097152 24/21 70 102 82 176
Chandra24 || 16777216 || 27/24 79 120 87 272
Adder-4 256 17/57 92 258 110 241
Adder-100 || 22°° 401/1401 2204 6402 3182 8017

Table 1: Some propositional theories and their CNF and sd-DNNF represen-
tations. Note that CNF is a special class of NNF, hence, the size of a CNF is
reported as the size of its corresponding NNF representation.

models.® The theories were obtained from http://www.lifl. fr/KC/. Note that
some of these theories have a very large number of models, yet a very compact
sd-DNNF representation. In fact, for most theories in this case, the size of the
sd-DNNF representation is very close to the size of the CNF representation, if
not better.

We close this section by showing how the models of an sd-DNNF can be
enumerated in output linear time, which is a slight improvement on the model
enumeration of DNNF [7]. Specifically, suppose that a model is represented as
a set of literals and suppose that x is Cartesian product on sets of models:

(N, .. Ny x {My, ..., My (NyUM,.. N U M)

Then the models of sd-DNNF can be enumerated as follows:
1. models(l) = {{i}} where is a literal.
2. models(a; V...V ay) = models(ap) U ... U models(ay,).
3. models(a; A ... Aay) = models(ay) X ... x models(ay,).

By decomposability, two sets of partial models are multiplied by x only if they
share no atoms. By determinism, two sets of partial models are unioned only if
they contain no duplicates. Hence, the time and space complexity of the above
procedure is linear in the number of models returned.

3 Counting the Models of sd-DNNF

The polynomial-time operations on NNF which are permitted by the decom-
posability property have been discussed at length elsewhere [6, 7]. In this

6These sd-DNNFs have been computed using a variation of the algorithm in Section 6,
which is optimized using unit resolution.

section, we discuss the new operations permitted by the additional properties
of determinism and smoothness. As we shall see, these operations on sd-DNNF
have implications on a number of AT applications, including truth maintenance,
belief revision and diagnosis. Specifically, given an sd-DNNF A and a set of
literals S, we describe two traversal operations each taking linear time. By the
end of the first traversal, we will be able to count the models of AUS. By the
end of the second traversal, we will be able to count the models of:

1. AUSU({l} for every literal [¢ S;
2. AUS\ {l} for every literal [€ S;
3. AUS\ {I} U{~l} for every literal | € S.

That is, once we traverse the sd-DNNF twice, we will be able to obtain each
of these counts using constant-time, lookup operations.

The traversal will not take place on the sd-DNNF itself, but on a secondary
structure that we call the counting graph. The counting graph of an sd-DNNF
is a function of many variables represented as a rooted DAG.

Definition 5 The counting graph of an sd-DNNF is a labeled, rooted DAG. It
contains a node labeled with [for each literal [, a node labeled with + for each
or-node, and a node labeled with % for each and-node in the sd-DNNF. There
is an edge between two nodes in the counting graph iff there is an edge between
their corresponding nodes in the sd-DNNF.

Figure 2 depicts the counting graph of the sd-DNNF in Figure 1. The size of a
counting graph is therefore equal to the size of its corresponding sd-DNNF. We
will see now how such a graph can be used to perform the counting operations
we are interested in.

Definition 6 The value of a node N in a counting graph under a consistent
set of literals S is defined as follows:

- VAL(N) =0 if N is labeled with literal | and -l € S;
- VAL(N) =1 if N is labeled with literal | and -l ¢ S;

- VAL(N) = [[, VAL(N;) if N is labeled with x, where N; are the children
of N;

- VAL(N) = >, VAL(N;) if N is labeled with +, where N; are the children
of N.

The value of a counting graph G under literals S, written G(S), is the value of
its root under S.

From here on, we will use G to denote both the counting graph itself and the
function represented by this graph.
Here’s our first counting result.

Figure 2: A counting graph of the sd-DNNF A in Figure 1 evaluated under
S = A, -B. The evaluation indicates that AUS has two models ({4,-B,C, D}
and {A,—-B,—C,—D} in this case).

Theorem 1 Let A be an sd-DNNF, S be a consistent set of literals, and let G
be the counting graph of A. The value of G under S is the number of models
of AUS:

G(S) = Models#(A U S).

Note that G(S) > 0iff AUS is consistent. Therefore, by traversing the counting
graph once we can test the consistency of sd-DNNF A conjoined with any set of
literals S. Figure 2 depicts the counting graph of the sd-DNNF A in Figure 1,
evaluated under the literals S = A, —B. This indicates that A U {A4,-B} has
two models.

