
Solving MAP Exactly using Systematic Search

James D. Park and Adnan Darwiche
Computer Science Department

University of California
Los Angeles, CA 90095

{jd,darwiche}@cs.ucla.edu

Abstract

MAP is the problem of finding a most prob-
able instantiation of a set of variables in
a Bayesian network, given some partial ev-
idence about the complement of that set.
Unlike posterior probabilities, or MPE (a
special case of MAP), the time and space
complexity of structure–based algorithms for
MAP are not only exponential in the network
treewidth, but in a larger parameter known
as the constrained treewidth. In practice, this
means that computing MAP can be orders
of magnitude more expensive than comput-
ing posterior probabilities or MPE. We in-
troduce in this paper a new, simple upper
bound on the probability of a MAP solution,
which is shown to be generally much tighter
than existing bounds. We then use the pro-
posed upper bound to develop a branch–and–
bound search algorithm for solving MAP ex-
actly. Experimental results demonstrate that
the search algorithm is able to solve many
problems that are far beyond the reach of any
structure–based method for MAP. For exam-
ple, we show that the proposed algorithm
can compute MAP exactly and efficiently for
some networks whose constrained treewidth
is more than 40.

1 Introduction

The problem of finding the Maximum a Posteriori hy-
pothesis (MAP) is to find the most likely configuration
of a set of variables given some evidence.

One specialization of MAP which has received a lot of
attention is the Most Probable Explanation (MPE).
MPE is the problem of finding the most likely con-
figuration of a set of variables given complete evidence
about the complement of that set. The primary reason

for this attention is that MPE is much easier than its
MAP generalization. Specifically, the decision prob-
lem for MPE is NP–complete while the corresponding
MAP problem is NPPP–complete [6]. Unfortunately,
MPE is not always suitable for the task of providing
explanations.

Mainstream, structure–based methods can solve MPE
in time which is exponential in treewidth [2, 9, 5, 1, 4].
These methods can also solve MAP, but they are ex-
ponential in the constrained treewidth, which can be
much larger than treewidth, often pushing the problem
beyond the threshold of feasibility [7, 6]. To deal with
the computational intractability of MAP, recent ap-
proaches have focused on best–effort approximations
which are only exponential in treewdith (as opposed
to constrained treewidth) [7, 6]. Although such algo-
rithms show much promise, they cannot guarantee the
optimality of solutions they provide.

The focus of this paper is then on providing a sys-
tematic search algorithm for solving MAP exactly.
The presented algorithm is a depth–first branch–and–
bound algorithm, which hinges on a new method for
producing an upper bound on the probability of a
MAP solution. We therefore study this new upper
bound extensively and compare it to the main other
bound available, which is based on mini–buckets [3].
We note that the complexity of our proposed bound is
exponential in treewidth. Hence, our proposed algo-
rithm is useful on networks for which solving MPE is
considered tractable. This is similar to the approach
presented in [7], except that our proposed method
guarantees the optimality of the obtained solution,
while the approach of [7] cannot offer such a guarantee.

This paper is structured as follows. We start in Sec-
tion 2 by a review of variable elimination for solving
MAP and MPE, which provides a context for intro-
ducing some technical preliminaries that we need in
the rest of the paper. We then introduce in Section 3
a new upper bound on the probability of a MAP solu-
tion, and compare it theoretically and experimentally



Algorithm 1 VE(Φ, e,S,M): returns a probability.
1: π := an ordering of the variables in S,M where

variables M are last in the order
2: Ψ := the set of potentials φe, where φ ∈ Φ
3: for each variable V in π in order do
4: remove from Ψ the potentials mentioning vari-

able V and multiply them to form potential ψV

5: if V is a variable in M then
6: add maxV ψV to Φ
7: else
8: add

∑
V ψV to Φ

9: ψ := the single potential in Ψ
10: return the single number assigned by ψ

to the bound based on mini–buckets. In Section 4, we
present a systematic search method for solving MAP
exactly, in which the upper bound algorithm plays a
central role. Section 5 is then dedicated to experi-
mental results demonstrating the effectiveness of the
proposed algorithm. Section 6 concludes with a re-
view of the primary results of the paper. Proofs of all
theorems appear in the appendix.

