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la.eduABSTRACT. We address the problem of 
ounting the models of a proposi-tional theory, under in
remental 
hanges to the theory. Spe
i�
ally, we showthat if a propositional theory � is in a spe
ial form that we 
all smooth,deterministi
, de
omposable negation normal form (sd-DNNF), then for any
onsistent set of literals S, we 
an simultaneously 
ount, in time linear in thesize of �, the models of:� � [ S;� � [ S [ flg: for every literal l 62 S;� � [ S n flg: for every literal l 2 S;� � [ S n flg [ f:lg: for every literal l 2 S.We present two results relating to the time and spa
e 
omplexity of 
ompil-ing propositional theories into sd-DNNF. First, we show that if a 
onjun
tivenormal form (CNF) has a bounded treewidth, then it 
an be 
ompiled intoan sd-DNNF in time and spa
e whi
h are linear in its size. Se
ond, we showthat propositional theories whi
h 
an be polynomially represented using sd-DNNF form a stri
t superset of the theories whi
h 
an be polynomially rep-resented using FBDDs (a generalization of OBDDs that result from relaxingthe variable{ordering restri
tion). Finally, we dis
uss some appli
ations of the
ounting results to truth maintenan
e systems, belief revision, and model-baseddiagnosis (predi
ting the behavior of failed devi
es in parti
ular).KEYWORDS: Counting models, belief revision, truth maintenan
e, diagnosis,knowledge 
ompilation.



1 Introdu
tionA propositional senten
e is in negation normal form (NNF) if it is 
onstru
tedfrom literals using only the 
onjoin and disjoin operators [1℄. A pra
ti
al rep-resentation of NNF senten
es is in terms of rooted, dire
ted a
y
li
 graphs(DAGs), where ea
h leaf node in the DAG is labeled with a literal, true orfalse; and ea
h non-leaf (internal) node is labeled with a 
onjun
tion ^ or adisjun
tion _. Figure 1 depi
ts a rooted DAG representation of an NNF, wherethe 
hildren of ea
h node are shown below it in the graph.1We have re
ently proposed a de
omposability property, whi
h turns NNFinto a highly tra
table form, known as de
omposable negation normal form(DNNF) [6, 7℄. DNNF permits polynomial-time implementations of the follow-ing operations: de
iding satis�ability, de
iding 
lausal entailment, proje
tion2,
omputing minimum{
ardinality3, minimization a

ording to minimum{
ardinality4,and model enumeration [6, 7℄.In this paper, we identify two additional properties for DNNF, 
alled deter-minism and smoothness and show a number of results about these two prop-erties. First, given a propositional theory � in smooth, deterministi
, DNNF(denoted sd-DNNF), we show that for any 
onsistent set of literals S, we 
ansimultaneously 
ount (in time linear in the size of �) the models of:� � [ S;� � [ S [ flg: for every literal l 62 S;� � [ S n flg: for every literal l 2 S;� � [ S n flg [ f:lg: for every literal l 2 S.These 
ounting operations allow one to develop linear-time, 
omplete truthmaintenan
e systems on
e a theory is put in sd-DNNF. Moreover, we showthat sd-DNNF 
an be minimized in linear time, whi
h allows one to developlinear-time, belief revision systems, and diagnosti
 systems that 
an predi
tthe 
omplete behavior of a failed devi
e in time linear in its (sd-DNNF) modelsize. Our �nal set of results is related to the time and spa
e 
omplexity of
ompiling propositional theories into sd-DNNF. In parti
ular, we show that ifa 
onjun
tive normal form (CNF) has a bounded treewidth, then it 
an be
ompiled into an sd-DNNF in time and spa
e whi
h are linear in its size (whi
his a strengthening of our results in [7℄). Se
ond, we show that propositionaltheories whi
h 
an be polynomially represented using sd-DNNF form a stri
t1We adopt this 
onvention throughout the paper, therefore, eliminating the need to showthe dire
tionality of edges in DAGs.2To proje
t a theory on a set of atoms is to 
ompute the strongest senten
e entailed bythe theory on these atoms.3The 
ardinality of a model is the number of atoms that are set to false in the model.The minimum{
ardinality of a theory is the minimum{
ardinality of any of its models.4To minimize a theory is to produ
e another theory whose models are exa
tly theminimum-
ardinality models of the original theory.
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~A ~BB C ~D D ~CAFigure 1: A theory in sd-DNNF. The theory has eight models (theodd-
ardinality models): f:A;B;C;Dg; fA;:B;C;Dg; fA;B;:C;Dg;fA;B;C;:Dg; f:A;:B;:C;Dg; f:A;:B;C;:Dg; f:A;B;:C;:Dg; andfA;:B;:C;:Dg.superset of the theories whi
h 
an be polynomially represented using FBDDs(a generalization of OBDDs that result from relaxing the variable{orderingrestri
tion) [4, 13, 17℄.This paper is stru
tured as follows. Se
tion 2 reviews DNNF and introdu
esthe 
lass of smooth, deterministi
 DNNF. Se
tion 3 presents the new operationsfor model 
ounting based on this 
lass of propositional theories. Se
tions 4-5 dis
uss the appli
ation of these 
ounting operations to truth maintenan
e,belief revision, and model-based diagnosis. Se
tion 6 presents the 
ompilationalgorithms from CNF into sd-DNNF and dis
usses related 
omplexity results.Se
tion 7 
loses with some 
on
luding remarks. Proofs of all results are givenin Appendix B.2 Smooth, Deterministi
 DNNFWe start with the formal de�nition of NNF, whi
h is the basis of other logi
alforms we de�ne next.De�nition 1 Let X be a �nite set of propositional atoms. A senten
e in NNFis a rooted, dire
ted a
y
li
 graph (DAG) where ea
h leaf node is labeled withtrue, false, X or :X, X 2 X; and ea
h internal node is labeled with ^ or _.The size of a senten
e in NNF is the number of its DAG edges.We will now present three 
onditions on NNF. The �rst of whi
h is de
om-posability and is probably the most in
uential:De�nition 2 (De
omposability) [6, 7℄ A de
omposable NNF, written DNNF,is an NNF � satisfying the following property: for every 
onjun
tion � =



