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Abstract. The DPLL procedure has found great success in SAT, where
search terminates on the first solution discovered. We show that this
procedure is equally promising in a problem where exhaustive search is
used, given that it is augmented with appropriate caching. Specifically,
we propose two DPLL-based algorithms that construct OBDDs for CNF
formulas. These algorithms have a worst-case complexity that is linear
in the number of variables and size of the CNF, and exponential only in
the cutwidth or pathwidth of the variable ordering. We show how modern
SAT techniques can be harnessed by implementing the algorithms on
top of an existing SAT solver. We discuss the advantage of this new
construction method over the traditional approach, where OBDDs for
subsets of the CNF formula are built and conjoined. Our experiments
indicate that on many CNF benchmarks, the new method runs orders of
magnitude faster than a comparable implementation of the traditional
method.

1 Introduction

The DPLL procedure [1] has found great success in the Propositional Satisfia-
bility problem (SAT), attested by a series of SAT solvers that have excelled in
the annual SAT competitions [2]. These solvers are, by nature, geared toward
finding the first solution quickly, and not particularly concerned with any search
space beyond that (solvers for Quantified Boolean Formulas are an exception).
There has been evidence, however, that DPLL can also be useful in problems re-
quiring exhaustive search, such as model counting [3, 4]. In this paper we explore
another such problem, and show that DPLL, coupled with appropriate caching,
can be the basis for an efficient program that compiles propositional theories into
Ordered Binary Decision Diagrams (OBDDs) [5]. Once theories are expressed
as OBDDs, many important queries can be answered in constant or polynomial
time, including satisfiability, equivalence, model counting, model enumeration,
and clausal entailment [5, 6].

Compiling propositional theories into OBDD has remained a nontrivial task.
Traditionally, one enlists software packages which build OBDDs in a bottom-
up fashion. For theories in Conjunctive Normal Form (CNF), this means that
OBDDs are constructed for individual clauses, and conjoined to produce the
OBDD for the whole theory. Although the complexity of OBDD conjunction is



only quadratic in the sizes of the conjuncts [5], this operation has to be repeat-
edly carried out until the final OBDD is produced. Moreover, experience has
shown that the conjuncts involved in the operation—intermediate OBDDs—are
often much larger than the OBDD to be finally built, leading to an accumula-
tion of intermediate OBDD nodes that unduly exacerbates the time and space
complexities of the construction.

Consider for example uf100-08.cnf, one of the standard benchmarks from
the Satisfiability Library [7]. This CNF has 100 variables and its (reduced)
OBDD has 176 nodes under the MINCE variable ordering [8]. Yet, to build
this OBDD using the popular CUDD package and same variable ordering, a to-
tal of 30, 640, 582 intermediate nodes are generated, taking 25 minutes on our
2.4GHz processor.

In this paper we propose two DPLL-based algorithms that, unlike the tradi-
tional method, build OBDDs for CNFs in a top-down fashion. By using a novel
caching scheme, these algorithms have a complexity that is linear in the num-
ber of variables and size of the CNF, and exponential only in the cutwidth and
pathwidth, respectively, of the variable ordering with respect to a hypergraph
abstraction of the CNF. As a bonus of this theoretical analysis, we provide an
upper bound on the OBDD size for arbitrary CNFs. We relate these complexity
results to those of some previous work that use the notions of cutwidth and
pathwidth. Our upper bound on OBDD size also offers a formal explanation
for the effectiveness of a recent class of variable ordering heuristics, which has
hiterto been explained only intuitively.

We show next how these algorithms can be implemented on top of a SAT
engine, thus harnessing the power of modern techniques, including carefully im-
plemented Unit Propagation and Nonchronological Backtracking, that underly
the success of many SAT solvers. Using multiple sets of experiments, we demon-
strate the efficiency of this program and discuss a few related issues.

The rest of the paper is organized as follows. In Section 2 we describe our
proposed algorithms for compilation of CNFs into OBDD, followed by a theo-
retical analysis of their complexities in Section 3. Section 4 is a description of
our implementation of these algorithms on top of an existing SAT engine. Sec-
tion 5 contains experimental results that demonstrate the efficiency of this new
program and support the discussion of a few related issues. Section 6 concludes
the paper.