2 Variable Elimination for MAP

We will review the algorithm of variable elimination in
this section for computing MAP and MPE [2, 9].

Given a Bayesian network, we will treat each condi-
tional probability table (CPT) φ as a potential over
its corresponding variables X; that is, a mapping from
the instantiations x of these variables into the interval
[0, 1]. Moreover, given a potential φ, and an instanti-
ation e of some network variables E, we will use the
notation φe to indicate a new potential in which we fix
the variables of φ to their corresponding values in e,
and then drop out the instantiated variables. That is,
if X = YZ are the variables of φ, and Z are those ap-
pearing in instantiation e, then φe is a potential over
variables Y and φe(y) = φ(yz), where z are the values
of variables X in instantiation e.

We will also assume familiarity with the usual opera-
tions on potentials, including the multiplication of two
potentials φ and ψ, denoted φψ; the summing–out of
variables X from potential φ, denoted

∑
X φ; and the

maxing–out of variables X, denoted maxX φ. A poten-
tial over the empty set of variables is called trivial and
assigns a single number to the empty instantiation.

Given a Bayesian network with CPTs Φ, let the net-
work variables be partitioned into three sets: E, S
and M. Here, E is the set of variables whose values
are known, S is the set of variables that we want to
sum out, and M is the set of variables that we want to

maximize over. Given an instantiation e of variables
E, the MPE problem is that of finding an instantiation
s,m of variables S,M which maximizes the probabil-
ity of s,m, e. The MAP problem is that of finding and
instantiation m of variables M which maximizes the
probability of m, e. Finally, the PR problem is that
finding the probability of instantiation e. Algorithm 1
provides pseudocode for a generic variable elimination
algorithm which can be used to solve all of these prob-
lems. Specifically, the algorithm computes the follow-
ing trivial potential:

ψ = max
M

∑
S

∏
φ∈Φ

φe,

which assigns a single number p to the empty instan-
tiation. If S is empty, then p is the probability of an
MPE solution. If M is empty, then p is the probability
of evidence e. Otherwise, p is the probability of a MAP
solution. The MPE/MAP solutions can be recovered
via some bookkeeping that we omit for simplicity.

We will define the width of elimination order π used on
Line 1 of Algorithm 1 as log2 s− 1, where s is the size
of the largest potential ψV produced on Line 4. Here,
the size s is defined as the number of instantiations in
the domain of ψV . Variable elimination is linear in the
number of network variables, and exponential only in
the width of used elimination order. We note here that
our definition of width is sensitive to the cardinalities
of variables, and deviates from the classical definition
which ignores such cardinalities. We adopt this defi-
nition since some of the networks we experiment with
later have variables with cardinalities of over 60 and
we need the definition to truly reflect the practical dif-
ficulties when reasoning with such networks. We also
note that our definition corresponds to the classical
definition when all variables are binary.

A key observation about the above variable elimina-
tion algorithm is that when S is empty (i.e., we have
an MPE problem), then any variable order π can be
used. The same is true when M is empty (i.e., we
have a PR problem). But when neither set of vari-
ables is empty (a MAP problem), the order π is con-
strained. The width of best, unconstrained variable
order is known as the treewidth of given network.1 The
width of best, constrained variable order is known as
the constrained treewidth. In practice, the constrained
treewidth can be much higher than treewidth, pushing
some problems beyond the limit of feasibility [7]. For
example, variable elimination for some MAP queries
on polytrees require exponential time, while MPE and
PR queries can be computed in linear time [6].

1Technically speaking, this requires the set of evidence
variables E to be empty, otherwise, treewidth would be a
function of both network and evidence variables.



The following theorem explains the need for a con-
strained order when solving MAP, and is key to a
method we present in the following section for pro-
ducing an upper bound on the probability of MAP.