We now present the central result in this paper. First, we note that when
viewing a counting graph G as a function of many variables, we will use V; to
denote the variable (node) labeled with literal I. Second, we can talk about the
partial derivative of function G with respect to any of its variables V;, 0G/0V,
and we can also talk about the value of this derivative under a set of literals
S, 0G(S)/0V;. Due to the decomposability of DNNF, the function G is linear
in each of its variables. Therefore, the change to the count G(S) as a result
of adding, removing or flipping a literal in S can be obtained from the partial
derivatives, without having to re-evaluate the counting graph G. This leads to
the following result:

Theorem 2 Let A be an sd-DNNF, S be a consistent set of literals, and let G
be the counting graph of A. We have:

Assertion: When -l € S:
Models#(A US U{l}) = 0G(S)/oV].

Retraction: Whenl € S:

Models#(A US \ {I}) = 0G(S)/dV; + 0G(S)/dV....

Flipping: Whenl € S:

Models#(A US \ {I} U {~1}) = 8G(S)/dV ...

Therefore, if we can compute the partial derivatives of G with respect to each
of its variables, and evaluate these derivatives at S, we can then count the
models of A US under the assertion of new literals not in S, and under the
retraction or flipping of literals in S. Figure 3 depicts the value of each of
these partial derivatives for the sd-DNNF in Figure 1. The counting graph is
evaluated under literals S = A, —-B,C and the partial derivatives are shown
below each variable. According to these derivatives, we have:

Assertion: Models#(A US U{D}) = 1 and Models#(A US U {-D}) = 0.
This immediately tells us that AUS = D.

Retraction: Models#(AUS\ {A4}) =1+ 1= 2; Models#(AUS\ {-B}) =
14+1=2; and Models#(AUS\ {C}) =1+ 1 = 2. Therefore, retracting
any literal in S increases the number of models to 2.

Flipping: Models#(AUS\{A}U{=A}) = 1; Models#(AUS\{-B}U{B}) = 1;
Models# (A U S\ {C} U {=C}) = 1. Therefore, flipping any literal in S
will not change the number of models (although it does change the model
itself).

For another example, consider Figure 4(a) which depicts an sd-DNNF for the
theory A = (A D B)A(B D C), and Figure 4(b) which depicts its corresponding
counting graph. The value of this counting graph for S = () is shown, and its
partial derivatives are also computed. According to this Figure, A has 4 models.
Moreover, by Theorem 2:

e AU{A} has 1 model since 0G(S)/0Va = 1. The model is: {A, B,C}.
e AU{=C} has 1 model since 0G(S)/IV.c = 1. The modelis: {-A,-B,-C}.

e AU{B} has 2 models since 0G(S)/0Vp = 2. The models are: {4, B,C}
and {—|A, B, C}

There is one missing link now: How do we compute the partial derivatives
of a counting graph with respect to each of its variables? This actually turns
out to be easy due to results in [14, 16] which show how to evaluate and
simultaneously compute all partial derivatives of a function by simply traversing
its computation graph in linear time. Although [16] casts such computation
in terms of summing weights of paths in such a graph, we present a more
direct implementation here. In particular, if we let PD(IV) denote the partial

Figure 3: A counting graph of the sd-DNNF A in Figure 1 evaluated under
literals S = A,-B,C, indicating one model of AUS ({A,-B,C,D} in this
case). Partial derivatives are shown below the leaves.

derivative of G with respect to a node N in the counting graph, then PD(N) is
the summation of contributions made by parents M of N:

1, N is the root node;
PD(N) = Z cpD(M, N), otherwise;
M

where the contribution of parent M to its child IV is computed as follows:

pD(M), M is a +node;
cep(M,N) =4 pD(M) H VAL(K), M is a *node;
K#N

where K is a child of M. This computation can be performed by first traversing
the counting graph once to evaluate it, assigning VAL to each node N, and then
traversing it a second time, assigning PD for each node N. We are then mainly
interested in VAL(N) where N is the root node, and PD(N) where N is a leaf
node.

Therefore, both the value of a counting graph under some literals S and the
values of each of its partial derivatives under S can be computed by traversing
the graph twice. Once to compute the values, and another to compute the
partial derivatives.

We close this section by pointing out that partial differentiation turns out
to play a key role in probabilistic reasoning as well. Specifically, we present a
comprehensive framework for probabilistic reasoning in [8] based on compiling
a Bayesian network into a polynomial and then reducing a large number of

a) or b) /J”"\
and and * *
ﬁor /\ /\/+\ /\
T ~A * * A
~A /and and A 3/_QN /\ 1
or
/QN/\ - B C B
~C B C B 1 2 3 2

Figure 4: An sd-DNNF for the theory A D B,B D C, and its corresponding
counting graph evaluated and differentiated under S = §).

probabilistic queries into the computation of partial derivatives of the compiled
polynomial.

