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Abstract

We have recently proposed a tractable logi-
cal form, known as deterministic, decompos-
able negation normal form (d-DNNF). We
have shown that d-DNNF supports a num-
ber of logical operations in polynomial time,
including clausal entailment, model count-
ing, model enumeration, model minimiza-
tion, and probabilistic equivalence testing. In
this paper, we discuss another major appli-
cation of this logical form: the implemen-
tation of multi-linear functions (of exponen-
tial size) using arithmetic circuits (that are
not necessarily exponential). Specifically, we
show that each multi–linear function can be
encoded using a propositional theory, and
that each d-DNNF of the theory corresponds
to an arithmetic circuit that implements the
encoded multi–linear function. We discuss
the application of these results to factor-
ing belief networks, which can be viewed as
multi–linear functions as has been shown re-
cently. We discuss the merits of the proposed
approach for factoring belief networks, and
present experimental results showing how it
can handle efficiently belief networks that are
intractable to structure–based methods for
probabilistic inference.

1 Introduction

We have recently proposed a tractable logical form,
known as deterministic, decomposable negation nor-
mal form (d-DNNF) [9, 13]. We have shown that
d-DNNF supports a number of logical operations in
polynomial time, including clausal entailment, model
counting, model enumeration, model minimization,
and probabilistic equivalence testing [9, 13, 12]. In

this paper, we discuss another major application of
this logical form: the implementation of multi-linear
functions of exponential size in terms of arithmetic
circuits that are not necessarily exponential. A multi–
linear function is multi–variate polynomial in which
each variable has degree one—that is, the polynomial
is linear in each of its variables. An arithmetic circuit
is a rooted, directed acyclic graph in which leaf nodes
correspond to circuit inputs, internal nodes correspond
to arithmetic operations, and the root corresponds to
the circuit output. One can implement a multi–linear
function using an arithmetic circuit. This implemen-
tation is interesting because a multi–linear function
that has an exponential size may be implemented by
an arithmetic circuit whose size is not necessarily ex-
ponential. The relationship between polynomials and
arithmetic circuits that implement them is a classi-
cal subject of algebraic complexity theory [30], where
one is interested in the circuit complexity of certain
problems—that is, the size of the smallest arithmetic
circuits that can solve certain problems. Here, we will
focus on the problem of generating an arithmetic cir-
cuit that implements a given multi–linear function.

The central result in this paper has two parts. First,
we show that each multi–linear function can be en-
coded using a propositional theory. Second, we
show that each d-DNNF of the theory corresponds to
an arithmetic circuit which implements the encoded
multi–linear function. Hence, an algorithm that con-
verts a propositional theory into d-DNNF is imme-
diately an algorithm for generating arithmetic circuit
implementations of multi–linear functions.

We prove this result first and then discuss one of its
major applications to probabilistic inference. Specif-
ically, we have shown recently that a belief network
can be represented algebraically as a multi–linear func-
tion [7, 6]. We have also shown that a large num-
ber of probabilistic queries can be obtained immedi-
ately from the partial derivatives of such a function.



The problem however is that the multi–linear func-
tion has an exponential size, which makes it mostly
of semantical interest. But if we can implement this
function efficiently using an arithmetic circuit, the ap-
proach then becomes of main computational interest
since the partial derivatives of an arithmetic circuit
can all be computed simultaneously in time linear in
the circuit size [27]. Our central result in this regard is
that the multi–linear function of a belief network can
be encoded efficiently using a propositional theory in
Conjunctive Normal Form (CNF). Hence, by convert-
ing such a CNF into a d-DNNF of small size, we are
able to compile the belief network into an arithmetic
circuit, on which we can perform inference in linear
time. As it turns out, the proposed approach allows
us to efficiently compile some belief networks that are
intractable to structure–based inference algorithms for
belief networks.

This paper is structured as follows. We start by dis-
cussing deterministic, decomposable negation normal
form in Section 2. We then show how multi–linear
functions can be encoded using propositional theories
in Section 3, and how the d-DNNF of such a theory
corresponds to an arithmetic circuit implementation
of the function it encodes. Section 4 is then dedi-
cated to the application of these results to belief net-
work inference. Experimental results are given in Sec-
tion 5. We finally close with some concluding remarks
in Section 6. Proofs of theorems are delegated to Ap-
pendix A.

2 Deterministic, decomposable
negation normal form

We review in this section the logical form known as
deterministic, decomposable negation normal form (d-
DNNF) [9, 13], and discuss its relationship to the well-
known Binary Decision Diagram (BDD) [4].

A negation normal form (NNF) is a rooted, directed
acyclic graph in which each leaf node is labeled with a
literal, true or false, and each internal node is labeled
with a conjunction ∧ or disjunction ∨. Figure 1 depicts
an example. For any node n in an NNF graph, Vars(n)
denotes all propositional variables that appear in the
subgraph rooted at n, and ∆(n) denotes the formula
represented by n and its descendants. Consider the
marked node n in Figure 1(b). We have Vars(n) =
A,B and ∆(n) = (¬A ∧B) ∨ (A ∧ ¬B). A number of
properties can be stated on NNF graphs:

• Decomposability holds when
Vars(ni) ∩ Vars(nj) = ∅ for any two children ni

and nj of an and-node n. This can be verified for
the children of marked node in Figure 1(a).