Theorem 1 Let φ be a potential over disjoint vari-
ables X,Y,Z. Then

1.
∑

X

∑
Y φ =

∑
Y

∑
X φ.

2. maxX maxY φ = maxY maxX φ.

3. [
∑

X maxY φ](z) ≥ [maxY

∑
X φ](z) for all in-

stantiations z of variables Z. Moreover, the equal-
ity holds only when there is some value y of vari-
able Y such that maxY φx = φxy for all values x of
variable X. That is, the optimal value of variable
Y is independent of variable X.

So, while summation commutes with summation, and
maximization commutes with maximization, summa-
tion does not commute with maximization. This
means that when solving PR, the summations can be
arbitrarily permuted, allowing the elimination order to
be chosen so as to minimize the width. The same is
true for MPE, but this ceases to hold for MAP where
the order used must be selected from among the orders
in which all summation variables are eliminated be-
fore any maximization variables. There are sometimes
orders that interleave summation and maximization
variables which are still valid, but for any such order,
there is a non–interleaved order of the same width [6].

As we show in the next section, even though the use of
an arbitrary elimination order for MAP can produce
an incorrect result, such use can be very useful for
search–based algorithms as it is guaranteed to produce
an upper bound on the correct result.

3 A New Upper Bound on the
Probability of MAP

The goal of this section is to provide a new upper
bound on the probability of a MAP solution, in ad-
dition to some important techniques for computing
this bound effectively. We will then use the proposed
bound in the next section to devise a branch–and–
bound algorithm for computing MAP exactly. In de-
scribing our results, we will use MAP(M, e) to de-
note a MAP problem with maximization variables M,
and evidence e, and BD(M, e) to denote an upper
bound on the probability of a MAP solution for prob-
lem MAP(M, e).

Our upper bound is based on the following result. We
can use any elimination order on Line 1 of Algorithm 1,
in which case the returned number will be an upper

bound on the probability of a MAP solution. This re-
sult follows from Theorem 1 and the following observa-
tion. First, notice that from any elimination order π,
a valid MAP order π′ can be produced by successively
commuting a maximization variable M ∈ M with a
summation variable S ∈ S, whenever variable M is
immediately before the summation variable S in the
order. For example, consider maximization variables
X,Y and Z, summation variables A,B and C, and
the order π = AXY BZC. This is not a valid order for
MAP. Yet, we can convert this order to the valid order
π′ = ABCXY Z using the following steps: AXY BCZ
Y B
BY → AXBY CZ Y C

CY → AXBCY Z XB
BX→ ABXCY Z

XC
CX→ ABCXY Z.

Given Theorem 1, and Algorithm 1, each of the above
orders will produce a number which is guaranteed to
be no less than the number produced by the following
order in the sequence. Hence, if we use the invalid
order π instead of the valid order π′, we are guaranteed
to obtain a number which is an upper bound on the
probability of a MAP solution. We actually have the
following stronger result.

Theorem 2 If on Line 1 of Algorithm 1 we use an ar-
bitrary order of variables S,M, the number p returned
by the algorithm obeys Pr(m, e) ≤ p ≤ Pr(e), where
m is a MAP solution.

Recall that if we are allowed to use an arbitrary elim-
ination order in Algorithm 1, the complexity of this
variable elimination algorithm will be exponential in
treewidth instead of constrained treewidth. Hence,
Theorem 2 allows us to compute an upper bound on
the probability of a MAP solution for problems whose
constrained treewidth is too large, yet whose treewidth
is acceptable. This includes networks for which MPE
and PR can be solved practically using variable elimi-
nation.

As it turns out, even though any arbitrary variable
order can be used to produce an upper bound, some
orders will produce tighter upper bounds than others.
Intuitively, the closer the used order is to a valid or-
der, the tighter the bound is expected to be. We will
next discuss a technique for selecting one of the better
(invalid) orders. The technique will also be helpful in
producing additional information which will be used
by our branch–and–bound algorithm to be discussed
in the following section.