�1 ^ : : : ^ �n appearing in �, no atoms are shared between the 
onjun
ts of �;that is, atoms(�i) \ atoms(�j) = ; for i 6= j.The NNF (A _ B) ^ (:A _ C) is not de
omposable sin
e atom A is sharedby the two 
onjun
ts. But the NNF in Figure 1 is de
omposable. It has ten
onjun
tions and the 
onjun
ts of ea
h share no atoms.De
omposability is a very powerful property as it permits a number ofinteresting logi
al operations to be implemented in polynomial-time on DNNF,in
luding satis�ability, 
lausal entailement, proje
tion, minimization and modelenumeration [6, 7℄.We now introdu
e another property of NNF, whi
h permits even more op-erations to be implemented in polynomial-time:De�nition 3 (Determinism) A deterministi
 NNF, written d-NNF, is anNNF � satisfying the following property: for every disjun
tion � = �1_: : :_�nappearing in �, every pair of disjun
ts in � is logi
ally in
onsistent; that is,�i ^ �j j= false for i 6= j.For example, (A ^ B) _ C is an NNF but is not deterministi
 sin
e the dis-jun
ts A ^ B and C are 
onsistent. However, the NNF (A ^ B) _ (:A ^ C)is deterministi
.5 A deterministi
, de
omposable NNF will be denoted by d-DNNF. As we shall see, determinism permits one to 
ount the number of theorymodels in polynomial time. It also allows one to enumerate models in outputlinear time.Our last property on NNF is that of smoothness. It is not a 
ru
ial propertyex
ept that it simpli�es the formal treatment of NNF operations 
onsiderably.De�nition 4 (Smoothness) A smooth NNF, written s-NNF, is an NNF �satisfying the following property: for every disjun
tion � = �1 _ : : :_ �n in �,we have atoms(�) = atoms(�i) for every i.A smooth, deterministi
, de
omposable NNF will be denoted by sd-DNNF.The d-DNNF in Figure 1 is smooth. We 
an easily smooth an NNF asfollows. For ea
h disjun
tion � = �1 _ : : : _ �n, if atoms(�i) 6= atoms(�),we 
an repla
e the disjun
t �i in � with �i ^ VA2�(A _ :A), where � =atoms(�) � atoms(�i). This operation preserves equivalen
e, de
omposabilityand determinism of an NNF. Moreover, the size of resulting s-NNF is O(mn),where n is the size of original NNF andm is the number of propositional atoms.One way to view the sd-DNNF representation of a theory � is as a nestedfa
toring of the sum-of-produ
t representation of �. The sd-DNNF represen-tation gives us most of the powerful properties of the sum-of-produ
t repre-sentation, yet it does not require as mu
h spa
e. To appre
iate this point, welist a number of theories in Table 1 together with the size of their CNF repre-sentation, the size of their sd-DNNF representation, and the number of their5Note that although every disjun
tive normal form (DNF) is a DNNF, not every DNF isa d-DNNF.



Theory Models# CNF sd-DNNFVars#/Cls# Nodes# Edges# Nodes# Edges#Solenoid 27 11/19 42 68 84 172Valve 24 13/50 77 241 83 171Four-pipes 25 27/110 165 395 126 302Chandra21 2097152 24/21 70 102 82 176Chandra24 16777216 27/24 79 120 87 272Adder-4 256 17/57 92 258 110 241Adder-100 2200 401/1401 2204 6402 3182 8017Table 1: Some propositional theories and their CNF and sd-DNNF represen-tations. Note that CNF is a spe
ial 
lass of NNF, hen
e, the size of a CNF isreported as the size of its 
orresponding NNF representation.models.6 The theories were obtained from http://www.li
.fr/KC/. Note thatsome of these theories have a very large number of models, yet a very 
ompa
tsd-DNNF representation. In fa
t, for most theories in this 
ase, the size of thesd-DNNF representation is very 
lose to the size of the CNF representation, ifnot better.We 
lose this se
tion by showing how the models of an sd-DNNF 
an beenumerated in output linear time, whi
h is a slight improvement on the modelenumeration of DNNF [7℄. Spe
i�
ally, suppose that a model is represented asa set of literals and suppose that � is Cartesian produ
t on sets of models:fN1; : : : ; Nng � fM1; : : : ;Mmg def= fN1 [M1; : : : ; Nn [Mmg:Then the models of sd-DNNF 
an be enumerated as follows:1. models(l) = fflgg where l is a literal.2. models(�1 _ : : : _ �n) = models(�1) [ : : : [models(�n).3. models(�1 ^ : : : ^ �n) = models(�1)� : : :�models(�n).By de
omposability, two sets of partial models are multiplied by � only if theyshare no atoms. By determinism, two sets of partial models are unioned only ifthey 
ontain no dupli
ates. Hen
e, the time and spa
e 
omplexity of the abovepro
edure is linear in the number of models returned.3 Counting the Models of sd-DNNFThe polynomial-time operations on NNF whi
h are permitted by the de
om-posability property have been dis
ussed at length elsewhere [6, 7℄. In this6These sd-DNNFs have been 
omputed using a variation of the algorithm in Se
tion 6,whi
h is optimized using unit resolution.