2 Algorithms

We present in this section two DPLL-based algorithms for compiling CNF
formulas into OBDD. Fig. 1 depicts a CNF ∆ and its OBDD under variable
order x, y, z. Recall that an OBDD is a Directed Acyclic Graph (DAG) where
there are at most two sinks, labeled with 0 and 1 respectively, and every internal
node is labeled with a variable and has exactly two children low and high; it is
further required that variables appear in the same order on all paths from the
root to a sink. The semantics of this graph is as follows. Given an instantiation
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Fig. 1. A CNF and its OBDD.

I of the variables, one picks a path from the root to a sink while always choosing
the low (high) child of a node if the variable associated with that node is set to
0 (1) by I. If the path ends with the 0-sink (1-sink), the theory evaluates to 0
(1) for this variable instantiation.

In this work we consider reduced OBDDs, where there is no node whose two
children are identical, and no isomorphic sub-graphs exist. It is known that there
is a unique reduced OBDD for any propositional formula under a given variable
order [5]. As in SAT, the variable order plays an important role in complexity.
In the rest of the paper we assume that a variable order v1, . . . , vn has been
identified in a preprocessing step to be used for the OBDD. As we point out
later, efficient tools exist that generate good variable orders.

Algorithm 1 describes a naive DPLL-style procedure that converts a CNF ∆
into an OBDD by recursively converting its two restrictions, ∆|vi=0 and ∆|vi=1,
and combining the results using get node (Line 5). This is also illustrated in
Fig. 1, where ∆|x=0 and ∆|x=1 are obtained by setting x to 0 and 1, respectively,
in CNF ∆. Note that a common technique known as unique nodes is used so
that the final result will be a DAG—a reduced OBDD, not a tree. Specifically,
get node will not construct a new node in these two cases: 1) if its last two
arguments are identical, either one of them is returned immediately; 2) if there
already exists a node that is labeled with the first argument and has the last
two arguments as children (in the right order), that node is returned.

Note that this algorithm can have an exponential complexity even when the
final OBDD has a tractable size. The reason is that when different settings of
a subset of the variables lead to sub-theories that are logically equivalent, they

Algorithm 1 obdd(CNF ∆, int i): should be initially called with i = 1.

1: if there is an inconsistent clause in ∆ then
2: return 0-sink
3: if there is no uninstantiated variable in ∆ then
4: return 1-sink
5: return get node(i, obdd(∆|vi=0, i + 1), obdd(∆|vi=1, i + 1))
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Fig. 2. Cutset-based caching.

will be represented by the same OBDD node, while Algorithm 1 will convert
each of these sub-theories into OBDDs only to realize that they are all the same.

Consider, for example, variable order π = v1, v2, v3, v4, v5, v6 for CNF ∆ =
{c1, c2, c3, c4, c5} shown in Fig. 2. When Algorithm 1 is run on this CNF, it will
spawn two recursive calls on i = 2 (Line 5), because there are two instantiations
for variable v1. Note that the number of recursive calls on i = 3 will be three,
not four, because one of the four instantiations for variables v1, v2 results in an
empty clause, terminating the recursion (Lines 1 and 2). By the same token, five
recursive calls on i = 4 will be generated.

We will now show that three of these five recursive calls on i = 4 are in fact
redundant and could have been avoided by caching. Specifically, let S be the
set of nontrivial CNFs ∆′ that can be obtained by instantiating the first three
variables v1, v2, v3 in ∆, we will show that |S| ≤ 2.