4 Complete, Linear-Time Truth Maintenance

We now turn to some applications of the results in the previous section. We
first consider truth maintenance systems and show how our results allow us to
implement complete truth maintenance systems which take time linear in the
size of an sd-DNNF theory.

A truth maintenance system takes a set of clauses [' and a set of literals S
and tries to determine for each literal I whether I'U S |= . The most common
truth maintenance system is the one based on closing ['US under unit resolution
[12]. Such a system takes linear time, but is incomplete. Given that the set of
literals in S changes to S’, the goal of a truth maintenance system is then to
update the truth of each literal under the new “context” S’. Sometimes, clauses
in I are retracted and/or asserted. A truth maintenance system is expected to
update the truth of literals under such clausal changes too.

Our model-counting results allow us to implement a complete truth main-
tenance system as follows. We compile the theory I' into an sd-DNNF A and
construct the counting graph G of A. Given any set of literal S, we evaluate G
under S and compute its partial derivatives also under S. This can be done in
time linear in the size of A. We are now ready to answer all queries expected
from a truth maintenance system by simple, constant-time, look-up operations:

Literal [is entailed by AUS iff AUSU{—!} has no models: 0G(S)/0V_; = 0.

Retracting literal [from S will render A U S consistent iff AU S\ {/} has at
least one model: 9G(S)/0V; + 0G(S)/dV-; > 0.

Flipping literal [in S will render AUS consistent iff AUS\ {{} U {-l} has at

least one model: G(S)/0V_; > 0. 7

If we want to reason about the effect of asserting and retracting clauses in
theory I', we can replace each clause a in I' by C, D «, where C, is a new
atom. We then compile the extended theory I' into sd-DNNF A. To assert all
clauses initially, we have to include all atoms C in the set of literals S. The
assertion/retraction of clauses can then be emulated by the assertion/retraction
of atoms C,. For example, in case of a contradiction, we can ask whether
retracting a clause a will resolve the contradiction by asking whether A US'\
{C4} has more than one model:

8G(S)/dVe., +G(S))V . > 0.

5 Complete, Linear-Time Belief Revision

We now turn to a second major application of model counting on sd-DNNF:
the implementation of a very common class of belief revision systems, which
is adopted in model-based diagnosis and in certain forms of default reasoning
[15, 11]. The problem here is as follows. We have a set of special atoms
D = {di,...,d,} in the theory A which represent defaults. Typically, we
assume that all of these defaults are true, allowing us to draw some default
conclusions. We then receive some evidence S (a set of consistent literals)
which is inconsistent with A U D. We therefore know that not all defaults are
true and some must be retracted—that is, some d;s will have to be replaced by
—d; in D. Our goal then is to identify a set of literals D' such that

1. d; € D' or —d; € D' for all 4;
2. AUD’US is consistent;
3. the number of negative literals in D’ is minimized;

and then report the truth of every literal under the new set of defaults D’.
Note that there may be more than one set of defaults D’ that satisfies the
above properties. In such a case, a literal holds after the revision process only
if it holds under A UD’ U S for every D'.

This revision process is a special case of what is known as cardinality-
mazximizing base revision. Deciding entailment after such a revision process
is known to be AL[O(logn)]-complete [15, 11].

One way to formalize this revision process is through D-minimization, which
is a generalization of the operation of minimization that we defined in [7] (where
D contains all atoms).

Definition 7 If D is a set of atoms, then the D-cardinality of a model m,
written card(m, D), is the number of atoms in D that the model sets to false.
"Note that the flipping of literals is outside the scope of classical truth maintenance

systems in the sense that they must retract [and then assert —l, taking linear time, to
perform the above operation.

or 1
I
and and
1 T 0 0o — T 1
or or or or

17
and 2and Oand andl land 0 and and2 1 and
1 XM 0 0 1 0 1
~A B ~B A C ~D D ~C

Figure 5: Assigning a D-cardinality to each node in an sd-DNNF with D =
{4,B,C,D}.

Definition 8 Let A be a propositional theory and let D be a set of atoms in
A. The D-minimization of theory A, written minimize(A, D), is defined as a
theory with the following models:

models(minimize(A, D)) = {m | A : m' = A only if card(m,D) < card(m’,D)}.
Here, the models m and m' are over atoms(A).

Therefore, the belief revision process can be viewed as D-minimizing AU S
and then closing the result under literal entailment. We will next show how
to conjoin an sd-DNNF A with literals S, and then how to D-minimize the
result while guaranteeing that the final outcome remains to be an sd-DNNF.
We can then use the technique discussed in the previous sections to close the
minimization under literal entailment.