• Determinism holds when ∆(ni)∧∆(nj) is logically
inconsistent for any two children ni and nj of an
or-node n. This can be verified for the children of
marked node in Figure 1(b).

• Smoothness holds when Vars(ni) = Vars(nj) for
any two children ni and nj of an or-node n. This
can be verified for the children of marked node in
Figure 1(c).

• Decision holds when the root node of the NNF
graph is a decision node. A decision node is a
node labeled with true, false, or is an or-node

having the form X ¬¬Xα β

and

or

and

, where X is a variable,
α and β are decision nodes. Here, X is called the
decision variable of the node.

• Ordering is defined only for NNFs that satisfy the
decision property. Ordering holds when decision
variables appear in the same order along any path
from the root to any leaf.

The class of decomposable negation normal form
(DNNF) has been identified and studied in [8]. The
class of deterministic, decomposable negation normal
form (d-DNNF) has been identified and studied in [9].
Decision implies determinism. The subset of NNF
that satisfies decomposability and decision (hence, de-
terminism) corresponds to Free Binary Decision Dia-
grams (FBDDs) [15, 13]. The subset of NNF that sat-
isfies decomposability, decision (hence, determinism)
and ordering corresponds to Ordered Binary Decision
Diagrams (OBDDs) [4, 13]. In BDD notation, how-

ever, the NNF fragment X ¬¬Xα β

and

or

and

is drawn more com-

pactly as α β

X

. Hence, each internal BDD node
generates three NNF nodes and six NNF edges.

Immediate from the above definitions, we have the
following strict subset inclusions OBDD ⊂ FBDD ⊂
d-DNNF ⊂ DNNF. Moreover, DNNF Â d-DNNF Â
FBDD Â OBDD, where Â stands for “more succinct
than.”1 Language L1 is more succinct than another
L2, L1 Â L2, iff any sentence α in L2 has an equivalent
sentence β in L1 whose size is polynomial in the size
of α; and the opposite is not true [13]. The smooth-
ness property is not critical computationally, as it can
be enforced in polynomial time [9], yet is quite helpful
as we see later. The reader is referred to [13] for a
comprehensive analysis of these forms and their rela-
tionships.

1That DNNF is strictly more succinct than d-DNNF
assumes the non-collapse of the polynomial heirarchy [13].
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Figure 1: A negation normal form graph that satisfies decomposability, determinism and smoothness.

An algorithm for converting propositional theories
in Conjunctive Normal Form (CNF) into determinis-
tic, decomposable negation normal form (d-DNNF) is
given in [10], and is used in the experimental results
reported in Section 5.

3 Multi–linear functions and
arithmetic circuits

We have two main goals in this section. Our first
goal is to formally introduce multi–linear functions and
their implementation using arithmetic circuits. Our
second goal is to show how d-DNNF can be used to
realize this implementation process.

A multi–linear function over variables Σ is a function
of the form t1 + t2 + . . . tn, where each term ti is a
product of distinct variables from Σ. For example, if
Σ = a, b, c, then a+bc+ac+abc is a multi–linear func-
tion. There are 2|Σ| distinct terms and 22|Σ| distinct
multi–linear functions over variables Σ.2 Some of the
multi–linear functions that come up in practice have
an exponential number of terms. For example, it is
shown in [7] that a belief network can be interpreted as
a multi–linear function that has an exponential num-
ber of terms.

To reason with such multi–linear functions, one needs
a more efficient representation. The arithmetic circuit
is such a representation. An arithmetic circuit is a
rooted, directed acyclic graph where leaves are labelled
with numbers or variables, and non-leaves are labelled
with arithmetic operations; see Figure 2 (right). We
restrict our attention here to only addition and multi-
plication operations. An arithmetic circuit implements
a multi–linear function f over variables Σ if for every
value σ of these variables, the circuit will output f(σ)
under input σ. The circuit in Figure 2 implements the

2Without loss of generality, we disallow duplicate terms
in the representation of multi–linear functions.
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Figure 2: Extracting an arithmetic circuit from a
smooth d-DNNF.

multi–linear function ac + abc + c. In the terminology
of algebraic complexity theory [30], one says that the
circuit in Figure 2 computes the function ac + abc + c.

We now turn to the process of generating an arithmetic
circuit representation of a given multi–linear function.
Our starting point is to show that every propositional
theory over variables Σ can be interpreted as encoding
some multi–linear function over the same variables Σ.
Consider the theory ∆ = (a∨¬b)∧c over variables Σ =
a, b, c as an example. This theory has three models:

• σ1 : a = true, b = false, c = true;

• σ2 : a = true, b = true, c = true; and

• σ3 : a = false, b = false, c = true.

Each one of these models σi can be interpreted as en-
coding a term ti in the following sense. A variable ap-
pears in the term ti iff the model σi sets the variable
to true. That is, the first model encodes the term ac.
The second model encodes the term abc, and the third
model encodes the term c. The theory ∆ then encodes
the multi–linear function that results from adding up
all these terms: ac + abc + c.



Definition 1 Let σ be a truth assignment over vari-
ables Σ. The term encoded by σ is defined as follows:

t(σ)
def
=

∏

σ(V )=true

V.