Note that with respect to instantiation of variables v1, v2, v3, one can think
of the CNF as partitioned into three sets of clauses: clauses over v1, v2, v3 only,
clauses over v4, v5, v6 only, and the rest. Denote these three sets by left3 =
{c1, c2}, right3 = {c4, c5}, and cutset3 = {c3}, respectively. After the instan-
tiation of variables v1, v2, v3, clauses left3 will evaluate to a Boolean constant
because their variables have all been set. If this constant is 0, we know that ∆′ is
a trivial CNF equal to 0 and hence not in S. Otherwise ∆′ will consist of clauses
right3, which have not been altered because none of their variables have been
set, and clauses in cutset3 which must have been altered by setting variables
v1, v2, v3. This cutset, however, contains only one clause v1 + v3 + v4 + v5. After
any instantiation of variables v1, v2, v3, this clause can only be in one of two
states: either satisfied, or simplified to v4 + v5. Hence, although there are eight

get node(int i, BDD low, BDD high)

1: if low == high then
2: return low
3: if (lookup = unique[(i, low, high)]) 6= nil then
4: return lookup
5: result = new BDD(i, low, high)
6: unique[(i, low, high)] = result
7: return result



Algorithm 2 obdd(CNF ∆, int i): value(C) returns a bit vector representing the
states (satisfied or not) of clauses C in some fixed order.

1: if there is an inconsistent clause in ∆ then
2: return 0-sink
3: if there is no uninstantiated variable in ∆ then
4: return 1-sink
5: if (lookup = cachei−1[value(cutseti−1)]) 6= nil then
6: return lookup
7: result = get node(i, obdd(∆|vi=0, i + 1), obdd(∆|vi=1, i + 1))
8: cachei−1[value(cutseti−1)] = result
9: return result

Algorithm 3 obdd(CNF ∆, int i): value(S) returns a bit vector representing the
values of variables S in some fixed order.
1: if there is an inconsistent clause in ∆ then
2: return 0-sink
3: if there is no uninstantiated variable in ∆ then
4: return 1-sink
5: if (lookup = cachei−1[value(separatori−1)]) 6= nil then
6: return lookup
7: result = get node(i, obdd(∆|vi

, i + 1), obdd(∆|vi , i + 1))
8: cachei−1[value(separatori−1)] = result
9: return result

different instantiations of v1, v2, v3 and five that result in nontrivial CNFs, we
have |S| ≤ 2 = 2|cutset3|.

In general, the ith cutset of a variable order for a CNF is all clauses men-
tioning a variable at position ≤ i and one at position > i:

Definition 1. The ith cutset of variable order π = v1, . . . , vn for CNF ∆ =
{c1, . . . , cm}, denoted cutseti∆(π) or cutseti for short, is defined as {c ∈ ∆ :
∃j ≤ i < k such that clause c mentions variables vj and vk}.

As we have seen, after instantiating the first i variables, each clause in cutseti

can only be in one of two states. The states of clauses cutseti can therefore be
represented by some bit vector value(cutseti), whose evaluation provides us with
a sound equivalence test: two sub-theories, which result from two instantiations
of the first i variables, must be equivalent if cutseti evaluates to the same value
for both variable instantiations.

This equivalence test is used by Algorithm 2 to index a cache that stores
OBDDs for all sub-theories. Specifically, when two or more sub-theories are
found to have the same cutset value, only one of them will be compiled, its
OBDD cached (Line 8), and others will simply generate a cache hit and have their
OBDD immediately returned (Line 6). By virtue of this caching the complexity
of the algorithm is only exponential in the size of the largest cutset. We discuss
this complexity result in more detail in Section 3.



We now turn to Algorithm 3, which replicates Algorithm 2 except it uses a
slightly different caching scheme. For position i in the variable order, let the ith

separator be the subset of the first i variables that appear in clauses of the ith

cutset:

Definition 2. The ith separator of variable order π = v1, . . . , vn for CNF ∆ =
{c1, . . . , cm}, denoted separatori

∆(π) or separatori for short, is defined as {j ≤
i : ∃c ∈ cutseti∆(π) such that clause c mentions variable vj}.

Given an instantiation of v1, . . . , vi, it is clear that the values of variables
separatori alone determine the states of clauses cutseti, and hence the sub-
theory ∆′. One can represent the values of these variables, again, by some bit
vector and use it to index the cache. Similarly, the complexity of this algorithm
is only exponential in the size of the largest separator.