3.1 Computing the Upper Bound using
Jointree Algorithms

The upper bound we discussed earlier can be computed
using the jointree algorithm, since the choice of a root
in the jointree, and directing messages towards that



root, corresponds to the application of variable elimi-
nation using a particular order which can be extracted
from the jointree and chosen root. We will indeed use
the jointree algorithm for computing the upper bound,
instead of classical variable elimination, for a number
of reasons that will become apparent later.

In particular, we will adapt the Shenoy–Shafer algo-
rithm, which is one variant of the jointree algorithm
[8]. We start with a jointree for the given network with
potentials Φ, and then assign each network potential
φ ∈ Φ to a jointree cluster i containing the variables
of that potential. Given evidence e, summation vari-
ables S, and maximization variables M, let Φi be the
product of all φe, where φ is a potential assigned to
cluster i. We will define the message sent from cluster
i to neighboring cluster j as follows:

Mij = max
X

∑
Y

Φi

∏
k 6=j

Mki,

where X ⊆ M and Y ⊆ S are all variables that appear
in cluster i but not in cluster j.

The resulting jointree algorithm has the following se-
mantics.

Theorem 3 For any cluster i with maximization
variables X ⊆ M and summation variables Y ⊆ S,
the potential

max
X

∑
Y

Φi

∏
k

Mki

is trivial and contains an upper bound on the probabil-
ity of a MAP solution, BD(M, e). Moreover, for any
variable X ∈ X, the upper bounds BD(M \X, ex) for
all values x of variable X are available in the following
potential:

max
X−{X}

∑
Y

Φi

∏
k

Mki.

Given the above theorem, one can compute an upper
bound by choosing any cluster i as the root, and di-
recting messages towards that root. This corresponds
to what is known as the inward pass of a jointree al-
gorithm. If we follow this pass with the outward pass,
in which messages are directed away from the root,
we can also compute all upper bounds of the form
BD(M \X, ex) simultaneously. These upper bounds
will be especially useful in the search–based algorithm
for MAP to be discussed in the following section.

Our search–based algorithm will also need to compute
upper bounds of the form BD(M \ X, ex), where X
is a set of variables instead of a singleton, as given
above. For this, we have no choice but to assert fur-
ther evidence x on the jointree and to re–apply the
inward/outward passes described above. We will later
use assert(X = x) and assert(X 6= x) to denote the
classical process of setting evidence on a jointree.

3.2 Improving the Bound Quality

Given a jointree T with a largest cluster of size s, we
will now discuss a technique for generating another
jointree T ′ whose largest cluster has a size no greater
than s, yet will produce tighter upper bounds.

The idea is to select some root cluster r in jointree
T , and migrate maximization variables M toward the
root, therefore, inducing an elimination order that is
closer to a valid order. Specifically, let k and i be
two clusters in the jointree, where i is closer to the
root r (we call k the child of i in this case). Any
maximization variable V that appears in cluster k is
added to cluster i as long as the new size of cluster i
does not exceed s. Algorithm 2 gives pseudocode for a
recursive algorithm to promote maximization variables
M towards the root r in jointree T , without increasing
the size of its clusters beyond s. The algorithm should
initially be called with promote(r, T, r,M, s).

Algorithm 2 promote(i, T, r,M, s): Modifies jointree
T while keeping the size of its clusters ≤ s.

for each child cluster k of cluster i do
call promote(k, T, r,M, s)
V := all variables V ∈ M that appear in a child
cluster k of i but not in i
while V 6= ∅ and the size of cluster i is ≤ s do

remove a member V from V
if adding V to cluster i keeps its size ≤ s, add
variable V to cluster i

Figure 1 illustrates a jointree before and after promo-
tion of the maximization variables.