First, we show how to conjoin an sd-DNNF A with a set of literals S to
yield another sd-DNNF equivalent to AUS (which we will also write as AAS).
For this we need the notion of conditioning:

Definition 9 (Conditioning) [6, 7] Let A be a propositional sentence, and
let S be a consistent set of literals. The conditioning of A on S, written A | S,
is the sentence obtained by replacing each atom X of A by true (resp. false) if
X (resp. =X) is a positive (resp. negative) literal of S.

For example, conditioning the DNNF (=AA-B)V (B AC) on {B, D} gives
(A A —true) V (true AC), and conditioning it on {—B, D} gives (A A —false) V
(false A C). In what follows, we assume that —true will be written as false and
that —false will be written as true.

Theorem 3 [6, 7] AA'S is equivalent to (A | S) AS.

Theorem 4 If A is sd-DNNF, then (A | S)A'S is sd-DNNF.

Therefore, decomposability, determinism and smoothness are all closed under
conditioning. Theorem 3 can then be used to conjoin any sd-DNNF with a
consistent set of literals, to yield another sd-DNNF representing the conjunc-
tion.

We now describe the process of D-minimizing an sd-DNNF A which is done
in two steps. First, we assign a cardinality to each node in the sd-DNNF. Then
we prune some of the edges connecting or-nodes to their children.

The following two theorems follow immediately from smoothness, determin-
ism, and decomposability.

Theorem 5 Consider the following function, mCard(.,D), defined on NNF:

e mCard(I,D) = 1 if | is a negative literal whose atom is in D, and = 0
otherwise.

e mCard(ay V...V a,,D) = min(mCard(a;, D), ..., mCard(a,, D)).
e mCard(ag A ... A @y, D) =mCard(a;,D) + ... 4+ mCard(a,, D).

If A is an sd-DNNF, then mCard(A, D) = min,,_acard(m, D) where m is a
model over atoms(A).

Note that by traversing an sd-DNNF only once, we are able to compute mCard(a, D)
for every node « in the sd-DNNF.

Theorem 6 We have the following:
e minimize(l,D) =1 if | is a literal.
e minimize(\/, a;, D) = \/, minimize(a;, D), where mCard(a, D) = mCard(a;, D).
e minimize(\; a;, D) = A, minimize(c;, D).

Therefore, once we have computed mCard(a, D) for every node « in an sd-
DNNF, we can traverse the sd-DNNF once and end up D-minimizing it by
simply disconnecting the edges between any or-node and its children that have
higher cardinality. Note that this minimization process will preserve decom-
posability, smoothness and determinism.

Figure 5 depicts the result of assigning cardinalities to the sd-DNNF of
Figure 1, and Figure 6 depicts the result of deleting some of its edges. This is
the minimized sd-DNNF and it has four models: {—-A,B,C,D}; {A,-B,C,D};
{A, B, —|C, D}; and {A, B, C, —|D}.

We close this section by pointing out that the above results have direct
application to model-based diagnosis, where A is the device description, S is
the device observation and D contains the health modes ok, ..., ok,. Initially,
we assume that all device components are working normally, but then find some
observation S such that AUD = {oky, ..., 0k, } US is inconsistent.

or
/d\/\/arld\
Or\m}ér/ﬂ\
and and and and and and
~A B ~B A C ~D D ~C

Figure 6: A minimized sd-DNNF.

To regain consistency we must postulate that some of the components are
not healthy, therefore, flipping some of the ok;s into —0k; in the set D. Assum-
ing a smallest number of faults, we want to minimize the number of unhealthy
components needed to regain consistency. A set D' such that:

1. ok; € D' or —ok; € D' for all i;
2. AUD’US is consistent;
3. the number of negative literals in D’ is minimized;

is called a minimum-cardinality diagnosis [5, 9].

Traditionally, the main goal of model-based diagnosis has been to enumerate
such diagnoses. Another practical problem, however, which has received much
less attention in model-based diagnosis is that of predicting the behavior of
the device (the values of its ports) given an abnormal observation. If the
observation S is normal, then A U D U S is consistent, and all we need is
to close this theory under literal entailment to figure out the value of each
port in the device. However, if the observation S is abnormal, then A U D U
S is inconsistent, and we need is to close minimize(A U S,D) under literal
entailment as shown above. This allows us to predict the value of each device
port under the (default) assumption that a smallest number of faults have
actually materialized in the broken device. All of this can be done in linear
time once the original device model is made available in sd-DNNF.

6 Compiling sd-DNNF

We present two complexity results in this section.

A=>B B=>C C=>D D=>E

Figure 7: A decomposition tree for the theory AD B, B> C,C D> D, D D E.

The first result is a strengthening of our result in [6, 7], where we presented
an algorithm for compiling a CNF into a DNNF. We show here that the pre-
sented algorithm can be modified slightly so it will also ensure the smoothness
and determinism of the resulting NNF, without affecting its time and space
complexity.

