
A Differential Semantics for Jointree

Algorithms

James D. P ark and Adnan Darwiche

Computer Science Department
Univ ersity of California, Los Angeles, CA 90095

{jd,darwiche}@cs.ucla.edu

Abstract

A new approach to inference in belief networks has been recently
proposed, which is based on an algebraic representation of belief
networks using multi–linear functions. According to this approach,
the key computational question is that of representing multi–linear
functions compactly, since inference reduces to a simple process of
ev aluating and differentiating such functions. W e show here that
mainstream inference algorithms based on jointrees are a special
case of this approach in a v ery precise sense. W e use this result to
prov e new properties of jointree algorithms, and then discuss some
of its practical and theoretical implications.

1 Introduction

It was recently shown that the probability distribution of a belief network can be
represented using a multi–linear function, and that most probabilistic queries of
interest can be retriev ed directly from the partial deriv ativ es of this function [2].
Although the multi–linear function has an exponential number of terms, it can
be represented using a small arithmetic circuit in certain situations [3].1 Once
a belief network is represented as an arithmetic circuit, probabilistic inference is
then performed by ev aluating and differentiating the circuit, using a v ery simple
procedure which resembles back–propagation in neural networks.

W e show in this paper that mainstream inference algorithms based on jointrees [14,
8] are a special-case of the arithmetic–circuit approach proposed in [2]. Specifically,
we show that each jointree is an implicit representation of an arithmetic circuit; that
the inward–pass in jointree propagation ev aluates this circuit; and that the outward–
pass differentiates the circuit. Using these results, we prov e new useful properties
of jointree propagation. W e also suggest a new interpretation of the process of
factoring graphical models into jointrees, as a process of factoring exponentially–
sized multi–linear functions into arithmetic circuits of smaller size.

1For example, it was shown recently that real–world b elief networks with treewidth up
to 60 can b e compiled into arithmetic circuits with few thousand nodes [3]. Such networks
hav e local structure, and are outside the scope of mainstream algorithms for inference in
b elief networks whose complexity is exponential in treewidth.

A B

true true θb|a = .2

true false θ
b̄|a = .8

false true θb|ā = .7

false false θ
b̄|ā = .3

A

true θa = .6

false θā = .4

A C

true true θc|a = .8

true false θc̄|a = .2

false true θc|ā = .15

false false θc̄|ā = .85

Figure 1: The CPTs of belief network B ← A → C.

This paper is structured as follows. Sections 2 and 3 are dedicated to a review of
inference approaches based on arithmetic circuits and jointrees. Section 4 shows
that the jointree approach is a special case of the arithmetic–circuit approach, and
discusses some practical implications of this finding. Finally, Section 5 closes with a
new perspective on factoring graphical models. Proofs of all theorems can be found
in the long version of this paper [11].

2 Belief netw orks as m ulti–linear functions

A belief network is a factored representation of a probability distribution. It consists
of two parts: a directed acyclic graph (D A G) and a set of conditional probability
tables (CPTs). For each node X and its parents U, we have a CPT that specifies
the distribution of X given each instantiation u of the parents; see Figure 1.2

A belief network is a representational factorization of a probability distribution,
not a computational one. That is, although the network compactly represents the
distribution, it needs to be processed further if one is to obtain answers to arbitrary
probabilistic queries. Mainstream algorithms for inference in belief networks oper-
ate on the network to generate a computational factorization, allowing one to answer
queries in time which is linear in the factorization size. A most influential compu-
tational factorization of belief networks is the jointree [14, 8, 6]. Standard jointree
factorizations are structure–based: their size depend only on the network topol-
ogy and is invariant to local CPT structure. This observation has triggered much
research for alternative, finer–grained factorizations, since real-world networks can
exhibit significant local structure that leads to smaller factorizations if exploited.

W e discuss next one of the latest proposals in this direction, which calls for using
arithmetic circuits as a computational factorization of belief networks [2]. This
proposal is based on viewing each belief network as a multi–linear function, which
can be represented compactly using an arithmetic circuit. The multi–linear function
itself contains two types of variables. First, evidence indicators, where for each
variable X in the network , we have a variable λx for each value x of X. Second,
network parameters, where for each variable X and its parents U in the network,
we have a variable θx|u for each value x of X and instantiation u of U.