Let ∆ be a propositional theory over variables Σ. The
multi–linear function encoded by ∆ is defined as fol-
lows:

f(∆)
def
=

∑

σ|=∆

t(σ).

Propositional theories can then be used as a specifi-
cation language for multi–linear functions. In partic-
ular, it is possible to encode a multi–linear function
that has an exponential number of terms using a com-
pact propositional theory (which has an exponential
number of models). We show in Section 4 for example
that the multi–linear functions corresponding to belief
networks, which have an exponential number of terms,
can be encoded using CNF theories of linear size.

We now have the following central result.

Definition 2 Let ∆ be a smooth d-DNNF. The
arithmetic circuit encoded by ∆ is obtained by replac-
ing each conjunction in ∆ by multiplication, each dis-
junction by addition, and each negative literal by 1.

Figure 2 contains a smooth d-DNNF (left) and the
arithmetic circuit it encodes (right).

Theorem 1 Let ∆ be a smooth d-DNNF which en-
codes a multi-linear function f . The arithmetic circuit
encoded by ∆ implements the function f .

Therefore, if we have a multi–linear function f which
is specified/encoded by a propositional theory Γ (in
any form), we can generate a circuit implementation
of this function by converting Γ into smooth d-DNNF.
Moreover, the generated circuit has the same size as
the d-DNNF. Hence, by optimizing the size of d-DNNF
we are also optimizing the size of generated circuit.
As mentioned earlier, we have presented a CNF to d-
DNNF compiler in [10] which is quite effective on a
variety of propositional theories. We use this compiler
in Section 5 to compile belief networks into arithmetic
circuits.

4 Factoring belief networks

We have three goals in this section. Our first goal is
to review results from [7], which show that a belief
network can be interpreted as a multi–linear function,
and that a large number of probabilistic queries can be
computed immediately using the partial derivatives of
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Figure 3: A belief network with its CPTs.

this multi–linear function. The second goal is to show
that the multi–linear function of a belief network can
be encoded efficiently using a CNF. Hence, a CNF
to d-DNNF compiler can then be used immediately
for compiling a belief network into an arithmetic cir-
cuit, which can then be used for linear time inference.
Our third goal is to discuss the merits of presented ap-
proach to inference in belief networks, as compared to
structure–based inference algorithms for this purpose.

4.1 Belief networks as multi–linear functions

A belief network is a factored representation of a prob-
ability distribution [24]. It consists of two parts: a
directed acyclic graph (DAG) and a set of conditional
probability tables (CPTs). For each node X and its
parents U in the DAG, we must have a CPT that
specifies the probability distribution of X under each
instantiation u of the parents.3 Figure 3 depicts a
simple belief network which has three CPTs.

A belief network is a “representational” factorization
of a probability distribution, not a “computational”
one. That is, although the network allows us to com-
pactly represent the distribution, it needs to be pro-
cessed further if one is to obtain answers to arbitrary
probabilistic queries. Mainstream algorithms for in-
ference in belief networks operate on the network to
generate a “computational” factorization, allowing one
to answer queries in time which is linear in the factor-

3We are using the standard notation: variables are de-
noted by upper–case letters (A) and their values by lower–
case letters (a). Sets of variables are denoted by bold–face
upper–case letters (A) and their instantiations are denoted
by bold–face lower–case letters (a). For a variable A with
values true and false, we use a to denote A= true and ā to
denote A= false. Finally, for a variable X and its parents
U, we use θx|u to denote the CPT entry corresponding to
Pr(x | u).



ization size. One of the most influential computational
factorizations of a belief network is the jointree [18, 17].
Standard jointree factorizations are structure-based;
that is, their size depend only on the network topology
and is invariant to local CPT structure. This observa-
tion has triggered much research recently for alterna-
tive, finer–grained factorizations, since real-world net-
works can exhibit significant local structure that can
lead to significant computational savings [21, 5, 26, 31].

We discuss next one of the latest proposals in this di-
rection, which calls for using arithmetic circuits as a
computational factorization of belief networks [7, 6].
This proposal is based on viewing each belief network
as a multi-linear function, which can be implemented
using an arithmetic circuit. The function itself con-
tains two types of variables:

- Evidence indicators: For each variable X in the
network , we have a variable λx for each value x
of X.

- Network parameters: For each variable X and its
parents U in the network, we have a variable θx|u
for each value x of X and instantiation u of U.

The multi–linear function has a term for each instan-
tiation of the network variables, which is constructed
by multiplying all evidence indicators and network pa-
rameters that are consistent with that instantiation.
For example, the multi–linear function of the network
in Figure 3 has 8 terms corresponding to the 8 instan-
tiations of variables A, B,C. Three of these terms are
shown below:

f = λaλbλcθaθb|aθc|a +
λaλbλc̄θaθb|aθc̄|a +
. . .

λāλb̄λc̄θāθb̄|āθc̄|ā.

Given this multi–linear function f , we can answer any
query with respect to its corresponding belief net-
work. Specifically, let e be an instantiation of some
network variables, and suppose we want to compute
the probability of e. We can do this by simply eval-
uating the multi–linear function f while setting each
evidence indicator λx to 1 if x is consistent with e,
and to 0 otherwise. For the network in Figure 3,
we can compute the probability of evidence e = bc̄
by evaluating its multi–linear function above under
λa = 1,λā = 1,λb = 1, λb̄ = 0 and λc = 0, λc̄ = 1.
This leads to f = θaθb|aθc̄|a + θāθb|āθc̄|ā, which equals
the probability of b, c̄ in this case. We use f(e) to
denote the result of evaluating the function f under
evidence e as given above.