It can be seen that the value of cutseti does not determine that of separatori,
although the reverse, as we have just pointed out, is true. Separator caching
can thus be regarded as an approximation of cutset caching, in that it may
redundantly process some sub-theories that would have generated a cache hit
with cutset caching. As we discuss later, though, separators may sometimes be
preferable in practice as their evaluation can be less costly.

3 Complexity Results

The nature of the caching method used by our algorithms allows us to provide
formal guarantees on their complexities. Our results are given in three theorems
whose proofs can be found in the technical report version of this paper [9].
In stating these theorems we will refer to the size of the largest cutset as the
cutwidth, and the size of the largest separator as the pathwidth, of the variable
ordering with respect to the underlying CNF:1

Definition 3. The cutwidth of variable order π for CNF ∆, denoted cw∆(π),
is max

i
|cutseti∆(π)|.

Definition 4. The pathwidth of variable order π for CNF ∆, denoted pw∆(π),
is max

i
|separatori

∆(π)|.

We now present the following two bounds on the time and space complexities
of Algorithms 2 and 3 respectively. These results assume that get node runs
1 These definitions of cutwidth and pathwidth correspond precisely to those found in

graph theory, given that one considers a hypergraph abstraction of the CNF formula,
where each variable becomes a vertex and each clause a hyperedge enclosing its
variables, and defines the cutwidth (pathwidth) of the hypergraph as the maximum
cutwidth (pathwidth) among all vertex orderings. Specifically, when restricted to
graphs, this notion of cutwidth is equivalent to that identified and studied in [10, 11];
this notion of pathwidth is equivalent, as proven in [12], to that originally introduced
by Robertson and Seymour [13] based on the notion of path decompositions.



in constant time, but hold even when unique nodes is not used and get node
constructs a new node each time it is called.

Theorem 1. For CNF ∆ and variable order π, Algorithm 2 takes O(sn2w) time
and space, where s is the size of ∆, n is the number of variables, and w = cw∆(π).

Theorem 2. For CNF ∆ and variable order π, Algorithm 3 takes O(sn2w)
time and space, where s is the size of ∆, n is the number of variables, and
w = pw∆(π).

As we pointed out earlier, for any given position i in the variable ordering
π, the value of separatori determines that of cutseti. In other words, the num-
ber of possible values for cutseti can never be larger than that for separatori.
Therefore, the result of Theorem 1 can in fact be strengthened by defining w to
be max

i
min(|cutseti|, |separatori|). Note that this quantity is guaranteed to be

a lower bound on both cutwidth and pathwidth. We will now use it in the fol-
lowing theorem that bounds the OBDD size for arbitrary CNF formulas, where
we write OBDDπ

∆ to denote the OBDD for CNF ∆ under variable ordering π.

Theorem 3. For CNF ∆ and variable order π, size(OBDDπ
∆) ≤ n2w + 2,

where n is the number of variables and w = max
i

min(|cutseti|, |separatori|).

We will now relate these complexity bounds to two previous results that
involve similar parameters. The first of these concerns monotone 2-CNFs, which
are CNFs where all clauses have length two and contain only positive literals.
It has been proved in [14] that the size of any OBDD for a monotone 2-CNF
is bounded by n(2w + 1), where n is the number of variables and w is the
pathwidth of the reverse of its variable ordering.2 This bound may look similar
to that of Theorem 3, but is in fact a different result, because a variable ordering
and its reverse may have quite different pathwidths. Also, the proof [14] of this
result hinges on properties specific to monotone 2-CNFs and does not seem to
generalize to arbitrary CNFs.

The second related result involves a SAT algorithm presented in [15], based on
a static variable ordering π for a CNF. The time complexity of this algorithm is
claimed to be O(m2w) where m is the number of clauses and w is the cutwidth of
π. This bound is comparable to our complexity bound for Algorithm 2. However,
OBDD construction is much more difficult than, and in fact subsumes, SAT
solving for any given CNF. We are hence offering an algorithm that constructs
an OBDD for a CNF with roughly the same time complexity as the algorithm
of [15] that only solves SAT for the same CNF.