The multi–linear function has a term for each instantiation of the network variables,
which is constructed by multiplying all evidence indicators and network parameters
that are consistent with that instantiation. For example, the multi–linear function
of the network in Figure 1 has eight terms corresponding to the eight instantiations
of variables A,B,C: f = λaλbλcθaθb|aθc|a+λaλbλc̄θaθb|aθc̄|a+. . .+λāλb̄λc̄θāθb̄|āθc̄|ā.
W e will often refer to such a multi–linear function as the network polynomial.

2Variables are denoted by upper–case letters (A) and their v alues by lower–case letters
(a). Sets of v ariables are denoted by bold–face upper–case letters (A) and their instanti-
ations are denoted by bold–face lower–case letters (a). For a v ariable A with v alues true
and false, we use a to denote A= true and ā to denote A= false. Finally , for a v ariable X

and its parents U, we use θx|u to denote the CPT entry corresponding to Pr(x | u).

* *

+

+ +

*** *

�� �� �
�

�
�

�� �
�

���� �
����

���
�
���

BCD

λλλλBλλλλDθθθθD|BC

CE

λλλλCλλλλEθθθθE|C

ABC

λλλλAθθθθAθθθθB|AθθθθC|A

A

CB

D E

Figure 2: On the left: An arithmetic circuit which computes the function
λaλbθaθb|a+ λaλb̄θaθb̄|a+ λāλbθāθb|ā+ λāλb̄θāθb̄|ā. The circuit is a D AG, where
leaf nodes represent function variables and internal nodes represent arithmetic op-
erations. On the right: A belief network structure and its corresponding jointree.

Given the network polynomial f , we can answer any query with respect to the
belief network. Specifically, let e be an instantiation of some network variables,
and suppose we want to compute the probability of e. W e can do this by simply
evaluating the polynomial f while setting each evidence indicator λx to 1 if x
is consistent with e, and to 0 otherwise. For the network in Figure 1, we can
compute the probability of evidence e = bc̄ by evaluating its polynomial above under
λa = 1,λā = 1,λb = 1, λb̄ = 0 and λc = 0, λc̄ = 1. This leads to θaθb|aθc̄|a+θāθb|āθc̄|ā,
which equals the probability of b, c̄ in this case. W e use f(e) to denote the result
of evaluating the polynomial f under evidence e as given above.

This algebraic representation of belief networks is attractive as it allows us to obtain
answers to a large number of probabilistic queries directly from the derivatives of
the network polynomial [2]. For example, the posterior marginal Pr(x|e) for a

variable X 6∈ E equals 1
f(e)

∂ f(e)
∂ λx

, where ∂ f(e)
∂ λx

is the partial derivative of f wrt λx

evaluated at e. Second, the probability of evidence e after having retracted the

value of some variable X from e, Pr(e−X), equals
∑

x
∂ f(e)
∂ λx

. Third, the posterior

marginal Pr(x,u|e) for a variable X and its parents U equals
θ

x|u

f(e)
∂ f(e)
∂ θ

x|u
.

The network polynomial has an exponential number of terms, yet one can represent
it compactly in certain cases using an arithmetic circuit; see Figure 2. The (first)
partial derivatives of an arithmetic circuit can all be computed simultaneously in
time linear in the circuit size [2, 12]. The procedure resembles the back–propagation
algorithm for neural networks as it evaluates the circuit in a single upward–pass,
and then differentiates it through a single downward–pass.

The main computational question is then that of generating the smallest arithmetic
circuit that computes the network polynomial. A structure–based approach for
this has been given in [2], which is guaranteed to generate a circuit whose size is
bounded by O(n exp(w)), where n is the number of nodes in the network and w
is its treewidth. A more recent approach, however, which exploits local structure
has been presented in [3] and was shown experimentally to generate small arith-
metic circuits for networks whose treewidth is up to 60. As we show in the rest of
this paper, the process of factoring a belief network into a jointree is yet another
method for generating an arithmetic circuit for the network. Specifically, we show
that the jointree structure is an implicit representation of such a circuit, and that
jointree propagation corresponds to circuit evaluation and differentiation. More-
over, the difference between Shenoy–Shafer and Hugin propagation turns out to be
a difference in the numeric scheme used for circuit differentiation [11].