se
tion, we dis
uss the new operations permitted by the additional propertiesof determinism and smoothness. As we shall see, these operations on sd-DNNFhave impli
ations on a number of AI appli
ations, in
luding truth maintenan
e,belief revision and diagnosis. Spe
i�
ally, given an sd-DNNF � and a set ofliterals S, we des
ribe two traversal operations ea
h taking linear time. By theend of the �rst traversal, we will be able to 
ount the models of �[ S. By theend of the se
ond traversal, we will be able to 
ount the models of:1. � [ S [ flg for every literal l 62 S;2. � [ S n flg for every literal l 2 S;3. � [ S n flg [ f:lg for every literal l 2 S.That is, on
e we traverse the sd-DNNF twi
e, we will be able to obtain ea
hof these 
ounts using 
onstant-time, lookup operations.The traversal will not take pla
e on the sd-DNNF itself, but on a se
ondarystru
ture that we 
all the 
ounting graph. The 
ounting graph of an sd-DNNFis a fun
tion of many variables represented as a rooted DAG.De�nition 5 The 
ounting graph of an sd-DNNF is a labeled, rooted DAG. It
ontains a node labeled with l for ea
h literal l, a node labeled with + for ea
hor-node, and a node labeled with � for ea
h and-node in the sd-DNNF. Thereis an edge between two nodes in the 
ounting graph i� there is an edge betweentheir 
orresponding nodes in the sd-DNNF.Figure 2 depi
ts the 
ounting graph of the sd-DNNF in Figure 1. The size of a
ounting graph is therefore equal to the size of its 
orresponding sd-DNNF. Wewill see now how su
h a graph 
an be used to perform the 
ounting operationswe are interested in.De�nition 6 The value of a node N in a 
ounting graph under a 
onsistentset of literals S is de�ned as follows:- val(N) = 0 if N is labeled with literal l and :l 2 S;- val(N) = 1 if N is labeled with literal l and :l 62 S;- val(N) = Qi val(Ni) if N is labeled with �, where Ni are the 
hildrenof N ;- val(N) =Pi val(Ni) if N is labeled with +, where Ni are the 
hildrenof N .The value of a 
ounting graph G under literals S, written G(S), is the value ofits root under S.From here on, we will use G to denote both the 
ounting graph itself and thefun
tion represented by this graph.Here's our �rst 
ounting result.
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Figure 2: A 
ounting graph of the sd-DNNF � in Figure 1 evaluated underS = A;:B. The evaluation indi
ates that �[S has two models (fA;:B;C;Dgand fA;:B;:C;:Dg in this 
ase).Theorem 1 Let � be an sd-DNNF, S be a 
onsistent set of literals, and let Gbe the 
ounting graph of �. The value of G under S is the number of modelsof � [ S: G(S) = Models#(� [ S):Note that G(S) > 0 i� �[S is 
onsistent. Therefore, by traversing the 
ountinggraph on
e we 
an test the 
onsisten
y of sd-DNNF � 
onjoined with any set ofliterals S. Figure 2 depi
ts the 
ounting graph of the sd-DNNF � in Figure 1,evaluated under the literals S = A;:B. This indi
ates that � [ fA;:Bg hastwo models.We now present the 
entral result in this paper. First, we note that whenviewing a 
ounting graph G as a fun
tion of many variables, we will use Vl todenote the variable (node) labeled with literal l. Se
ond, we 
an talk about thepartial derivative of fun
tion G with respe
t to any of its variables Vl, �G=�Vland we 
an also talk about the value of this derivative under a set of literalsS, �G(S)=�Vl. Due to the de
omposability of DNNF, the fun
tion G is linearin ea
h of its variables. Therefore, the 
hange to the 
ount G(S) as a resultof adding, removing or 
ipping a literal in S 
an be obtained from the partialderivatives, without having to re-evaluate the 
ounting graph G. This leads tothe following result:Theorem 2 Let � be an sd-DNNF, S be a 
onsistent set of literals, and let Gbe the 
ounting graph of �. We have:Assertion: When :l 62 S:Models#(� [ S [ flg) = �G(S)=�Vl:



Retra
tion: When l 2 S:Models#(� [ S n flg) = �G(S)=�Vl + �G(S)=�V:l:Flipping: When l 2 S:Models#(� [ S n flg [ f:lg) = �G(S)=�V:l:Therefore, if we 
an 
ompute the partial derivatives of G with respe
t to ea
hof its variables, and evaluate these derivatives at S, we 
an then 
ount themodels of � [ S under the assertion of new literals not in S, and under theretra
tion or 
ipping of literals in S. Figure 3 depi
ts the value of ea
h ofthese partial derivatives for the sd-DNNF in Figure 1. The 
ounting graph isevaluated under literals S = A;:B;C and the partial derivatives are shownbelow ea
h variable. A

ording to these derivatives, we have:Assertion: Models#(� [ S [ fDg) = 1 and Models#(� [ S [ f:Dg) = 0.This immediately tells us that � [ S j= D.Retra
tion: Models#(� [ S n fAg) = 1 + 1 = 2; Models#(� [ S n f:Bg) =1 + 1 = 2; and Models#(� [ S n fCg) = 1+ 1 = 2. Therefore, retra
tingany literal in S in
reases the number of models to 2.Flipping: Models#(�[SnfAg[f:Ag) = 1;Models#(�[Snf:Bg[fBg) = 1;Models#(� [ S n fCg [ f:Cg) = 1. Therefore, 
ipping any literal in Swill not 
hange the number of models (although it does 
hange the modelitself).For another example, 
onsider Figure 4(a) whi
h depi
ts an sd-DNNF for thetheory � = (A � B)^(B � C), and Figure 4(b) whi
h depi
ts its 
orresponding
ounting graph. The value of this 
ounting graph for S = ; is shown, and itspartial derivatives are also 
omputed. A

ording to this Figure, � has 4 models.Moreover, by Theorem 2:� � [ fAg has 1 model sin
e �G(S)=�VA = 1. The model is: fA;B;Cg.� �[f:Cg has 1 model sin
e �G(S)=�V:C = 1. The model is: f:A;:B;:Cg.� �[fBg has 2 models sin
e �G(S)=�VB = 2. The models are: fA;B;Cgand f:A;B;Cg.There is one missing link now: How do we 
ompute the partial derivativesof a 
ounting graph with respe
t to ea
h of its variables? This a
tually turnsout to be easy due to results in [14, 16℄ whi
h show how to evaluate andsimultaneously 
ompute all partial derivatives of a fun
tion by simply traversingits 
omputation graph in linear time. Although [16℄ 
asts su
h 
omputationin terms of summing weights of paths in su
h a graph, we present a moredire
t implementation here. In parti
ular, if we let pd(N) denote the partial