The second result is a strengthening of a result we have in [7], where we
showed that:

1. if a propositional theory has a polynomially-sized FBDD representation,
then it has a polynomially-sized DNNF representation;

2. the opposite is not true.

Here we show that this result is true even with the addition of the smoothness
and determinism properties. Therefore, sd-DNNF's are a strictly more efficient
representation than FBDDs, which are an important generalization of OBDDs
(in which the restriction of a fixed-variable ordering is removed) [4, 13, 17].

We start with our first result, which is an extension of a structure-based
algorithm that we introduced in [6, 7] for converting a CNF into a DNNF.
The algorithm utilizes a decomposition tree, which is a binary tree the leaves of
which correspond to the CNF clauses—see Figure 7. Each decomposition tree
has a width and the complexity of the algorithm is exponential only in the width
of used tree. The algorithm is given with a slight modification (on Line 04) in
Figure 8. The pseudocode is explained in Appendix A for completeness. Our
main concern here, however, is the following result:

Theorem 7 Let N be the root of decomposition tree T used in Figure 8. Then
CNF2SDDNNF(N, true) will return A in sd-DNNF, where A contains the clauses
attached to the leaves of T'. Moreover, the time and space complexity of the
algorithm is O(nw2¥), where n is the number of clauses in A and w is the
width of decomposition tree T'.

Algorithm cnf2sddnnf

/* N is a node in a decomposition tree */
/* « is an instantiation */

CNF2SDDNNF(N,)
01. ¢<project(a, atoms(N))
02. if CACHEN (¢)) # NIL, return CACHE (%))
03. if IV is a leaf node,
04. then y< CL2SDDNNF(N, «)
05. else ¢ \/ ;ONF2SDDNNF(N;, e A B)A
06. CNF2SDDNNF(N,.,a A B) A B
07. where (ranges over all instantiations
08. of atoms(N;) N atoms(N,) — atoms(c)
09. CACHEN ()<
10. return vy

Figure 8: Compiling a CNF into sd-DNNF.

The width of a decomposition tree is defined in Appendix A. The class of
CNF theories with bounded treewidth is also given in Appendix A, and we have
shown in [6, 7] that for this class of theories, one can construct in linear time a
decomposition tree of bounded width. Therefore, one can compile an sd-DNNF
of linear size for this class of theories. Note that the CNF representation of
n-bit adders has a bounded treewidth, hence, such device descriptions can be
easily compiled into sd-DNNF (see Table 1).

We now turn to our second result, relating to Binary Decision Diagrams
(BDDs) which are among the most successful representations of propositional
theories [4]. A BDD is indeed only a special case of an NNF, which is depicted
using specialized notation [7]. Figure 9 depicts a BDD which is a DAG in which
each leaf node is labeled with 0 or 1, and each internal node is labeled with an
atom and has two children, labeled low (dashed edge) and high (solid edge).

Each node N in a BDD which is labeled with atom A represents a disjunction
(AN @)V (A A B), where a is the NNF represented by the high-child of node
N and f is the NNF represented by the low-child of node N. The leaf node
0 represents false and the leaf node 1 represents true. If a BDD has n nodes,
then it can be represented by an NNF of size O(n).

It also follows immediately that each NNF which results from this trans-
lation is deterministic. Therefore, BDDs are a special case of deterministic
NNFs. A Free BDD (FBDD) [13, 17] is a BDD where each atom appears only
once on any path from the root of the BDD to any of its leaves. It is not hard
to see that this condition implies that the NNF corresponding to an FBDD is
also decomposable [7]. Therefore, FBDDs are a special case of deterministic,

Figure 9: A BDD. High edges are solid, low edges are dashed. The NNF
corresponding to node N is: (mxz Atrue)V (z2 A (z3 AtrueV —z3 Afalse)), which
simplifies to —wa V (2 A x3).

decomposable NNFs. Since any NNF can be smoothed in polynomial time, we
get the first result that any propositional theory that has a polynomial FBDD
representation also has a polynomial sd-DNNF representation. The opposite is
not true, however.

Theorem 8 [3] There are propositional theories Ay and Ay such that:
e cach of Ay and As has a polynomial FBDD representation;
o Ai A As is inconsistent.
e Ay V As has no polynomial FBDD representation.

Since A; and Ay have polynomial FBDD representations, they must also have
polynomial sd-DNNF representations. Let us call these representations I'; and
[y. It immediately follows that I'; V ['s is decomposable, deterministic NNF,
which can be smoothed in polynomial-time, leading to a polynomially-sized
sd-DNNF representation of the theory A; V A,.