This algebraic representation of belief networks is
attractive as it allows us to obtain answers to a
large number of probabilistic queries directly from the
derivatives of the multi–linear function. For example,
the probability of any instantiation e, x, where X 6∈ E,
is nothing but the partial derivative ∂f/∂λx evaluated
at e, denoted ∂f/∂λx(e). Moreover, the probability
of any instantiation e, x,u, where U are the parents
of X, is nothing but θx|u∂f/∂θx|u(e). The ability to
compute answers to probabilistic queries directly from
such derivatives is valuable computationally since the
(first) partial derivatives of an arithmetic circuit can
all be computed simultaneously in time linear in the
circuit size [7, 27]. Therefore, by implementing the
multi–linear function as an arithmetic circuit, we can
compute a large number of probabilistic queries in time
linear the circuit size.

4.2 Encoding a belief network using a CNF

The multi-linear function of a belief network has an
exponential number of terms. Yet, one can encode it
efficiently using a CNF. The encoding is given next.

Definition 3 The CNF encoding ∆ of a belief net-
work contains two types of propositional variables. For
each network variable X, we have a propositional vari-
able λx for each value x of X. And for each network
variable X and its parents U, we have a propositional
variable θx|u for each value x of X and instantiation
u of U. For each network variable X with values
x1, . . . , xk, the encoding ∆ contains the clauses:

λx1 ∨ . . . ∨ λxk (1)
¬λxi ∨ ¬λxj , i 6= j. (2)

Moreover, for each propositional variable θx|u1,...,um
,

the encoding ∆ contains the clauses:

λx ∧ λu1 ∧ . . . ∧ λum→θx|u1,...,um
(3)

θx|u1,...,um
→λx (4)

θx|u1,...,um
→λu1 , . . . , θx|u1,...,um

→λum . (5)

Clauses 1–2 say that each term of the multi–linear
function must include exactly one of the evidence in-
dicators for X. Clauses 3–5 say that a term includes
evidence indicators λx, λu1 , . . . λum iff it includes pa-
rameter θx|u1,...,um

. Clauses 3–5 can be compactly rep-
resented as an equivalence:

λx ∧ λu1 ∧ . . . ∧ λum↔θx|u1,...,um
. (6)

Theorem 2 The CNF encoding of a belief network
encodes the multi–linear function of given network.



Given that each network variable has at most k values
and at most m parents, the CNF encoding contains
O(nmkm + nk2) clauses. O(nk2) of these clauses are
of Types 1–2, and O(nmkm) clauses are of Types 3–
5. Note that the number of CPT entries is O(nkm)
in this case. The encoding suggested by Definition 3
is practical when we do not have many values (k)
or parents (m) per variable. When either k or m
is not small enough, a much more efficient encoding
would result if one uses a constraint–based language
which allows multi-valued variables. We do not purse
this approach here though, as it would require a d-
DNNF compiler which can handle multi–valued vari-
ables. The d-DNNF compiler we used from [10] does
not handle such variables yet.

Let us now consider an example encoding for a two–
node network A → B, where A has values a, ā and B
has values b, b̄. The CNF encoding ∆ has the following
clauses:

λa ∨ λā, ¬λa ∨ ¬λā

λb ∨ λb̄, ¬λb ∨ ¬λb̄

λa↔ θa

λā↔ θā

λa ∧ λb↔θb|a
λa ∧ λb̄↔θb̄|a
λā ∧ λb↔θb|ā
λā ∧ λb̄↔θb̄|ā. (7)

This CNF has four models and encodes the multi-
linear function:

f = λaλbθaθb|a +λaλb̄θaθb̄|a +λāλbθāθb|ā +λāλb̄θāθb̄|ā.

Note that a variable such as θb|ā is interpreted as a
propositional variable when it appears in the CNF ∆,
but is interpreted as a real variable with values in [0, 1]
when it appears in the multi–linear function f .

The encoding given in Definition 3 depends only on
the network structure and the domains of its variables.
Hence, two networks with the same structure and do-
mains will generate the same encoding. We show next
how to refine this encoding in order to exploit non–
structural network properties: logical constraints and
context–specific independence.

Logical constraints. A logical constraint corre-
sponds to a conditional probability which is equal to
either 0 or 1. One can produce a more efficient CNF
encoding in the presence of logical constraints. Sup-
pose for example that a network parameter θx|u1,...,um

takes the value 0. We can then replace Clauses 3–5 by
a single clause:

¬λx ∨ ¬λu1 ∨ . . . ∨ ¬λum .