*

+

+ + + +

* * * * * * * *

*

~A ~BB C ~D D ~CA
0 0 1 1 1 1 1 0

1

1 1 1 1 1 1 10Figure 3: A 
ounting graph of the sd-DNNF � in Figure 1 evaluated underliterals S = A;:B;C, indi
ating one model of � [ S (fA;:B;C;Dg in this
ase). Partial derivatives are shown below the leaves.derivative of G with respe
t to a node N in the 
ounting graph, then pd(N) isthe summation of 
ontributions made by parents M of N :pd(N) = 8<: 1; N is the root node;XM 
pd(M;N); otherwise;where the 
ontribution of parent M to its 
hild N is 
omputed as follows:
pd(M;N) =8<: pd(M); M is a +node;pd(M) YK 6=N val(K); M is a ?node;whereK is a 
hild ofM . This 
omputation 
an be performed by �rst traversingthe 
ounting graph on
e to evaluate it, assigning val to ea
h node N , and thentraversing it a se
ond time, assigning pd for ea
h node N . We are then mainlyinterested in val(N) where N is the root node, and pd(N) where N is a leafnode.Therefore, both the value of a 
ounting graph under some literals S and thevalues of ea
h of its partial derivatives under S 
an be 
omputed by traversingthe graph twi
e. On
e to 
ompute the values, and another to 
ompute thepartial derivatives.We 
lose this se
tion by pointing out that partial di�erentiation turns outto play a key role in probabilisti
 reasoning as well. Spe
i�
ally, we present a
omprehensive framework for probabilisti
 reasoning in [8℄ based on 
ompilinga Bayesian network into a polynomial and then redu
ing a large number of
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Figure 4: An sd-DNNF for the theory A � B;B � C, and its 
orresponding
ounting graph evaluated and di�erentiated under S = ;.probabilisti
 queries into the 
omputation of partial derivatives of the 
ompiledpolynomial.4 Complete, Linear-Time Truth Maintenan
eWe now turn to some appli
ations of the results in the previous se
tion. We�rst 
onsider truth maintenan
e systems and show how our results allow us toimplement 
omplete truth maintenan
e systems whi
h take time linear in thesize of an sd-DNNF theory.A truth maintenan
e system takes a set of 
lauses � and a set of literals Sand tries to determine for ea
h literal l whether � [ S j= l. The most 
ommontruth maintenan
e system is the one based on 
losing �[S under unit resolution[12℄. Su
h a system takes linear time, but is in
omplete. Given that the set ofliterals in S 
hanges to S0, the goal of a truth maintenan
e system is then toupdate the truth of ea
h literal under the new \
ontext" S0. Sometimes, 
lausesin � are retra
ted and/or asserted. A truth maintenan
e system is expe
ted toupdate the truth of literals under su
h 
lausal 
hanges too.Our model-
ounting results allow us to implement a 
omplete truth main-tenan
e system as follows. We 
ompile the theory � into an sd-DNNF � and
onstru
t the 
ounting graph G of �. Given any set of literal S, we evaluate Gunder S and 
ompute its partial derivatives also under S. This 
an be done intime linear in the size of �. We are now ready to answer all queries expe
tedfrom a truth maintenan
e system by simple, 
onstant-time, look-up operations:Literal l is entailed by �[S i� �[S[f:lg has no models: �G(S)=�V:l = 0.Retra
ting literal l from S will render � [ S 
onsistent i� � [ S n flg has atleast one model: �G(S)=�Vl + �G(S)=�V:l > 0.Flipping literal l in S will render �[S 
onsistent i� �[S n flg[ f:lg has at



least one model: �G(S)=�V:l > 0. 7If we want to reason about the e�e
t of asserting and retra
ting 
lauses intheory �, we 
an repla
e ea
h 
lause � in � by C� � �, where C� is a newatom. We then 
ompile the extended theory � into sd-DNNF �. To assert all
lauses initially, we have to in
lude all atoms C� in the set of literals S. Theassertion/retra
tion of 
lauses 
an then be emulated by the assertion/retra
tionof atoms C�. For example, in 
ase of a 
ontradi
tion, we 
an ask whetherretra
ting a 
lause � will resolve the 
ontradi
tion by asking whether � [ S nfC�g has more than one model:�G(S)=�VC� + �G(S)=�V:C� > 0:5 Complete, Linear-Time Belief RevisionWe now turn to a se
ond major appli
ation of model 
ounting on sd-DNNF:the implementation of a very 
ommon 
lass of belief revision systems, whi
his adopted in model-based diagnosis and in 
ertain forms of default reasoning[15, 11℄. The problem here is as follows. We have a set of spe
ial atomsD = fd1; : : : ; dng in the theory � whi
h represent defaults. Typi
ally, weassume that all of these defaults are true, allowing us to draw some default
on
lusions. We then re
eive some eviden
e S (a set of 
onsistent literals)whi
h is in
onsistent with � [D. We therefore know that not all defaults aretrue and some must be retra
ted|that is, some dis will have to be repla
ed by:di in D. Our goal then is to identify a set of literals D0 su
h that1. di 2 D0 or :di 2 D0 for all i;2. � [D0 [ S is 
onsistent;3. the number of negative literals in D0 is minimized;and then report the truth of every literal under the new set of defaults D0.Note that there may be more than one set of defaults D0 that satis�es theabove properties. In su
h a 
ase, a literal holds after the revision pro
ess onlyif it holds under � [D0 [ S for every D0.This revision pro
ess is a spe
ial 
ase of what is known as 
ardinality-maximizing base revision. De
iding entailment after su
h a revision pro
essis known to be �p2[O(log n)℄-
omplete [15, 11℄.One way to formalize this revision pro
ess is throughD-minimization, whi
his a generalization of the operation of minimization that we de�ned in [7℄ (whereD 
ontains all atoms).De�nition 7 If D is a set of atoms, then the D-
ardinality of a model m,written 
ard(m;D), is the number of atoms in D that the model sets to false.7Note that the 
ipping of literals is outside the s
ope of 
lassi
al truth maintenan
esystems in the sense that they must retra
t l and then assert :l, taking linear time, toperform the above operation.