We close this section by pointing out that since smooth, deterministic, de-
composable NNF admits a large number of polynomial-time operations, the
scalability of this representation may be questionable (the size of theories when
compiled into sd-DNNF). The above results, however, shed strong light on this
scalability, showing that sd-DNNFs are strictly more space efficient than FB-
DDs, which are strictly more space efficient than OBDDs. The latter represen-
tation, however, is viewed among the most practical representations of propo-
sitional theories, and has been finding increasing usage in AI applications, such
as planning, diagnosis and Markov decision processes.

7 Conclusion

We have identified the class of decomposable negation normal form, DNNF, in
previous work and showed that it is highly tractable by identifying a large set
of influential logical operations which take polynomial time on DNNF. In this
paper, we have identified two extra properties, smoothness and determinism,
that increase the tractability of DNNF, allowing one to count the models of a
theory in time linear in its size and under incremental changes to its content
(addition/removal/flipping of literals).

Interestingly enough, two of our complexity results on DNNF continue to
hold for the class of smooth, deterministic DNNF, shedding new light on the
scalability of this new representation. The new polynomial-time operations
permitted by sd-DNNF have applications to building linear-time, complete
truth-maintenance and belief-revision systems, which we also explored in this

paper.

Acknowledgement

I wish to thank Pierre Marquis for many valuable discussions on this subject
and for his comments on an earlier version of this paper. This work has been
partially supported by an NSF research grant number 11S-9988543 and a MURI
grant number N00014-00-1-0617.

A Converting CNF to sd-DNNF

The pseudocode in Figure 8 uses a number of notations that we explain below.

An instantiation is a consistent conjunction of literals. An instantiation over
atoms ¥ includes one literal for each atom in ¥. Each node N in the decom-
position tree has an associated cache CACHE, which maps instantiations into
sd-DNNFs; N; and N, are the left and right children of node N, respectively;
clause(N) returns the clause attached to leaf node N; atorns(IN) are the atoms
of clauses appearing under node N; atoms(«) returns the atoms appearing
in instantiation «; project(a, ¥) returns the subset of instantiation « pertain-
ing to atoms ¥; and CL2SDDNNF(NN, a) returns an sd-DNNF of clause(N) | «
mentioning all atoms in atoms(clause(N)).

For completeness, we include the definitions of width for a decomposition
tree and a CNF.

For internal node N in a decomposition tree, atoms'(N) are atoms that
appear in the left subtree of node N; atoms”(IN) are atoms that appear in the
right subtree of node N; atomsP(N) are atoms that appear in clauses attached
to leaves not in the subtree rooted at node N.

Definition 10 [6, 7] Let N be a node in a decomposition tree T'. The cluster
of node N is defined as follows:

e If N is a leaf node, then its cluster is atoms(clause(N)).

e If N is an internal node, then its cluster is (atoms'(N) N atoms” (N)) U
(atoms?(N) N atoms(N)).

The width of a decomposition tree is the size of its mazimal cluster minus one.

Definition 11 [10] Let A be a propositional theory in clausal form. The
interaction graph for A is the undirected graph G constructed as follows. The
nodes of G are the atoms of A. There is an edge between two atoms in G iff
the atoms appear in the same clause of A. The treewidth of A is the treewidth
of its connectivity graph.

The treewidth of an undirected graph is a standard notion of graph theory—see
[2] for example.

B Proofs

Proof of Theorem 1

The proof is by induction on the structure of the sd-DNNF and its correspond-
ing counting graph. We want to show that if IV is a node in the counting graph
which corresponds to subsentence « in the sd-DNNF, then the value of N rep-
resents Models# ({a} U S,), where S, is the subset of S which atoms appear
in a. If « is the given sd-DNNF, then S, = S.

The base case follows immediately from Definition 6. For the inductive
step, suppose that this holds for the conjuncts/disjuncts a; of some conjunc-
tion/disjunction a. Let N, N; be the counting graph nodes corresponding to «
and «;. We have two cases:

1. @ = A, a;: Note that S, is partitioned into S,,. Moreover, since the
conjuncts «; do not share atoms, we have that

Models#({a}US,) = Models#({/\ai}usa)
= HModels#z({ozi}USai)
= li[VAL(Ni)
= V;L(N).

2. a = \/iai: Note that S, = S,,. Moreover, since the disjuncts a; are
logically disjoint, we have that

Models#({a}US,) = Models#({\/ai}USa)

Z Models# ({ai} U Sa;)

> vaL(Ny)
= vij(N). [|

Proof of Theorem 2
First, note that by the decomposability of DNNF's:

e the function represented by the counting graph G is linear in each of its
variables V;, which correspond to a leaf node in G.

e the function will never multiply two expressions, one containing V; and
the other containing V_;.