Hence, the variable θx|u1,...,um
is eliminated from the

encoding and the number of clauses is reduced. We can
do this since every term which includes the indicators
λx, λu1 , . . . , λum

is multiplied by 0. Since these terms
do not contribute to the multi–linear function value,
there is no harm in excluding them. The above clause
achieves this effect by excluding models that encode
these terms. Similarly, if θx|u1,...,um

= 1, we can omit
the parameter θx|u1,...,um

and its associated clauses 3–
5 from the encoding. The clauses only say that every
term which includes the indicators λx, λu1 , . . . , λum is
multiplied by 1 = θx|u1,...,um

. It is then safe to elimi-
nate this parameter and the corresponding clauses as
they are vacuous in this case. As we show in Section 5,
not only do logical constraints lead to a more efficient
encoding, but they also lead to a major reduction in
the size of compiled d-DNNF and its corresponding
arithmetic circuit. This is a major advantage of our
proposed approach for probabilistic inference as it can
exploit logical constraints computationally, without re-
quiring any algorithmic refinements. The exploitation
takes place at the encoding level.

Context–specific independence. Suppose we have
a variable X with two parents Y and Z in a belief net-
work. Suppose further that θx|yz = θx|yz̄. This means
that given y, our belief in x is independent of Z. This
form of independence is known as context–specific in-
dependence (CSI) [3] and is quite different from struc-
tural independence since we cannot identify it by ex-
amining the network structure. There is evidence that
CSI is very valuable computationally [5, 31], yet it
has proven hard to exploit it in the context of pure
structure–based algorithms, such as the jointree algo-
rithm [18, 17]. One can exploit CSI quite easily in the
proposed framework. Specifically, all we have to do
in the previous case is to replace the parameters θx|yz

and θx|yz̄ in the CNF encoding by a new parameter,
θx|y. Moreover, we replace the clauses for these two
parameters with λx ∧ λy↔θx|y. We show in Section 5
the dramatic effect that CSI has on the size of d-DNNF
and its corresponding arithmetic circuit.

We close this section by stressing that the CNF en-
coding of a belief network can be generated automati-
cally once we know the network structure and the do-
main of each network variable. To incorporate logical
constraints, however, we also need to know whether a
network parameter attains the value 0 or 1. And to
incorporate context–specific independence, we need to
known which network parameters are equal.

4.3 A new approach to probabilistic inference

We now summarize our proposed approach for infer-
ence in belief networks. Given a belief network N , our



approach amounts to the following steps:

1. Encode the multi–linear function of N using a
propositional theory ∆ as given in Definition 3.
Again, this can be completely automated with no
need for human intervention.

2. Compile the encoding ∆ into a smooth d-DNNF Γ
using a compiler such as the one in [10]. One can
use an OBDD package for this purpose too since
OBDDs are a special case of d-DNNFs.4 OBDDs
are less succinct though, leading to arithmetic cir-
cuits which are larger than is really needed.5

3. Extract an arithmetic circuit Υ from the smooth
d-DNNF Γ as given in Definition 2.

4. Use the circuit Υ for linear-time inference as de-
scribed in [7, 6].

We present experimental results in the following sec-
tion, which illustrate the effectiveness of our proposed
approach.

We close this section by mentioning two other ap-
proaches for generating circuit implementations of
the multi–linear functions corresponding to belief net-
works. First, we have shown in [7] that if we have
a belief network with n variables, and an elimination
order of width w for the network, then we can gener-
ate an arithmetic circuit that implements the network
multi–linear function in O(n exp(w)) time and space.6

Second, we have shown recently that a carefully con-
structed jointree and a choice of one of its clusters can
be viewed as an implicit circuit implementation of the
network multi–linear function (where separator entries
correspond to addition nodes and cluster entries cor-
respond to multiplication nodes) [23]. Moreover, we
have shown that a message-collect towards the cho-
sen cluster corresponds to a circuit evaluation, while
a message-distribute from the cluster corresponds to
a circuit differentiation. Hence, the jointree method
can be viewed as a special case of the framework pro-
posed here, where the construction of a jointree cor-
responds to a specific method for constructing circuit
implementations of the network multi–linear function.
The arithmetic circuits generated by jointrees are in-
teresting as they have a “regular” structure, allow-
ing one to represent them without having to explicitly

4We also need to smooth the OBDD, which can be done
in polynomial time [9].

5The arithmetic circuit extracted from an OBDD is
closely related to an algebraic decision diagram (ADD) [2].
See also [22, 16] for proposals on using OBDDs and ADDs
as part of algorithms for probabilistic inference.

6One way to define the width of an elimination order
is as the size of the maximum clique -1 in the jointree
constructed based on the order.

represent their edges (edges can be induced from the
jointree structure). Using jointrees however (and any
other structure–based method) for generating circuits
is much less attractive in the presence of logical con-
straints and context–specific independence. More on
this point in the following section.

5 Experimental results

We have two main goals in this section. Our first
goal is to highlight the difference between our pro-
posed approach for inference in belief networks, and
structure–based approaches, such as those based on
jointrees. In particular, we will present a few spe-
cific examples which illustrate the extent to which
the proposed approach is sensitive to non–structural
properties of belief networks: logical constraints and
context–specific independence. Our second goal in this
section is to provide statistics on the arithmetic cir-
cuits we were able to build for belief networks that
are completely outside the scope of structure–based
approaches. These networks correspond to digital cir-
cuits, with jointrees that have clique sizes > 60 (the
complexity of the jointree algorithm is exponential in
the size of maximum clique size).