or

or or or or

and and

and and and and and and and and

~A ~BB C ~D D ~CA
1 1 1 10 0 0 0

1
1 1 10 02 2

1 10 0

1 1

1

Figure 5: Assigning a D-
ardinality to ea
h node in an sd-DNNF with D =fA;B;C;Dg.De�nition 8 Let � be a propositional theory and let D be a set of atoms in�. The D-minimization of theory �, written minimize(�;D), is de�ned as atheory with the following models:models(minimize(�;D)) = fm j= � : m0 j= � only if 
ard(m;D) � 
ard(m0;D)g:Here, the models m and m0 are over atoms(�).Therefore, the belief revision pro
ess 
an be viewed as D-minimizing �[Sand then 
losing the result under literal entailment. We will next show howto 
onjoin an sd-DNNF � with literals S, and then how to D-minimize theresult while guaranteeing that the �nal out
ome remains to be an sd-DNNF.We 
an then use the te
hnique dis
ussed in the previous se
tions to 
lose theminimization under literal entailment.First, we show how to 
onjoin an sd-DNNF � with a set of literals S toyield another sd-DNNF equivalent to �[S (whi
h we will also write as �^S).For this we need the notion of 
onditioning:De�nition 9 (Conditioning) [6, 7℄ Let � be a propositional senten
e, andlet S be a 
onsistent set of literals. The 
onditioning of � on S, written � j S,is the senten
e obtained by repla
ing ea
h atom X of � by true (resp. false) ifX (resp. :X) is a positive (resp. negative) literal of S.For example, 
onditioning the DNNF (:A^:B)_ (B ^C) on fB;Dg gives(:A^:true)_ (true^C), and 
onditioning it on f:B;Dg gives (:A^:false)_(false ^ C). In what follows, we assume that :true will be written as false andthat :false will be written as true.Theorem 3 [6, 7℄ � ^ S is equivalent to (� j S) ^ S.



Theorem 4 If � is sd-DNNF, then (� j S) ^ S is sd-DNNF.Therefore, de
omposability, determinism and smoothness are all 
losed under
onditioning. Theorem 3 
an then be used to 
onjoin any sd-DNNF with a
onsistent set of literals, to yield another sd-DNNF representing the 
onjun
-tion.We now des
ribe the pro
ess ofD-minimizing an sd-DNNF �, whi
h is donein two steps. First, we assign a 
ardinality to ea
h node in the sd-DNNF. Thenwe prune some of the edges 
onne
ting or-nodes to their 
hildren.The following two theorems follow immediately from smoothness, determin-ism, and de
omposability.Theorem 5 Consider the following fun
tion, mCard(:;D), de�ned on NNF:� mCard(l;D) = 1 if l is a negative literal whose atom is in D, and = 0otherwise.� mCard(�1 _ : : : _ �n;D) = min(mCard(�1;D); : : : ;mCard(�n;D)).� mCard(�1 ^ : : : ^ �n;D) = mCard(�1;D) + : : :+mCard(�n;D).If � is an sd-DNNF, then mCard(�;D) = minmj=�
ard(m;D) where m is amodel over atoms(�).Note that by traversing an sd-DNNF only on
e, we are able to 
omputemCard(�;D)for every node � in the sd-DNNF.Theorem 6 We have the following:� minimize(l;D) = l if l is a literal.� minimize(Wi �i;D) = Wiminimize(�i;D), where mCard(�;D) = mCard(�i;D).� minimize(Vi �i;D) = Viminimize(�i;D).Therefore, on
e we have 
omputed mCard(�;D) for every node � in an sd-DNNF, we 
an traverse the sd-DNNF on
e and end up D-minimizing it bysimply dis
onne
ting the edges between any or-node and its 
hildren that havehigher 
ardinality. Note that this minimization pro
ess will preserve de
om-posability, smoothness and determinism.Figure 5 depi
ts the result of assigning 
ardinalities to the sd-DNNF ofFigure 1, and Figure 6 depi
ts the result of deleting some of its edges. This isthe minimized sd-DNNF and it has four models: f:A;B;C;Dg; fA;:B;C;Dg;fA;B;:C;Dg; and fA;B;C;:Dg.We 
lose this se
tion by pointing out that the above results have dire
tappli
ation to model-based diagnosis, where � is the devi
e des
ription, S isthe devi
e observation and D 
ontains the health modes ok 1; : : : ; okn. Initially,we assume that all devi
e 
omponents are working normally, but then �nd someobservation S su
h that � [D = fok1; : : : ; okng [ S is in
onsistent.
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~A ~BB C ~D D ~CAFigure 6: A minimized sd-DNNF.To regain 
onsisten
y we must postulate that some of the 
omponents arenot healthy, therefore, 
ipping some of the ok is into :ok i in the set D. Assum-ing a smallest number of faults, we want to minimize the number of unhealthy
omponents needed to regain 
onsisten
y. A set D0 su
h that:1. ok i 2 D0 or :ok i 2 D0 for all i;2. � [D0 [ S is 
onsistent;3. the number of negative literals in D0 is minimized;is 
alled a minimum-
ardinality diagnosis [5, 9℄.Traditionally, the main goal of model-based diagnosis has been to enumeratesu
h diagnoses. Another pra
ti
al problem, however, whi
h has re
eived mu
hless attention in model-based diagnosis is that of predi
ting the behavior ofthe devi
e (the values of its ports) given an abnormal observation. If theobservation S is normal, then � [ D [ S is 
onsistent, and all we need isto 
lose this theory under literal entailment to �gure out the value of ea
hport in the devi
e. However, if the observation S is abnormal, then � [D [S is in
onsistent, and we need is to 
lose minimize(� [ S;D) under literalentailment as shown above. This allows us to predi
t the value of ea
h devi
eport under the (default) assumption that a smallest number of faults havea
tually materialized in the broken devi
e. All of this 
an be done in lineartime on
e the original devi
e model is made available in sd-DNNF.6 Compiling sd-DNNFWe present two 
omplexity results in this se
tion.