Effectively, each time a variable is promoted from clus-
ter k to cluster i (which is closer to the root r), the
maximization over that variable is postponed, pushing
it past all of the summation variables that are elimi-
nated in cluster i or its children. This has a monotonic
effect on the upper bound, although in rare cases, the
bound may remain the same. We stress here that the
promotion technique is meant to improve the bound
computed by directing messages towards the root r.
After such promotion, the quality of a bound com-
puted by directing messages to some other root r′ may
actually worsen. More on this later.

We now describe another technique for improving the
quality of the computed upper bound. Specifically,
sometimes a Bayesian network has variables with a
large number of states. For example, the Munin2 net-
work discussed later has a variable with 21 states.
When the domain of a variable is large, promoting it
increases significantly the size of some cluster. When
many of the maximization variables are large, this of-
ten allows for relatively few possible promotions. To



AXY

CX

AB

BDZ

AW

AXY

CXY

ABZ

BDZ

AW

Root Root

Figure 1: The original jointree, and the jointree
produced by promoting the maximization variables
W,X, Y, and Z while preserving the size of the largest
cluster s at 8 (all variables are binary).

relieve this to some extent, we replace each variable
with variables whose sizes are the prime factors of the
original size. For example, a potential φ over a vari-
able X which has 21 possible values is replaced with
a potential φ′, over variables X1 and X2 which have
sizes 3 and 7 respectively. There is a one–to–one cor-
respondence between instances of the new variables,
and the old, so converting the potentials is straight-
forward. This conversion in many cases allows promo-
tion of some of the factored variables in cases where
the original variable would not be promoted.2

3.3 The Mini–Bucket Upper Bound

The only other approach we are aware of for providing
an upper bound on MAP is the one based on mini–
buckets [3]. To explain this bound, note that the
complexity of variable elimination is dominated by the
size of potential ψV created on Line 4 of Algorithm 1.
The idea behind the mini–bucket method to control
the size of this potential using a parameter k which
puts a limit on the size of ψV . Specifically, if the po-
tential size is to exceed k, the mini–bucket method
will not create ψV , but an approximate version of it,
ψ′V . We will not discuss the specific method for this
approximation, but suffice it to say that the quality
of the approximation improves as k increases. More-
over, if k is large enough, the method converges to the

2This is not always a satisfactory solution. For exam-
ple, the Barley network has a variable with 67 values. As
67 is prime, this method does not help. Methods which
grow the value to a more easily factored value (for exam-
ple from 67 to 72 say) suggest themselves, but we have not
explored them. Such a technique will typically increase the
treewidth as well.

classical variable elimination algorithm, giving us the
correct result. The mini–bucket method thus allows
a smooth transition between accuracy and efficiency
based on the supplied complexity parameter k. Note
also that our bound admits such a tradeoff, to some
extent, as we can control the width of invalid order
we use, obtaining a potentially exact result when the
width equals the constrained treewidth.

To compare the quality of the two upper bounds we
ran experiments with randomly–generated and real–
world networks. Specifically, we generated 100 MAP
problems from random Bayesian networks and applied
both upper bounds to each problem. The networks
were generated using the method detailed in [1]. Each
network consists of 100 binary variables and was gen-
erated using connectively parameter 20 (this tends to
produce networks with widths of about 20). We set ev-
idence on the leaves, and randomly selected 25 MAP
variables. We approximated the treewidth of the net-
work using the min–fill heuristic, and used that as the
complexity parameter for both approximation meth-
ods. Our method ranged from 9.3 × 104 to 1.5 × 109

times smaller than the upper bound produced using
mini–buckets. We performed a similar experiment on
the real–world Bayesian networks which appear in the
experimental results section (Figure 3). For each net-
work, we performed 10 experiments. In each experi-
ment we randomly selected one quarter of the variables
as MAP variables, and set evidence on the leaves, tak-
ing care to ensure probability of the evidence remained
positive. Our method produced bounds that were at
least 2.4 × 105 times smaller than the mini–bucket
bounds in all of the experiments, except for those on
the Water network, where it was at least 2.6 × 103

times smaller.