3 Join tree Algorithms

We now review jointree algorithms, which are quite influential in graphical models.
Let B be a belief network. A jointree for B is a pair (T ,L), where T is a tree and
L is a function that assigns labels to nodes in T . A jointree must satisfy three
properties: (1) each label L(i) is a set of variables in the belief network; (2) each
network variable X and its parents U (a family) must appear together in some label
L(i); (3) if a variable appears in the labels of i and j, it must also appear in the
label of each node k on the path connecting them. The label of edge ij in T is
defined as L(i) ∩ L(j). We will refer to the nodes of a jointree (and sometimes their
labels) as clusters. We will also refer to the edges of a jointree (and sometimes their
labels) as separators. Figure 2 depicts a belief network and one of its jointrees.

Jointree algorithms start by constructing a jointree for a given belief network [14, 8,
6]. They also associate tables (also called potentials) with clusters and separators.3

The conditional probability table (CPT or CP Table) of each variable X with parents
U, denoted θX|U, is assigned to a cluster that contains X and U. In addition, an
evidence table over variable X, denoted λX , is assigned to a cluster that contains X.
Figure 2 depicts the assignments of evidence and CP tables to clusters. Evidence e

is entered into a jointree by initializing evidence tables as follows: we set λX(x) to
1 if x is consistent with evidence e, and we set λX(x) to 0 otherwise.

Given some evidence e, a jointree algorithm propagates messages between clusters.
After passing two message per edge in the jointree, one can compute the marginals
Pr(C, e) for every cluster C. There are two main methods for propagating messages
in a jointree: the Shenoy–Shafer architecture [14] and the Hugin architecture [8].

Shenoy–Shafer propagation proceeds as follows [14]. First, evidence e is then entered
into the jointree. A cluster is then selected as the root and message propagation
proceeds in two phases, inward and outward. In the inward phase, messages are
passed toward the root. In the outward phase, messages are passed away from the
root. Cluster i sends a message to cluster j only when it has received messages
from all its other neighbors k. A message from cluster i to cluster j is a table Mij

defined as follows: Mij =
∑

C\S φi

∏
k 6=j Mki, where C are the variables of cluster

i, S are the variables of separator ij, and φi is the multiplication of all evidence
and CP tables assigned to cluster i. Once message propagation is finished, we have
Pr(C, e) = φi

∏
k Mki, where C are the variables of cluster i.

Hugin propagation proceeds similarly to Shenoy–Shafer by entering evidence; select-
ing a cluster as root; and propagating messages in two phases, inward and outward
[8]. The Hugin method, however, differs in some major ways. It maintains a table
Φij with each separator, whose entries are initialized to 1s. It also maintains a table
Φi with each cluster i, initialized to the multiplication of all CPTs and evidence
tables assigned to cluster i. Cluster i passes a message to neighboring cluster j only
when i has received messages from all its other neighbors k. When cluster i is ready
to send a message to cluster j, it does the following. First, it saves the table of
separator Φij into Φold

ij . Second, it computes a new separator table Φij =
∑

C\S Φi,

where C are the variables of cluster i and S are the variables of separator ij. Third,

it computes a message to cluster j: Mij =
Φij

Φold
ij

. Finally, it multiplies the computed

message into the table of cluster j: Φj = ΦjMij . After the inward and outward–
passes of Hugin propagation are completed, we have: Pr(C, e) = Φi, where C are
the variables of cluster i.

3A table is an array which is indexed by v ariable instantiations. Sp ecifically , a table φ
ov er v ariables X is indexed by the instantiations x of X. Its entries φ(x) are in [0, 1].

4 Join trees as arithmetic circuits

We now show that every jointree (together with a root cluster and a particular
assignment of evidence and CP tables to clusters) corresponds precisely to an arith-
metic circuit that computes the network polynomial. We also show that the inward–
pass of the Shenoy–Shafer architecture evaluates this circuit, while the outward–pass
differentiates it. We show a similar result for the Hugin architecture.