A => B B =>C C => D D => EFigure 7: A de
omposition tree for the theory A � B, B � C, C � D, D � E.The �rst result is a strengthening of our result in [6, 7℄, where we presentedan algorithm for 
ompiling a CNF into a DNNF. We show here that the pre-sented algorithm 
an be modi�ed slightly so it will also ensure the smoothnessand determinism of the resulting NNF, without a�e
ting its time and spa
e
omplexity.The se
ond result is a strengthening of a result we have in [7℄, where weshowed that:1. if a propositional theory has a polynomially-sized FBDD representation,then it has a polynomially-sized DNNF representation;2. the opposite is not true.Here we show that this result is true even with the addition of the smoothnessand determinism properties. Therefore, sd-DNNFs are a stri
tly more eÆ
ientrepresentation than FBDDs, whi
h are an important generalization of OBDDs(in whi
h the restri
tion of a �xed-variable ordering is removed) [4, 13, 17℄.We start with our �rst result, whi
h is an extension of a stru
ture-basedalgorithm that we introdu
ed in [6, 7℄ for 
onverting a CNF into a DNNF.The algorithm utilizes a de
omposition tree, whi
h is a binary tree the leaves ofwhi
h 
orrespond to the CNF 
lauses|see Figure 7. Ea
h de
omposition treehas a width and the 
omplexity of the algorithm is exponential only in the widthof used tree. The algorithm is given with a slight modi�
ation (on Line 04) inFigure 8. The pseudo
ode is explained in Appendix A for 
ompleteness. Ourmain 
on
ern here, however, is the following result:Theorem 7 Let N be the root of de
omposition tree T used in Figure 8. Then
nf2sddnnf(N; true) will return � in sd-DNNF, where � 
ontains the 
lausesatta
hed to the leaves of T . Moreover, the time and spa
e 
omplexity of thealgorithm is O(nw2w), where n is the number of 
lauses in � and w is thewidth of de
omposition tree T .



Algorithm 
nf2sddnnf/* N is a node in a de
omposition tree *//* � is an instantiation */
nf2sddnnf(N;�)01.   proje
t(�; atoms(N))02. if 
a
heN ( ) 6= nil, return 
a
heN ( )03. if N is a leaf node,04. then 
 
l2sddnnf(N;�)05. else 
 W�
nf2sddnnf(Nl; � ^ �)^06. 
nf2sddnnf(Nr; � ^ �) ^ �07. where � ranges over all instantiations08. of atoms(Nl) \ atoms(Nr)� atoms(�)09. 
a
heN ( ) 
10. return 
Figure 8: Compiling a CNF into sd-DNNF.The width of a de
omposition tree is de�ned in Appendix A. The 
lass ofCNF theories with bounded treewidth is also given in Appendix A, and we haveshown in [6, 7℄ that for this 
lass of theories, one 
an 
onstru
t in linear time ade
omposition tree of bounded width. Therefore, one 
an 
ompile an sd-DNNFof linear size for this 
lass of theories. Note that the CNF representation ofn-bit adders has a bounded treewidth, hen
e, su
h devi
e des
riptions 
an beeasily 
ompiled into sd-DNNF (see Table 1).We now turn to our se
ond result, relating to Binary De
ision Diagrams(BDDs) whi
h are among the most su

essful representations of propositionaltheories [4℄. A BDD is indeed only a spe
ial 
ase of an NNF, whi
h is depi
tedusing spe
ialized notation [7℄. Figure 9 depi
ts a BDD whi
h is a DAG in whi
hea
h leaf node is labeled with 0 or 1, and ea
h internal node is labeled with anatom and has two 
hildren, labeled low (dashed edge) and high (solid edge).Ea
h nodeN in a BDD whi
h is labeled with atomA represents a disjun
tion(A ^ �) _ (:A ^ �), where � is the NNF represented by the high-
hild of nodeN and � is the NNF represented by the low-
hild of node N . The leaf node0 represents false and the leaf node 1 represents true. If a BDD has n nodes,then it 
an be represented by an NNF of size O(n).It also follows immediately that ea
h NNF whi
h results from this trans-lation is deterministi
. Therefore, BDDs are a spe
ial 
ase of deterministi
NNFs. A Free BDD (FBDD) [13, 17℄ is a BDD where ea
h atom appears onlyon
e on any path from the root of the BDD to any of its leaves. It is not hardto see that this 
ondition implies that the NNF 
orresponding to an FBDD isalso de
omposable [7℄. Therefore, FBDDs are a spe
ial 
ase of deterministi
,



N

1 0

x1

x2 x2

x3

Figure 9: A BDD. High edges are solid, low edges are dashed. The NNF
orresponding to node N is: (:x2 ^ true)_ (x2 ^ (x3 ^ true_:x3 ^ false)), whi
hsimpli�es to :x2 _ (x2 ^ x3).de
omposable NNFs. Sin
e any NNF 
an be smoothed in polynomial time, weget the �rst result that any propositional theory that has a polynomial FBDDrepresentation also has a polynomial sd-DNNF representation. The opposite isnot true, however.Theorem 8 [3℄ There are propositional theories �1 and �2 su
h that:� ea
h of �1 and �2 has a polynomial FBDD representation;� �1 ^�2 is in
onsistent.� �1 _�2 has no polynomial FBDD representation.Sin
e �1 and �2 have polynomial FBDD representations, they must also havepolynomial sd-DNNF representations. Let us 
all these representations �1 and�2. It immediately follows that �1 _ �2 is de
omposable, deterministi
 NNF,whi
h 
an be smoothed in polynomial-time, leading to a polynomially-sizedsd-DNNF representation of the theory �1 _�2.We 
lose this se
tion by pointing out that sin
e smooth, deterministi
, de-
omposable NNF admits a large number of polynomial-time operations, thes
alability of this representation may be questionable (the size of theories when
ompiled into sd-DNNF). The above results, however, shed strong light on thiss
alability, showing that sd-DNNFs are stri
tly more spa
e eÆ
ient than FB-DDs, whi
h are stri
tly more spa
e eÆ
ient than OBDDs. The latter represen-tation, however, is viewed among the most pra
ti
al representations of propo-sitional theories, and has been �nding in
reasing usage in AI appli
ations, su
has planning, diagnosis and Markov de
ision pro
esses.