Finally, we point out that Theorem 3 offers a formal explanation for the ef-
fectiveness of a class of variable ordering techniques based on Min-Cut Linear
Arrangement that have been recently proposed [8, 16, 15]. The MINCE variable
ordering [8], for example, has been shown to result in relatively small OBDDs for

2 The word reverse is not used in [14] for this result, but their definition of the path-
width of π corresponds to the pathwidth, in our definition, of the reverse of π.



various benchmarks. According to its authors, MINCE minimizes the “average”
cutset size of the ordering. The observed effectiveness of this technique, however,
was only explained intuitively by its tendency toward grouping “connected vari-
ables together.” According to Theorem 3, variable orderings that minimize cutset
sizes are directly optimizing the upper bounds on OBDD size—a fundamental
explanation for their effectiveness in practice.

4 Implementation

It is possible to implement Algorithms 2 and 3 in their original recursive form.
One should then consider adding their own implementation of some efficient
mechanism for unit propagation, nonchronological backtracking, and other im-
portant components of DPLL search. Since the zChaff SAT solver from Princeton
University [17] is known to boast a highly optimized DPLL engine in these re-
spects [2], we have decided to implement our algorithms on top of it instead.
Like most modern SAT solvers, however, zChaff is based on an iterative ver-
sion of DPLL, and thus not immediately adaptable for Algorithms 2 and 3. The
following is pseudocode for the DPLL engine of zChaff, reproduced from [17].

while(1)

if(decide_next_branch()) // branching

while(deduce() == conflict) // deducing

blevel = analyze_conflicts(); // learning

if(blevel == 0) return UNSATISFIABLE;

else back_track(blevel); // backtracking

else return SATISFIABLE; // all variables have been set

Implementation of (an iterative equivalent of) Algorithms 2 and 3 on top of
such a SAT solver can generally be achieved in four steps, all of which are done
in our case by modifying only the decide next branch function. First, make sure
the program uses the variable order intended for the OBDD. Second, instruct the
program to find all solutions instead of one. This can be done by adding a fake
conflict clause, also known as a blocking clause, whenever a solution is found so
that the solver will backtrack and continue to search. Third, maintain a trace of
the search in the form of an OBDD (generally incomplete and nonreduced until
search terminates; see Fig. 3). That is, keep an OBDD on the side and augment
it during search so that it has a root-to-sink path corresponding to each solution
found (see Fig. 3); all other paths should end with the zero sink. When search
finishes the standard reduction algorithm [5] can be applied to obtain a reduced
OBDD, which works by iteratively merging nodes that share the same label and
children, and deleting nodes whose two children are identical.

Now that the program constructs OBDDs instead of just finding a solution,
the fourth and key step is to put caching in place, which consists of cache in-
sertion and cache lookup. According to Algorithms 2 and 3, every node cached
represents the result of compiling some sub-theory of the original CNF into
OBDD. Back to our implementation, this implies that we should only cache
nodes whose construction is complete, as there are also nodes that are partially



constructed. Consider, for example, the left half of the figure below, which de-
picts the decision stack of the program when the first solution v1v2v3v4v5v6 has
just been found for the CNF from Fig. 2:

decision level 1: v1v2 (backtrack) decision level 1: v1v2

2: v3 =========> 2: v3v4

3: v4v5v6

At this point six OBDD nodes (excluding the sinks) are constructed, as
shown in the first picture of Fig. 3, to form a path representing the solution.
Among these, however, only the last two nodes (labeled with v5 and v6) are
complete: their other child, although not yet drawn, must be the zero sink,
because instantiations v5 = 1 and v6 = 1 have been implied. The other four
nodes all have a child that has not been determined or has not been completely
constructed. The nodes labeled with v5 and v6 should therefore be the only nodes
to insert into the cache.

In general, whenever a solution is found by the SAT solver and the OBDD is
augmented so that it contains a path corresponding to the solution, we may store
in the cache all nodes on this path that come after the node labeled with the
current decision variable, indexed by their corresponding separator (or cutset)
value.