Hence, the partial derivative with respect to V; does not depend on the value
of either V; or V..
Second, we have:

Models#(A U S) = Models#(A U S U {~l}) + Models#:(A U S U {l}).

Suppose that = € S, and let S’ = S U {=l}. The difference between the
counting graph G evaluated at S and S’ is that the leaf node V; will have the
value 1 under S and the value 0 under S’. Therefore:

Models# (A US U {~l}) = Models#(A US) + (—1)0G(S)/dV;.
Hence,
0G(8S)/0V; = Models#(AUS)— Models# (AUSU{~l}) = Models#(AUSU{l}).

This proves the first part of the theorem.
The third part follows similarly: suppose I € S and let 8" =S\ {I} U {-l}.
The difference between the counting graph G evaluated at S and S’ is that

e the leaf node V_; will have the value 0 under S and the value 1 under S’;
e the leaf node V; will have the value 1 under S and the value 0 under S'.

Hence,
Models#(AUS\{l}U{~l}) = Models# (AUS)+(+1)0G(S)/0V_+(—1)0G(S)/oV;.

We also have Models# (AUSU{l}) = Models#(AUS) since l € S, Models# (AU
SuU{i}) = 0G(S)/IV; by the first part and =l ¢ S, and, hence, Models# (A U
S) = 0G(S)/0V;. Hence,
Models#(A U S\ {l}u{-i})
= Models#(A US) + (+1)0G(S)/0V~ + (—1)0G(S)/0V;
Models#(A US) + (+1)0G(S)/0V_y + (—1) Models#(A U S)
= 0G(S)/0VL.

We now prove the second part. Let S" =S\ {I}. Then
Models#(A US') = Models#(A U S" U {l}) + Models#(A US" U {=l}).

Moreover, Models#(A U S" U {l}) = Models#(A U S U {l}), which equals
O0G(S)/0V; by the first part. Similarly, Models#(AUS'U{=l}) = Models#(AU
S\ {l} U {~i}), which equals 0G(S)/0V-; by the third part. Hence,

Models#(AUS \ {I}) = dG(S)/dV; + OG(S)/dV .. m

Proof of Theorem 4

We have shown in [6, 7] that if A is a DNNF, then (A | S) A S is also a
DNNF. That (A | S) A'S is smooth follows immediately, since atoms(a | S) =
atoms(a) — atoms(S). Hence, if atoms(a) = atoms(f), then atoms(a | S) =
atoms(f | S). That (A | S) A'S is deterministic follows from the following
property of conditioning: the models of « | S are the models of aAS after having
removed from them atoms(S).® Now suppose that atoms(a) = atoms(3),
a A B [= false, my is a model of «, and my is a model of 8. Then m; and mo
must be conflicting. Moreover, we must have two cases:

1. m; and m2 are conflicting on an atom appearing in S.
Then either my £ a | S or may =3 | S.

2. mq and me are conflicting on an atom not appearing in S.
Then models m; and my will remain to be conflicting even after removing
atons(S) from them.

Given the two cases, every model of a | S will be conflicting with every model
of B|S and, hence, (a | S)A (5| S) [false. m

Proof of Theorem 5

This theorem follows immediately from the following property of sd-DNNF:
1. models(l) = {{i}} where [l is a literal.
2. models(a; V...V ay) = models(ag) U ... U models(ay,).
3. models(a; A ... Aay) = models(ay) X ... x models(ay,).

Specifically, since literal [has a single model {l}, the minimum D-cardinality of
[is simply the D-cardinality of the model {/}. The models of a disjunction are
simply the union of its disjuncts’ models. Hence, its minimum D-cardinality
is the minimum D-cardinality of any of its disjuncts. Finally, the models of a
conjunction are simply the Cartesian product of its conjuncts’ models, which
share no variables. Therefore, the minimum D-cardinality of a conjunction is
the sum of the minimum D-cardinalities of its conjuncts. B

8To see this, represent « as a disjunction of its models, m1 V...V m,,, and then condition

on S. This conditioning will eliminate any models that are inconsistent with S. For those
models that are consistent with S, each literal which appears in S will be replaced by true.

Proof of Theorem 6

This theorem follows immediately from the following property of sd-DNNF:
1. models(l) = {{i}} where is a literal.
2. models(a; V...V ay) = models(ag) U ... U models(ay,).
3. models(a; A ... Aay) = models(ay) X ... x models(ay,).