Definition 1 Given a root cluster, a particular assignment of evidence and CP
tables to clusters, the arithmetic circuit embedded in a jointree is defined as follows:4

Nodes: The circuit includes: an output addition node f ; an addition node s for each
instantiation of a separator S; a multiplication node c for each instantiation of a
cluster C; an input node λx for each instantiation x of variable X; an input node
θx|u for each instantiation xu of family XU.

Edges: The children of the output node f are the multiplication nodes generated by
the root cluster; the children of an addition node s are all compatible nodes generated
by the child cluster; the children of a multiplication node c are all compatible nodes
generated by child separators, and all compatible input nodes assigned to cluster C.

Hence, separators contribute addition nodes and clusters contribute multiplication
nodes. Moreover, the structure of the jointree dictates how these nodes are con-
nected into a circuit. The arithmetic circuit in Figure 2 is embedded in the jointree
A − AB, with cluster A as the root, and with tables λA,θA assigned to cluster A
and tables λB and θB|A assigned to cluster B.

Theorem 1 The circuit embedded in a jointree computes the network polynomial.

Therefore, by constructing a jointree one is generating a compact representation of
the network polynomial in terms of an arithmetic circuit.

We are now ready to state our basic results on the differential semantics of jointree
propagation, but we need some notational conventions first. In the following three
theorems: f denotes the circuit embedded in a jointree or its (unique) output node;
s denotes a separator instantiation or the addition node generated by that instanti-
ation; and c denotes a cluster instantiation or the multiplication node generated by
that instantiation. Moreover, the value that a circuit node v tak es under evidence
e is denoted v(e). Recall that a circuit (or network polynomial) is evaluated under
evidence e by setting each input λx to 1 if x is consistent with e; and to 0 other-
wise. Finally, recall that ∂ f/∂ v represents the derivative of the circuit output with
respect to node v. Our first result relates to Shenoy–Shafer propagation.

Theorem 2 The messages produced using Shenoy–Shafer propagation on a jointree
under evidence e have the following semantics. F or each inward message Mij, we

have Mij(s) = s(e). F or each outward message Mji, we have Mji(s) = ∂f(e)
∂s

.

Hence, if we interpret separator instantiations as addition nodes in a circuit as given
by Definition 1, we get that a message directed towards the jointree root contains
the values of these addition nodes, while a message directed outward from the root
contains the partial derivatives of the circuit output with respect to these nodes.

Shenoy–Shafer propagation does not compute derivatives with respect to input
nodes λx and θx|u, but these can be obtained using local computations as follows.

4Given a root cluster, one can direct the jointree b y having arrows point away from the
root, which also defines a parent/child relationship b etween clusters and separators.

Theorem 3 If evidence table λX is assigned to cluster i with variables C:

∂ f(e)

∂ λx

=

∑

C\X

∏

j

Mji

∏

ψ 6=λX

ψ

 (x), (1)

where ψ ranges over all evidence and CP tables assigned to cluster i. Moreover, if
CPT θX|U is assigned to cluster i with variables C:

∂ f(e)

∂ θx|u
=

∑

C\XU

∏

j

Mji

∏

ψ 6=θX|U

ψ

 (xu), (2)

where ψ ranges over all evidence and CP tables assigned to cluster i.

Therefore, even though Shenoy–Shafer propagation does not fully differentiate the
embedded circuit, the differentiation process can be completed through local com-
putations after propagation has finished.5

W e now discuss some applications of the partial derivatives with respect to evidence
indicators λx and network parameters θx|u.

F ast retraction & evidence flipping. Suppose jointree propagation has been
performed using evidence e, which gives us access directly to the probability of e.
Suppose now we are interested in the probability of a different evidence e′, which
results from changing the value of some variable X in e to a new value x. The

probability of e′ in this case is equal to ∂f(e)
∂λx

[2], which can be obtained as given
by Equation 1. The ability to perform this computation efficiently is crucial for
algorithms that try to approximate maximum aposteriori hypothesis (MAP) using
local search [9, 10]. Another application of this derivative is in computing the
probability of evidence e′, which results from retracting the value of some variable

X from e: Pr(e′) =
∑

x
∂f(e)
∂λx

. This computation is k ey to analyzing evidence
conflict, as it allows us to determine the extent to which one piece of evidence is
contradicted by the remaining pieces.