We now continue the example to illustrate the operation of cache lookup.
After a blocking clause v1 + v3 + v4 is added, the program will backtrack to
decision level 2 and insert v4 = 1 as an implication, as shown in the right
half of the figure above. Before making the next decision by instantiating v5,
the program now has an opportunity to check the cache, both at position 3
(corresponding to partial assignment v1v2v3) and position 4 (corresponding to
partial assignment v1v2v3v4). Note that cache lookup at preceding positions have
been performed at earlier decision levels, and thus need not be repeated. As it
turns out, no cache hits occur at this point.

In general, whenever the SAT solver is about to instantiate variable vk, it
may check the cache at every position i, where j ≤ i < k and vj is the pre-
vious decision variable. The key used in the lookup will then be the value of
separatori (or cutseti). In case of a cache miss the program proceeds as usual
by instantiating vk; otherwise the OBDD is augmented so that a partial path
corresponding to the current instantiation of variables v1, . . . , vk−1 exists and is
connected directly to the OBDD node returned from the cache (see Cache Hits
in Fig. 3); again a blocking clause is added so that the solver will backtrack and
continue to search.

To conclude our example with the CNF from Fig. 2, Fig. 3 shows snapshots
of the OBDD maintained by the compiler at successive solution findings. Specif-
ically, the first five shots are taken when the program has just found the first,
second, third, fourth, and fifth solution, respectively. The next two pictures de-
pict the rest of the solutions found, all through cache hits. The final picture
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Fig. 3. Partially constructed OBDDs at various stages of DPLL, before reduction.

completes the OBDD by supplying the pointers to the zero sink, which have
been implicit.

The last component of the compiler is a method to properly compute the
values of separators and cutsets. The former is straightforward: the value of
separatori is simply the current instantiation of variables separatori. The latter
demands more care. Recall that the correctness of cutset caching hinges on the
fact that other variables remain free when variables v1, . . . , vi are instantiated.
This does not hold, however, in a real-world SAT solver where unit propagation
constantly takes place: an instantiation of variables v1, . . . , vi may well have
caused variables at position > i to be set, which in turn alters the states of
clauses cutseti, obscuring their true values. To overcome this complication, the
states of clauses cutseti should be determined purely on the instantiation of
variables v1, . . . , vi, pretending that other variables were all free. This process
usually incurs overhead, because one can no longer rely on a quick check of some
flag that may have been set by the SAT solver to indicate whether a clause has
been satisfied. In our implementation, we simply walk through the literals of
each clause in the cutset to determine its state.

Finally, we note that except for dynamic variable ordering, which we have
turned off, all features of the original SAT solver remain in effect. In particular,
we retain the benefits of unit propagation using watched literals, conflict-directed
backtracking, and no-good learning.



Table 1. Performance of DPLL vs CUDD

Benchmark #CNFs OBDD Size DPLL Time (sec) CUDD Time (sec) CUDD Nodes

aim50 16 52 0.00 0.19 11178
aim100 16 102 0.00 21.86 2413645

ais 2 1770 0.45 15.51 613200
blocksworld 5 559 0.04 234.28 1759884

flat75 10 8610 0.29 1.37 99645
flat100 10 18515 1.61 15.41 639159
parity8 10 212 0.00 0.21 22280
parity16 8 674 4.20 800.29 38148066

uf75 10 1733 0.11 15.36 605228
uf100 10 1411 1.33 526.88 14154496
iscas89 18 85462 13.22 4.66 342313

Table 2. Effect of Caching on Performance of DPLL

CNF OBDD Size #Cache Hits / Entries Time (sec) Time without
Caching (sec)

flat75-1 3966 387 / 17155 0.16 1.1
flat75-2 2231 1281 / 28180 0.28 320.83
flat75-3 14057 723 / 24208 0.29 1.5
flat100-1 10385 642 / 27232 0.78 166.13
flat100-2 14806 1902 / 71336 1.57 38.83
flat100-3 2583 464 / 17006 0.15 out of memory

iscas89-s208.1 1056 190 / 2863 0.01 0.87
iscas89-s344 10073 1154 / 20225 0.07 out of memory
iscas89-s386 14078 1399 / 180620 0.65 1.09
iscas89-s510 17366 991 / 21893 0.14 64.94
iscas89-s953 438246 56394 / 2935247 38.81 out of memory