We start with an example that we found to be quite re-
vealing: the printer ts belief network, distributed with
the evaluation version of HUGIN (www.hugin.com).
The network has 29 binary variables, call them
X1, . . . , X29, and 272 parameters. HUGIN compiles
the network into a jointree with 11 cliques and 10 sep-
arators. The total size of clique tables is 236, and the
total size of separator tables is 20. This means that
if we were to construct an arithmetic circuit based on
this jointree, as described in [23], the circuit will have
236 multiplication nodes and 20 addition nodes. The
circuit we obtained using our approach had only 1 mul-
tiplication node and 29 addition nodes:

∗∗∗∗

++++

λλλλx1
λλλλx1

++++

λλλλx29
λλλλx29

………….. ……..1/2 1/2

This appeared surprising at first, but it turns out that
all parameters in the printer ts network are actually
set to 1/2, which means that the network is full of
context–specific independence (this is probably not in-
tended). Hence, even though the multi–linear function



of the network has 229 terms, the function has a sim-
ple factorization: (1/2)29

∏29
i=1(λxi + λx̄i). In fact, we

would obtain this factorization, which size is linear in
the number of network variables, regardless of the be-
lief network structure. This example shows that our
approach can generate a circuit of linear size for a be-
lief network of arbitrary structure, if enough context–
specific independence exists in the network.

Our second set of examples concern the extent to
which logical constraints in a belief network affect the
size of its compiled arithmetic circuit. Here we con-
sider a few networks which are distributed with the
evaluation version of HUGIN: poker, golf, boblo, 6nt,
6hj and 3nt. Each one of these networks has a large
number of 0/1 parameters. For example, the net-
work golf has 8 multi–valued nodes, three of which
have CPTs with only 0/1 parameters. We show below
the size of arithmetic circuit we obtained for each net-
work (number of addition/multiplication nodes), us-
ing the logic–based method proposed in this paper,
in addition to the structure–based method based on
jointrees [23]. The jointrees were computed by Netica
(www.norsys.com).

Net Vars# d-DNNF–based Jointree–based
?/+nodes ?/+nodes

Poker 7 302 685
Golf 8 143 676
Boblo 22 393 494
6nt 58 1377 12378
6hj 58 1814 29176
3nt 58 6328 35902

As is clear from the above table, logical constraints
lead to significant reductions in the size of arithmetic
circuits, and our proposed method appears to natu-
rally exploit these constraints.

The computational value of logical constraints to prob-
abilistic reasoning has long been observed. In fact,
even structure–based methods have been refined to ex-
ploit such constraints. For example, a method known
as zero compression has been proposed for jointrees
[19], which reduces the size of a jointree in the pres-
ence of logical constraints.

We now consider a number of real–world belief net-
works which correspond to digital circuits that have
very high connectivity. The goal here is to reason
about the probability that any particular wire will
have a certain signal on it, given evidence about other
wires in the circuit. All we are given, in addition to
the circuit, is a probability distribution over each cir-
cuit input. A belief network for this reasoning appli-
cation is constructed in a systematic way, by includ-
ing a network variable for each wire in the circuit and

then adding an edge from each gate’s input to its out-
put. The CPT entries for each root node X in the
network—that is, θx and θx̄—are determined based
on the given distribution for the corresponding circuit
input. All other CPT entries are either 0 or 1, and are
determined based on the gate corresponding to that
CPT. Belief networks which have 0/1 parameters ev-
erywhere, except possibly for the parameters of root
variables, are known as deterministic belief networks.
Such networks appear extensively in applications re-
lating to causal and diagnostic reasoning [25]. A belief
network where every node is related to its parents by
a noisy–or model can also be easily reduced to a de-
terministic belief network [24].

We can build arithmetic circuits for deterministic be-
lief networks as described in the previous section, but
there is a much more efficient encoding method which
we describe and use next.

Definition 4 Let N be a deterministic belief network
with variables X1, . . . , Xn, where each variable has two
values: positive and negative. The CNF encoding of
network N is a propositional theory over variables
X1, . . . , Xn, which includes the clause l(x) ∨ l(u1) ∨
. . . l(um) iff the parameter θx|u1,...,um

equals 0. Here,
l(x) = ¬X, when x is the positive value of variable X,
and l(x) = X, when x is the negative value of X.

This encoding is much more efficient than the one
given in Definition 3 as it only includes one propo-
sitional variable for every network variable. It also
includes a smaller number of clauses. Extracting an
arithmetic circuit from this encoding is also a bit dif-
ferent from what is given in Definition 2.

Definition 5 Let ∆ be a smooth d-DNNF which en-
codes a deterministic belief network N over variables
X1, . . . , Xn. Let xi denote the positive value of Xi and
x̄i denote its negative value. The arithmetic circuit en-
coded by ∆ is obtained by replacing every conjunction
with a multiplication; every disjunction with an addi-
tion; every leaf node Xi with λxi ? θxi if Xi is a root
in N , and with λxi otherwise; every leaf node ¬X with
λx̄i ? θx̄i if X is a root in N , and with λx̄i otherwise.

Theorem 3 The arithmetic circuit described in Def-
inition 5 implements the multi–linear function of the
corresponding deterministic belief network.