Specifically, since a literal | has only a single model {l}, we have
models(minimize(l, D)) = {{l}} according to Definition 8 and Theorem 6. The
remaining two cases follow directly from smoothness and decomposability. B

Proof of Theorem 7

The only difference between this version and the one in [6, 7] is that we have
CL2SDDNNF(N, @) instead of clause(N) | a on Line 04, therefore, converting
a clause to an sd-DNNF at the boundary condition. The complexity and cor-
rectness (with respect to DNNF) is therefore unchanged. The only thing we
need to show is that the resulting NNF is also smooth and deterministic.

Determinism follows because the only place where a disjunction is intro-
duced by the algorithm is on Line 04 and 05. For disjunctions introduced on
Line 04, the disjuncts are logically inconsistent by definition of CL2SDDNNF(N, a).
For disjunctions introduced on Line 05, the disjuncts are logically inconsistent
since the different 3’s are logically inconsistent.

Smoothness follows by induction on the structure of a decomposition tree.
First, for disjunctions introduced on Line 04, the disjuncts mention the same
set of atoms by definition of CL2SDDNNF(V,«). Second, for disjunctions in-
troduced on Line 05, it suffice to show that atoms(CNF2SDDNNF(N,a)) =
atoms(CNF2SDDNNF(N, o)) when atoms(a) = atoms(«'), which we will show
by induction. When N is leaf, this follows from the definition of CL2SDDNNF(N,).
Suppose that N is not leaf. Then CNF2SDDNNF(V,a) =

\/ CNF2SDDNNF(Ny, e A) A CNF2SDDNNF(N,., e A B) A 3,

B
and CNF2SDDNNF(N, ') =

\/ CNF2SDDNNF (N, o' A 8) A CNF2SDDNNF (N, o' A B) A B.

B
Hence, atoms(CNF2SDDNNF (N, o)) = atoms(CNF2SDDNNF (N, «')) follows from
the induction hypothesis. B
Proof of Theorem 8

Consider the following two propositional theories from [3], which are defined
over a set of variables X;; where 1 <14,j < n:

e A;: mis a model of A iff

— m(X;;) = true for some i and all j;

— m sets an odd number of X;; to true.
e As: m is a model of Ay iff

— m(X;;) = true for some j and all i;

— m sets an even number of X;; to true.

It is shown in [3] that each of these theories have a polynomially-sized FBDD
representation, yet their disjunction cannot be represented polynomially using
FBDDs. Note also that, by definition, A; and A, are logically inconsistent. B

References

[1] Jon Barwise, editor. Handbook of Mathematical Logic. North-Holland,
Amsterdam, 1977.

[2] Hans L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal of Computing,
25(6):1305-1317, 1996.

[3] B. Bollig and I. Wegner. Complexity theoretical results on partitioned bi-
nary decision diagrams. Theory of Computing Systems, 32:487-503, 1999.

[4] R. E. Bryant. Symbolic Boolean manipulation with ordered binary deci-
sion diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

[5] Adnan Darwiche. Model-based diagnosis using structured system descrip-
tions. Journal of Artificial Intelligence Research, 8:165-222, 1998.

[6] Adnan Darwiche. Compiling knowledge into decomposable negation nor-
mal form. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), pages 284-289, 1999.

[7] Adnan Darwiche. Decomposable negation normal form. Technical Re-
port D-109, Cognitive Systems Laboratory, Computer Science Depart-
ment, UCLA, Los Angeles, Ca 90095, 1999. To appear in Journal of
ACM.

[8] Adnan Darwiche. A differential approach to inference in Bayesian net-
works. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 123-132, 2000.

[9] Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. Characterizing
diagnoses and systems. Artificial Intelligence, 56(2-3):197-222, 1992.

[10] Rina Dechter and Irina Rish. Directional resolution: The Davis-Putnam
procedure, revisited. In Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning, pages 134-145,
1994.

[11] T. Eiter and G. Gottlob. On the complexity of propositional knowledge
base revision, updates and counterfactuals. Artificial Intelligence, 57:227—
270, 1992.

[12] Kenneth D. Forbus and Johan de Kleer. Building Problem Solvers. MIT
Press, 1993.

[13] J. Gergov and C. Meinel. Efficient analysis and manipulation of OB-
DDs can be extended to FBDDs. I[EEE Transactions on Computers,
43(10):1197-1209, 1994.

[14] Masao. Simultaneous computation of functions, partial derivatives and
estimates of rounding error. Japan J. Appl. Math., 1:223-252, 1984.

[15] B. Nebel. How hard is it to revise a belief base? In D. Dubois and
H. Prade, editors, Handbook of Defeasible Reasoning and Uncertainty
Managment, pages 77-145. Kluwer Academic, 1998.

[16] Graz Rote. Path problems in graphs. Computing Suppl., 7:155-189, 1990.

[17] D. Sieling and I. Wegener. Graph driven BDDs — a new data structure
for Boolean functions. Theoretical Computer Science, 141:283-310, 1995.