5 Experimental Results

The purpose of our experiments is threefold. First, we demonstrate the effi-
ciency of our program by running it against an implementation of the traditional
bottom-up OBDD construction method. Second, we study the effect of caching
used by our program by turning it off and observing the change in performance.
Third, we investigate the intermediate explosion encountered in bottom-up con-
struction using random CNFs with varying clauses-to-variables ratios. All our
compilations use variable orders generated by MINCE [18], which implements
the heuristic proposed in [8] for minimizing OBDD sizes. Our experiments were
run on a 2.4GHz processor with 3.7GB of RAM.

Our first set of experiments are on ten groups of benchmarks taken from the
Satisfiability Library [7] plus CNFs based on the first 18 of the ISCAS89 circuits
[19]. Our DPLL-based compiler can be set to use either cutset (Algorithm 2) or
separator (Algorithm 3) caching. For these experiments the latter has been used,



as it runs slightly faster thanks to the less expensive computation of separator
values. For the bottom-up method, we rely on the CUDD package from the Uni-
versity of Colorado [20] to build OBDDs for individual clauses and conjoin them
for the final result. Since the order in which these OBDDs are built and con-
joined affects the complexity of construction, we have adopted a clause ordering
heuristic that was proposed in [21] exactly for use with this method of OBDD
construction. This heuristic calls for clauses with higher-indexed variables to be
processed first, allowing the OBDD nodes themselves to be constructed in a
bottom-up fashion.

The results of these experiments are summarized in Table 1, where the two
programs are referred to as DPLL and CUDD, respectively. The second column
indicates the number of instances in each group of CNFs. All other figures rep-
resent group averages. The time to generate the MINCE variable order is not
included as this is a preprocessing step shared by both programs. We observe
that DPLL runs faster than CUDD by generally many orders of magnitude, ex-
cept for the last group which we discuss more toward the end of the section. The
last column gives for each group the (average) number of intermediate OBDD
nodes generated by CUDD, which, compared with the OBDD size, affords an
intuitive explanation for the inefficiency of the bottom-up construction method
on these instances. Some instances are not included in this table because CUDD
did not successfully compile them. On two of the parity16 instances, for example,
DPLL finished in 6.67 and 9.53 seconds, generating 351 and 1017 OBDD nodes,
respectively, but CUDD ran out of memory.

To ascertain the effect of caching on the performance of DPLL, we reran
it on the same instances with caching turned off. This version of DPLL would
then correspond to the original zChaff with the only change being an enforced
static variable ordering and the adding of blocking clauses for enumeration of
all solutions. We note that on some instances, no cache hits had occurred before
and, consequently, disabling caching did not cause any noticeable change in
performance. However, on other instances, especially the flat75, flat100, and
iscas89 families, performance dropped significantly after caching was turned off.
See the results in Table 2. Note that CUDD does better than DPLL on the
iscas89 family overall, but not on all the 18 instances. In particular, all of those
included in Table 2 are instances where DPLL outperforms CUDD.

We investigate next the performance of DPLL and CUDD on randomly gen-
erated 3-CNFs with varying clauses-to-variables ratios. We use mkcnf written by
Allen van Gelder with the forced satisfiable option to generate the CNFs. Our
suite of random 3-CNFs consists of those with n variables and m clauses, where
n = 40, 45, and 50, and m ranges from 10 to 5n at intervals of 5. For each n-m
combination we generate 20 instances. The OBDD sizes as well as running times
we report next represent averages over these 20 instances of each ratio. Our first
observation is illustrated in Fig. 4, which plots the OBDD size as a function of
the clauses-to-variables ratio. It can be seen that for all three groups, the OBDD
size peaks around the ratio of 2, and generally decreases toward either direction.
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Fig. 5. CUDD time (left) and explosion rate (right) as a function of clauses-to-variables
ratio, 50 variables.