Sensitivity analysis & parameter learning. The derivative ∂Pr(e)
∂θx|u

is essen-

tial for sensitivity analysis—it is the basis for an efficient approach that identi-
fies minimal network parameters changes that are necessary to satisfy constraints
on probabilistic queries [1]. This derivative is also crucial for gradient ascent ap-
proaches for learning network parameters as it is required to compute the gradient

5Hugin propagation also corresponds to circuit ev aluation/differentiation:

Theorem 4 Cluster tables, separator tables and messages produced using Hugin propaga-
tion under evidence e have the following semantics: F or table Φi of cluster i with variables

C: Φi(c) = c(e) ∂f(e)
∂c

. F or table Φij of separator ij with variables S: Φij(s) = s(e) ∂f(e)
∂s

.
F or each inward message Mij, we have Mij(s) = s(e). F or each outward message Mji, we

have Mji(s) = ∂f(e)
∂s

if s(e) 6= 0.

Again, Hugin propagation does not compute deriv ativ es with respect to input nodes λx

and θx|u. Ev en for addition and multiplication nodes, it only retains deriv ativ es multiplied
by v alues. Hence, if we want to recov er the deriv ativ e with respect to, say, multiplication
node c, we must know the v alue of this node and it must be different than zero. In such a
case, we hav e ∂f(e)/∂c = Φi(c)/c(e), where Φi is the table associated with the cluster i
that generates node c. One can also compute the quantity v ∂f/∂v for input nodes using
equations similar to those in Theorem 3. But such quantities will be useful for obtaining
deriv ativ es only if the v alues of such input nodes are not zero. Hence, Shenoy–Shafer
propagation is more informativ e than Hugin propagation as far as the computation of
deriv ativ es is concerned.

used for deciding moves in the search space [13]. This derivative equals ∂f(e)
∂θx|u

, and

can be obtained as given by Equation 2. The only other method we are aware
of to compute this derivative (beyond the one in [2]) is the one using the identity
∂Pr(e)/∂θx|u = Pr(x,u, e)/θx|u, which requires θx|u 6= 0 [13]. Hence, our results
seem to suggest the first general approach for computing this derivative using stan-
dard jointree propagation.

Bounding rounding errors. Jointree propagation gives exact results only when
infinite precision arithmetic is used. In practice, however, finite precision floating–
point arithmetic is typically used, in which case the differential semantics of jointree
propagation can be used to bound the rounding error in the computed probability
of evidence. See the full paper [11] for details on computing this bound.

5 A new perspectiv e on factoring graphical models

W e have shown in this paper that each jointree can be viewed as an implicit repre-
sentation of an arithmetic circuit which computes the network polynomial, and that
jointree propagation corresponds to an evaluation and differentiation of the circuit.
These results have been useful in unifying the circuit approach presented in [2] with
jointree approaches, and in uncovering more properties of jointree propagation.

Another outcome of these results relates to the level at which it is useful to phrase
the problem of factoring graphical probabilistic models. Specifically, the perspective
we are promoting here is that probability distributions defined by graphical models
should be viewed as multi–linear functions, and the construction of jointrees should
be viewed as a process of constructing arithmetic circuits that compute these func-
tions. That is, the fundamental object being factored is a multi–linear function,
and the fundamental result of the factorization is an arithmetic circuit. A graphical
model is a useful abstraction of the multi–linear function, and a jointree is a useful
structure for embedding the arithmetic circuit.

This view of factoring is useful since it allows us to cast the factoring problem in
more refined terms, which puts us in a better position to exploit the local structure
of graphical models in the factorization process. Note that the topology of a graph-
ical model defines the form of the multi–linear function, while the model’s local
structure (as exhibited in its CPTs) constrains the values of variables appearing
in the function. One can factor a multi–linear function without knowledge of such
constraints, but the resulting factorizations will not be optimal. For a dramatic
example, consider a fully connected network with variables X1, . . . , Xn, where all
parameters are equal to 1

2 . Any jointree for the network will have a cluster of size
n, leading to O(exp(n)) complexity. There is, however, a circuit of O(n) size here,
since the network polynomial can be easily factored as: f = (1

2)
n ∏n

i=1(λxi
+ λx̄i

).