7 Con
lusionWe have identi�ed the 
lass of de
omposable negation normal form, DNNF, inprevious work and showed that it is highly tra
table by identifying a large setof in
uential logi
al operations whi
h take polynomial time on DNNF. In thispaper, we have identi�ed two extra properties, smoothness and determinism,that in
rease the tra
tability of DNNF, allowing one to 
ount the models of atheory in time linear in its size and under in
remental 
hanges to its 
ontent(addition/removal/
ipping of literals).Interestingly enough, two of our 
omplexity results on DNNF 
ontinue tohold for the 
lass of smooth, deterministi
 DNNF, shedding new light on thes
alability of this new representation. The new polynomial-time operationspermitted by sd-DNNF have appli
ations to building linear-time, 
ompletetruth-maintenan
e and belief-revision systems, whi
h we also explored in thispaper.A
knowledgementI wish to thank Pierre Marquis for many valuable dis
ussions on this subje
tand for his 
omments on an earlier version of this paper. This work has beenpartially supported by an NSF resear
h grant number IIS-9988543 and a MURIgrant number N00014-00-1-0617.A Converting CNF to sd-DNNFThe pseudo
ode in Figure 8 uses a number of notations that we explain below.An instantiation is a 
onsistent 
onjun
tion of literals. An instantiation overatoms � in
ludes one literal for ea
h atom in �. Ea
h node N in the de
om-position tree has an asso
iated 
a
he 
a
heN , whi
h maps instantiations intosd-DNNFs; Nl and Nr are the left and right 
hildren of node N , respe
tively;
lause(N) returns the 
lause atta
hed to leaf node N ; atoms(N) are the atomsof 
lauses appearing under node N ; atoms(�) returns the atoms appearingin instantiation �; proje
t(�;�) returns the subset of instantiation � pertain-ing to atoms �; and 
l2sddnnf(N;�) returns an sd-DNNF of 
lause(N) j �mentioning all atoms in atoms(
lause(N)).For 
ompleteness, we in
lude the de�nitions of width for a de
ompositiontree and a CNF.For internal node N in a de
omposition tree, atoms l(N) are atoms thatappear in the left subtree of node N ; atomsr(N) are atoms that appear in theright subtree of node N ; atomsp(N) are atoms that appear in 
lauses atta
hedto leaves not in the subtree rooted at node N .De�nition 10 [6, 7℄ Let N be a node in a de
omposition tree T . The 
lusterof node N is de�ned as follows:� If N is a leaf node, then its 
luster is atoms(
lause(N)).



� If N is an internal node, then its 
luster is (atoms l(N) \ atomsr(N)) [(atomsp(N) \ atoms(N)).The width of a de
omposition tree is the size of its maximal 
luster minus one.De�nition 11 [10℄ Let � be a propositional theory in 
lausal form. Theintera
tion graph for � is the undire
ted graph G 
onstru
ted as follows. Thenodes of G are the atoms of �. There is an edge between two atoms in G i�the atoms appear in the same 
lause of �. The treewidth of � is the treewidthof its 
onne
tivity graph.The treewidth of an undire
ted graph is a standard notion of graph theory|see[2℄ for example.B ProofsProof of Theorem 1The proof is by indu
tion on the stru
ture of the sd-DNNF and its 
orrespond-ing 
ounting graph. We want to show that if N is a node in the 
ounting graphwhi
h 
orresponds to subsenten
e � in the sd-DNNF, then the value of N rep-resents Models#(f�g [ S�), where S� is the subset of S whi
h atoms appearin �. If � is the given sd-DNNF, then S� = S.The base 
ase follows immediately from De�nition 6. For the indu
tivestep, suppose that this holds for the 
onjun
ts/disjun
ts �i of some 
onjun
-tion/disjun
tion �. Let N;Ni be the 
ounting graph nodes 
orresponding to �and �i. We have two 
ases:1. � = Vi �i: Note that S� is partitioned into S�i . Moreover, sin
e the
onjun
ts �i do not share atoms, we have thatModels#(f�g [ S�) = Models#(f î �ig [ S�)= Yi Models#(f�ig [ S�i)= Yi val(Ni)= val(N):2. � = Wi �i: Note that S� = S�i . Moreover, sin
e the disjun
ts �i arelogi
ally disjoint, we have thatModels#(f�g [ S�) = Models#(f_i �ig [ S�)= Xi Models#(f�ig [ S�i)



= Xi val(Ni)= val(N):Proof of Theorem 2First, note that by the de
omposability of DNNFs:� the fun
tion represented by the 
ounting graph G is linear in ea
h of itsvariables Vl, whi
h 
orrespond to a leaf node in G.� the fun
tion will never multiply two expressions, one 
ontaining Vl andthe other 
ontaining V:l.Hen
e, the partial derivative with respe
t to Vl does not depend on the valueof either Vl or V:l.Se
ond, we have:Models#(� [ S) = Models#(� [ S [ f:lg) +Models#(� [ S [ flg):Suppose that :l 62 S, and let S0 = S [ f:lg. The di�eren
e between the
ounting graph G evaluated at S and S0 is that the leaf node Vl will have thevalue 1 under S and the value 0 under S0. Therefore:Models#(� [ S [ f:lg) =Models#(� [ S) + (�1)�G(S)=�Vl:Hen
e,�G(S)=�Vl = Models#(�[S)�Models#(�[S[f:lg) = Models#(�[S[flg):This proves the �rst part of the theorem.The third part follows similarly: suppose l 2 S and let S0 = S n flg [ f:lg.The di�eren
e between the 
ounting graph G evaluated at S and S0 is that� the leaf node V:l will have the value 0 under S and the value 1 under S0;� the leaf node Vl will have the value 1 under S and the value 0 under S0.Hen
e,Models#(�[Snflg[f:lg) = Models#(�[S)+(+1)�G(S)=�V:l+(�1)�G(S)=�Vl:We also haveModels#(�[S[flg) =Models#(�[S) sin
e l 2 S,Models#(�[S [ flg) = �G(S)=�Vl by the �rst part and :l 62 S, and, hen
e, Models#(� [S) = �G(S)=�Vl. Hen
e,Models#(� [ S n flg [ f:lg)= Models#(� [ S) + (+1)�G(S)=�V:l + (�1)�G(S)=�Vl= Models#(� [ S) + (+1)�G(S)=�V:l + (�1)Models#(� [ S)= �G(S)=�V:l:



We now prove the se
ond part. Let S0 = S n flg. ThenModels#(� [ S0) =Models#(� [ S0 [ flg) +Models#(� [ S0 [ f:lg):Moreover, Models#(� [ S0 [ flg) = Models#(� [ S [ flg), whi
h equals�G(S)=�Vl by the �rst part. Similarly,Models#(�[S0[f:lg) = Models#(�[S n flg [ f:lg), whi
h equals �G(S)=�V:l by the third part. Hen
e,Models#(� [ S n flg) = �G(S)=�Vl + �G(S)=�V:l:Proof of Theorem 4We have shown in [6, 7℄ that if � is a DNNF, then (� j S) ^ S is also aDNNF. That (� j S) ^ S is smooth follows immediately, sin
e atoms(� j S) =atoms(�) � atoms(S). Hen
e, if atoms(�) = atoms(�), then atoms(� j S) =atoms(� j S). That (� j S) ^ S is deterministi
 follows from the followingproperty of 
onditioning: the models of � j S are the models of �^S after havingremoved from them atoms(S).8 Now suppose that atoms(�) = atoms(�),� ^ � j= false, m1 is a model of �, and m2 is a model of �. Then m1 and m2must be 
on
i
ting. Moreover, we must have two 
ases:1. m1 and m2 are 
on
i
ting on an atom appearing in S.Then either m1 6j= � j S or m2 6j= � j S.2. m1 and m2 are 
on
i
ting on an atom not appearing in S.Then modelsm1 andm2 will remain to be 
on
i
ting even after removingatoms(S) from them.Given the two 
ases, every model of � j S will be 
on
i
ting with every modelof � j S and, hen
e, (� j S) ^ (� j S) j= false.Proof of Theorem 5This theorem follows immediately from the following property of sd-DNNF:1. models(l) = fflgg where l is a literal.2. models(�1 _ : : : _ �n) = models(�1) [ : : : [models(�n).3. models(�1 ^ : : : ^ �n) = models(�1)� : : :�models(�n).Spe
i�
ally, sin
e literal l has a single model flg, the minimum D-
ardinality ofl is simply the D-
ardinality of the model flg. The models of a disjun
tion aresimply the union of its disjun
ts' models. Hen
e, its minimum D-
ardinalityis the minimum D-
ardinality of any of its disjun
ts. Finally, the models of a
onjun
tion are simply the Cartesian produ
t of its 
onjun
ts' models, whi
hshare no variables. Therefore, the minimum D-
ardinality of a 
onjun
tion isthe sum of the minimum D-
ardinalities of its 
onjun
ts.8To see this, represent � as a disjun
tion of its models, m1 _ : : :_mn, and then 
onditionon S. This 
onditioning will eliminate any models that are in
onsistent with S. For thosemodels that are 
onsistent with S, ea
h literal whi
h appears in S will be repla
ed by true.



Proof of Theorem 6This theorem follows immediately from the following property of sd-DNNF:1. models(l) = fflgg where l is a literal.2. models(�1 _ : : : _ �n) = models(�1) [ : : : [models(�n).3. models(�1 ^ : : : ^ �n) = models(�1)� : : :�models(�n).Spe
i�
ally, sin
e a literal l has only a single model flg, we havemodels(minimize(l;D)) = fflgg a

ording to De�nition 8 and Theorem 6. Theremaining two 
ases follow dire
tly from smoothness and de
omposability.Proof of Theorem 7The only di�eren
e between this version and the one in [6, 7℄ is that we have
l2sddnnf(N;�) instead of 
lause(N) j � on Line 04, therefore, 
onvertinga 
lause to an sd-DNNF at the boundary 
ondition. The 
omplexity and 
or-re
tness (with respe
t to DNNF) is therefore un
hanged. The only thing weneed to show is that the resulting NNF is also smooth and deterministi
.Determinism follows be
ause the only pla
e where a disjun
tion is intro-du
ed by the algorithm is on Line 04 and 05. For disjun
tions introdu
ed onLine 04, the disjun
ts are logi
ally in
onsistent by de�nition of 
l2sddnnf(N;�).For disjun
tions introdu
ed on Line 05, the disjun
ts are logi
ally in
onsistentsin
e the di�erent �'s are logi
ally in
onsistent.Smoothness follows by indu
tion on the stru
ture of a de
omposition tree.First, for disjun
tions introdu
ed on Line 04, the disjun
ts mention the sameset of atoms by de�nition of 
l2sddnnf(N;�). Se
ond, for disjun
tions in-trodu
ed on Line 05, it suÆ
e to show that atoms(
nf2sddnnf(N;�)) =atoms(
nf2sddnnf(N;�0)) when atoms(�) = atoms(�0), whi
h we will showby indu
tion. WhenN is leaf, this follows from the de�nition of 
l2sddnnf(N;�).Suppose that N is not leaf. Then 
nf2sddnnf(N;�) =_� 
nf2sddnnf(Nl; � ^ �) ^ 
nf2sddnnf(Nr; � ^ �) ^ �;and 
nf2sddnnf(N;�0) =_� 
nf2sddnnf(Nl; �0 ^ �) ^ 
nf2sddnnf(Nr; �0 ^ �) ^ �:Hen
e, atoms(
nf2sddnnf(N;�)) = atoms(
nf2sddnnf(N;�0)) follows fromthe indu
tion hypothesis.Proof of Theorem 8Consider the following two propositional theories from [3℄, whi
h are de�nedover a set of variables Xij where 1 � i; j � n:



� �1: m is a model of �1 i�{ m(Xij) = true for some i and all j;{ m sets an odd number of Xij to true.� �2: m is a model of �2 i�{ m(Xij) = true for some j and all i;{ m sets an even number of Xij to true.It is shown in [3℄ that ea
h of these theories have a polynomially-sized FBDDrepresentation, yet their disjun
tion 
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