It is interesting to note, as shown in Fig. 5 (left) for the group of CNFs with
50 variables, that the running time of CUDD also peaks around the ratio of 2,
and generally decreases toward either direction.

We now turn to an important issue with the bottom-up construction method
used by CUDD—the explosion of intermediate BDD nodes. Fig. 5 (right) shows,
for 50 variables, the ratio of the total number of nodes generated by CUDD
over the final OBDD size, again as a function of the clauses-to-variables ratio.
We observe that over the middle part of the spectrum, between the ratios of
0.6 and 3.6 for example, CUDD produces a low explosion rate. As a result, one
may expect CUDD to be generally efficient on CNFs with these ratios, because
relatively few dead nodes will be generated.
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Fig. 7. CUDD time (left) and explosion rate (right) without clause ordering.

In fact, our next set of data indicates that it is precisely over this central
portion of the gamut that CUDD outperforms DPLL.3 To view the transition
points to a higher precision, we magnify the two end portions of the spectrum and
leave out the middle part, as shown in Fig. 6. It can be seen that for ratios < 0.6
and those > 3.6, DPLL is more efficient than CUDD. This corresponds roughly
to what one may have predicted from Fig. 5 (right) based on the rationale that
CUDD will tend to be efficient when few dead nodes are generated, which we
have alluded to in the previous paragraph. The iscas89 family may be another
example to this effect. According to Table 1, the total number of nodes generated
by CUDD on this group of CNFs is only about four times the final OBDD size,
and CUDD outruns DPLL by about a factor of three.

For these two extremes of the spectrum, we observed the effect of caching
on DPLL by turning it off and noting the change in performance. We noticed
that for the low ratios the running time increased dramatically (e.g., from 0.06

3 For these experiments we have used a different implementation of DPLL that does
not build on zChaff. Instead, it is written recursively and hence follows more closely
the pseudocode of Algorithm 2. For reasons we are yet to identify, this recursive
implementation runs faster than the one based on zChaff on this set of random
3-CNFs.



to 1252 seconds for ratio 0.6), and for the high ratios it slighly decreased (e.g.,
from 0.50 to 0.34 for ratio 3.6). We abscribe this phenomenon to the fact that at
the low ratios there are an extremely large number of models for the CNF and
hence many opportunities for cache hits, whereas at the high ratios models are
sparse and one does not expect many cache hits, if at all, and the overhead of
caching can slow the program down.

Finally, we offer a few more words on the two OBDD construction methods
that we have been comparing. DPLL represents a top-down approach, where
global properties of the CNF formula are exploited throughout the construc-
tion. The traditional bottom-up method using CUDD, on the other hand, works
locally on subsets of the CNF at any given time. However, the particular im-
plementation we have reported on does not correspond to the pure bottom-up
approach, because the clause ordering heuristic we have used effectively gives it
also a global view of the CNF structure, and hence some benefits of the top-down
approach. In fact, in an additional set of experiments on the random 3-CNFs
we turned off clause ordering and noted that the performance of the bottom-up
method was now much worse. Fig. 7 (left) plots the running time of CUDD
without clause ordering on the 50-variable 3-CNFs, which, instead of having a
bell shape, now increases with the number of clauses. Note that the maximum
value of the curve has increased from less than 4 seconds (Fig. 5) to over 150
seconds. The explosion rates have also increased significantly; see Fig. 7 (right)
compared with Fig. 5 (right).

6 Conclusion

We have proposed two DPLL-based algorithms that compile CNF formulas into
OBDDs. Theoretical guarantees have been provided on the complexities of these
algorithms, and in the process an upper bound has been proved on the OBDD
size for arbitrary CNF formulas. We have related these results to some previous
complexity bounds that use similar structural parameters. We have described
an implementation of these algorithms on top of an existing SAT engine, and
demonstrated its efficiency in practice over the traditional bottom-up OBDD
construction method on many standard benchmarks. Using randomly generated
3-CNFs, we study the relationships between the OBDD size, CUDD explosion
rate, the performance of CUDD versus DPLL, and the effect of caching for
varying clauses-to-variables ratios.
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