Hence, in the presence of local structure, it appears more promising to factor the
graphical model into the more refined arithmetic circuit since not every arithmetic
circuit can be embedded in a jointree. This promise is made apparent by the results
in [3], which we sketch next. First, the multi–linear function of a belief network
is “encoded” using a propositional theory, which is expressive enough to capture
the form of the multi–linear function in addition to constraints on its variables.
The theory is then compiled into a special logical form, known as deterministic
decomposable negation normal form. An arithmetic circuit is finally extracted from
that form. The method was able to generate relatively small arithmetic circuits for
a significant suite of real–world belief networks with treewidths up to 60.

It is worth mentioning here that the above perspective is in harmony with recent

approaches that represent probabilistic models using algebraic decision diagrams
(ADDs), citing the promise of ADDs in exploiting local structure [5]. ADDs and
related representations, such as edge–v alued decision diagrams, are known to be
compact representations of multi–linear functions. Moreov er, each of these repre-
sentations can be expanded in linear time into an arithmetic circuit that satisfies
some strong properties [4]. Hence, such representations are special cases of arith-
metic circuits as well.

W e finally note that the relationship between multi–linear functions (polynomials in
general) and arithmetic circuits is a classical subject of algebraic complexity theory
[15]. In this field of complexity, computational problems are expressed as polynomi-
als, and a central question is that of determining the size of the smallest arithmetic
circuit that computes a giv en polynomial, leading to the notion of circuit complex-
ity. Using this notion, it is then meaningful to talk about the circuit complexity
of a graphical model: the size of the smallest arithmetic circuit that computes the
multi–linear function induced by the model.

Acknowledgment This work has been partially supported by NSF grant IIS-
9988543 and MURI grant N00014-00-1-0617.

References

[1] H. Chan and A. Darwiche. When do numbers really matter? JAIR, 17: 265–287,
2002.

[2] A. Darwiche. A differential approach to inference in Bay esian networks. In UAI’00,
pages 123–132, 2000. T o appear in JACM.

[3] A. Darwiche. A logical approach to factoring belief networks. In KR’02, pages 409–
420, 2002.

[4] A. Darwiche. On the factorization of multi–linear functions. T echnical Report D–128,
UCLA, Los Angeles, Ca 90095, 2002.

[5] J. Hoey , R. St-Aubin, A. Hu, and G. Boutilier. SPUDD: Stochastic planning using
decision diagrams. In UAI’99, pages 279–288, 1999.

[6] C. Huang and A. Darwiche. Inference in belief networks: A procedural guide. IJAR,
15(3): 225–263, 1996.

[7] M. Iri. Simultaneous computation of functions, partial deriv ativ es and estimates of
rounding error. Japan J. Appl. Math., 1:223–252, 1984.

[8] F. V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bay esian updating in recursiv e graph-
ical models by local computation. Comp. Stat. Quart., 4:269–282, 1990.

[9] J. Park. MAP complexity results and approximation methods. In UAI’02, pages
388–396, 2002.

[10] J. Park and A. Darwiche. Approximating MAP using stochastic local search. In
UAI’01, pages 403–410, 2001.

[11] J. Park and A. Darwiche. A differential semantics for jointree algorithms. T echnical
Report D–118, UCLA, Los Angeles, Ca 90095, 2001.

[12] G. Rote. Path problems in graphs. Computing Suppl., 7:155–189, 1990.

[13] S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in probabilistic
networks with hidden v ariables. In UAI’95, pages 1146–1152, 1995.

[14] P. P. Shenoy and G. Shafer. Propagating belief functions with local computations.
IEEE Expert, 1(3):43–52, 1986.

[15] J. v on zur Gathen. Algebraic complexity theory . Ann. Rev. Comp. Sci., 3:317–347,
1988.