Consider a circuit which consists of only one exclusive–
or gate, leading to the structure X1 → X3 ← X2. The
CNF encoding of this network will be as follows:

¬X1 ∨ ¬X2 ∨ ¬X3

X1 ∨X2 ∨ ¬X3



Figure 4: On the left: a smooth d-DNNF which en-
codes a deterministic belief network X1 → X3 ← X2,
where X3 is an exclusive–or of X1 and X2. On the
right: an arithmetic circuit extracted from the d-
DNNF. Here, L+i represents λxi , L-i represents λx̄i ,
P+i represents θxi , and P-i represents θx̄i .

¬X1 ∨X2 ∨X3

X1 ∨ ¬X2 ∨X3

A smooth d-DNNF for this encoding is given in Fig-
ure 4(a), and the arithmetic circuit extracted from this
d-DNNF is given in Figure 4(b). Let us now see how
this circuit can be used to answer queries. Suppose the
distribution over input X1 is θx1 = .4, θx̄1 = .6, and
the distribution over input X2 is θx2 = .7, θx̄2 = .3.
Let us now compute the probability Pr(X3 = x̄3). We
can do this by evaluating the circuit under the follow-
ing inputs λx1 = λx̄1 = λx2 = λx̄2 = λx̄3 = 1 and
λx3 = 0. The circuit evaluates to .46 under these in-
puts, which is the probability of X3 = x̄3. One can
answer a number of other queries based on the deriva-
tives of the circuit, but we refer the reader to [7, 6] for
details.

We now turn to some real–world deterministic belief
networks, which correspond to combinational and se-
quential circuits selected from the ISCAS85 and IS-
CAS89 suites [1].7 Table 1 reports on the sizes of
d-DNNFs we were able to obtain for the CNF encod-
ings of some members of these suites—more details

7Sequential circuits have been converted into combina-
tional circuits in a standard way, by cutting feedback loops
into flip-flops, treating a flip-flop’s input as a circuit output
and its output as a circuit input.

Network Vars# d-DNNF d-DNNF Max d-DNNF
nodes# edge# Clique Time (s)

c432 196 2899 19779 28 6
c499 243 691803 2919960 23 448
c880 443 3975728 7949684 24 1893
c1355 587 338959 3295293 23 809
c1908 913 6183489 12363322 45 5712
s510 236 967 5755 38 2
s953 440 11542 110266 64 14
s967 439 20645 443233 60 117
s1196 561 12554 261402 51 60
s1238 540 14512 288143 53 58
s1488 667 6338 62175 49 11
s1494 661 6827 64888 51 12
s1512 866 12560 140384 21 27
s3330 1961 358093 8889410 43 5853
s3384 1911 44487 392223 17 45

Table 1: Experimental results on deterministic belief
networks.

can be found in [10]. An arithmetic circuit can be ex-
tracted from a given d-DNNF by first smoothing the
d-DNNF, which increases its size slightly, and then ap-
plying the method of Definition 5 in a straightforward
manner.8 Some of the circuits in Table 1 are notorious
for their high connectivity [14]. Table 1 lists the cir-
cuits we experimented with, in addition to the size of
largest clique in the best jointree we could construct for
their corresponding belief networks, using both clas-
sical methods [20] and more recent ones [11]. As is
obvious from the reported clique sizes, these networks
are quite hard for structure–based algorithms, such as
the jointree algorithm. Moreover, some of them are
completely outside the scope of these algorithms, since
their complexity is exponential in clique sizes.

The success of our proposed approach on deter-
ministic belief networks appears to be consistent
with findings reported in [22], where OBDDs were
used to encode a special class of belief networks
that arise in troubleshooting applications. The ap-
proach in [22] was found to be quite favorable
when compared with two implementations of the
jointree algorithm: the Shenoy–Shafer [29] and the
HUGIN architectures [28]. We note, however, that
a number of the CNF encodings corresponding to
networks in Table 1 could not be compiled into
OBDDs, using the state–of–the–art CUDD pack-
age (http://vlsi.colorado.edu/∼fabio/CUDD/), even
though they were compiled successfully into d-DNNFs
[10].

6 Conclusion

We have recently proposed a tractable logical form,
known as deterministic, decomposable negation nor-

8To smooth a d-DNNF, we visit each or–node n and
each of its children c. If Vars(n) 6= Vars(c), we replace the

child c of n by a new child: c∧
∧

X∈Vars(n)−Vars(c)

(X ∨¬X).

Smoothing is an equivalence–preserving operation.



mal form (d-DNNF). We have shown that d-DNNF
supports a number of logical operations in polynomial
time, including clausal entailment, model counting,
model enumeration, model minimization, and proba-
bilistic equivalence testing. In this paper, we discussed
another major application of this logical form: the im-
plementation of multi-linear functions (of exponential
size) using arithmetic circuits (that are not necessarily
exponential). Specifically, we showed that each multi–
linear function can be encoded using a propositional
theory, and that each d-DNNF of the theory corre-
sponds to an arithmetic circuit that implements the
encoded multi–linear function. We discussed the ap-
plication of these results to factoring belief networks,
which can be viewed as multi–linear functions as has
been shown recently. We also discussed the merits of
the proposed approach for factoring belief networks,
and presented experimental results showing how it can
handle efficiently belief networks that are intractable
to structure–based methods for probabilistic inference.
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A Proofs

Proof of Theorem 1

We first define the function Decode1 for a propositional
theory ∆ over variables Σ:

Decode1 (∆,Σ)
def
=

∑

σ|=∆

∏

V ∈Σ

{
1, if σ(V ) = false;
V, if σ(V ) = true.

Clearly, Decode1 (∆, Σ) returns the multi–linear func-
tion encoded by ∆ according to Definition 1.

We now have the following properties of Decode1 .

Determinism and Smoothness. When α ∧ β is
inconsistent and Vars(α) = Vars(β) = Σ:

Decode1 (α ∨ β, Σ) = Decode1 (α, Σ) + Decode1 (β, Σ).

This follows immediately from the definition of
Decode1 .

Decomposability. When Vars(α)∩Vars(β) = ∅ and
Vars(α) ∪Vars(β) = Σ:

Decode1 (α ∧ β, Σ)
= Decode1 (α,Vars(α)) ? Decode1 (β,Vars(β)).

If fα is the multi–linear function encoded by α, and
if fβ is the multi-linear function encoded by β, then
fα ? fβ is the multi–linear function encoded by α ∧ β
in this case.

Negative literal. Decode1 (¬V, {V }) = 1. This fol-
lows because ¬V has only one model which sets its
only variable V to false. Hence, ¬V encodes a multi–
linear function f that contains one term that has no
variables; f = 1.

Positive literal. Decode1 (V, {V }) = V . This fol-
lows because V has only one model which sets its only
variable V to true. Hence, V encodes a multi–linear
function that contains one term V ; f = V .

The arithmetic circuit given in Definition 2 is then a
trace of the application of function Decode1 to ∆(n),
where n is the root of smooth d-DNNF ∆.

Proof of Theorem 2

We prove that the described CNF ∆ does indeed en-
code the multi–linear function f of the given belief



network by showing a one–to–one correspondence be-
tween the models of ∆ and the terms of f .

Suppose that t is a term in the multi–linear function
f . Let σ be the model that encodes t as given by
Definition 1. We want to show that σ |= ∆. The term
t contains exactly one indicator λx for each variable
X, where x is a value of X. Moreover, it contains
exactly one parameter θx|u1,...,um

for variable X, where
the indicators λx, λu1 , . . . , λum

appear in term t. The
model σ will then set the indicator λx to true and
all other indicators of X to false. It will also set the
parameter θx|u1,...,um

to true and all other parameters
of X to false. The model σ will then clearly satisfy
clauses 1–5 and, hence, σ |= ∆.

Suppose now that we have a model σ |= Σ, and let t
be the term encoded by σ as given by Definition 1. We
want to show that t is a term in the multi–linear func-
tion f . Since the model σ satisfies clauses 1–2, it must
then set exactly one indicator λx to true for every vari-
able X. The term t will then include exactly one indi-
cator for each variable X. Moreover, since the model
σ satisfies clauses 3–5, it must set to true exactly one
parameter for X: θx|u1,...,um

, where λx, λu1 , . . . , λum

are the indicators of X, U1, . . . , Um that are set to true
by σ. Hence, θx|u1,...,um

will be the only parameter of
X which is included in the term t. Hence, t is a term
in the multi–linear function f .

Proof of Theorem 3

First, note that the multi–linear function of given be-
lief network has 2n terms corresponding to the in-
stantiations of network variables. A number of these
terms, however, are multiplied by zero parameters
and can be excluded. Each term which is not mul-
tiplied by a zero conditional parameter, has the form:
λx1θx1 . . . λxmθxmλxm+1 . . . λxn , where X1, . . . , Xm are
the root variables in the belief network. This follows
since all conditional parameters that are consistent
with such a term must be equal to 1.

Let us now define the function Decode2 for a proposi-
tional theory ∆ over variables Σ and variables Γ ⊆ Σ:

Decode2 (∆,Σ,Γ)
def
=

∑

σ|=∆

∏

X∈Σ−Γ

{
λx, if σ(X) = true
λx̄, if σ(X) = false

∏

X∈Γ

{
λxθx, if σ(X) = true
λx̄θx̄, if σ(X) = false.

If ∆ is the CNF encoding a deterministic belief net-
work N , and if N has variables Σ and root variables Γ,
then Decode2 (∆,Σ,Γ) is clearly the multi–linear func-
tion of network N . This follows because the models
of ∆ are in one–to–one correspondence with the non–
vanishing terms of the multi–linear function of N .

We now have the following properties of Decode2 .

Determinism and Smoothness. When α ∧ β is
inconsistent and Vars(α) = Vars(β) = Σ:

Decode2 (α ∨ β, Σ, Γ)
= Decode2 (α, Σ, Γ) + Decode2 (β, Σ, Γ).

Decomposability. When Vars(α)∩Vars(β) = ∅ and
Vars(α) ∪Vars(β) = Σ:

Decode2 (α ∧ β, Σ, Γ)
= Decode2 (α,Vars(α), Γ ∩Vars(α)) ?

Decode2 (β,Vars(β),Γ ∩Vars(β)).

Negative literal.

Decode2 (¬V, {V }, Γ) =
{

λx̄θx̄, if X ∈ Γ;
λx̄, otherwise. .

Positive literal.

Decode2 (V, {V }, Γ) =
{

λxθx, if X ∈ Γ;
λx, otherwise. .

The arithmetic circuit given in Definition 5 is then a
trace of the application of function Decode2 to ∆(n),
where n is the root of smooth d-DNNF ∆.