4 Solving MAP using Systematic
Search

We present in this section an algorithm for solving
MAP exactly using systematic search. Specifically,
given a Bayesian network, with evidence e and MAP
variables M, our goal is to identify an instantiation
m of variables M which maximizes the probability of
m, e.

As MAP is a discrete optimization problem, it can
be solved by systematically searching for the optimal
instantiation m of the MAP variables M. Moreover,
the upper bound on the probability of a MAP solution
can be used as the basis for a depth–first branch–and–
bound algorithm for computing an exact solution.

Specifically, the nodes in the search tree represent par-
tial instantiations of the MAP variables M. The root



node corresponds to the empty instantiation. The chil-
dren of a node which represents instantiation x, where
X ⊆ M, are nodes which represent instantiations x, v
for some variable V in M \ X. Leaves of the search
tree correspond to different instantiations m of MAP
variables M. Since each node in the search tree cor-
responds to a variable instantiation, we will identify
that node by the corresponding instantiation.

We associate a score with each leaf node m in the
search tree, which is equal to Pr(m, e). Hence, for
an internal node x, the best leaf node below x (one
with highest score) is a solution to MAP(M \X, ex).
The basic idea of the search algorithm is to perform
a depth–first search on the tree, while computing an
upper bound BD(M \X, ex) at each internal node x.
If the upper bound is less than or equal to the score of
the best leaf encountered so far, the children of node x
are not explored since none of the leaves below x can
improve the existing solution.

While the general idea of the algorithm is very simple,
there are a number of optimizations that are needed in
order to significantly improve the search performance.
Several of the optimizations are based on the second
part of Theorem 3 and are discussed next.

Variable Ordering. One important technique is dy-
namic variable ordering. At each internal node x, we
need to choose a variable V ∈ M \ X to instantiate
next, hence, generating the children of node x. The
specific variable chosen can have a dramatic effect on
the efficiency of the search. We experimented with
a variety of variable selection heuristics. The one we
found most effective works as follows. The first step is
to compute for each potential variable V ∈ M \X the
bound Bv = BD(M \ (X ∪ {V }), exv) for each value
v. This can be performed efficiently using the jointree
algorithm presented in Section 3, by performing a lo-
cal computation on a cluster than contains variable V
(see the second part of Theorem 3). Based on these
bounds Bv, we choose a variable as follows:

1. LetMV = maxv Bv, that is, the best upper bound
obtained for variable V .

2. Let TV =
∑

Bv≥bBv, where b is the score of the
best leaf node visited so far. That is, TV is the
sum of bounds for variable V which are better
than the best score b obtained so far.

We then choose the variable V that maximizes the
ratio MV /TV . The reason we normalize, instead of
choosing the variable V with the largest MV , is that
for variables V which appear in clusters farthest from
the root, the upper bounds produced by the jointree
algorithm tend to be artificially inflated. Recall that

the promote operation tends to move most of the max-
imization variables toward the root. Although this
improves the upper bound computed at the root, it
degrades the bounds computed at other clusters; see
Section 3.2.

Value Ordering. Another important technique is
value ordering. When a variable is selected, its values
are explored in decreasing order of their upper bounds.
This has the effect of trying to search the instantiations
deemed most likely to produce a better solution first,
possibly increasing pruning later.

Value Elimination. Suppose that we are currently
at node x in the search tree, and we have decided to
choose variable V to instantiate next. Suppose further
that for some value v of V , we have that Bv ≤ b, where
b is the score of best instantiation m we have so far.
We clearly know at this stage that the instantiation xv
should not be explored, because regardless of how we
instantiate the remaining variables in M \ (X ∪ {V }),
there is no way we can produce an instantiation which
is better than the one we already have. However, our
algorithm will not only prune the value v of variable
V , but will also assert the evidence V 6= v in this
case on the underlying jointree, therefore, factoring
this pruning information into the computation of our
upper bound. This is critical to tightening the upper
bound. Specifically, even though the value v cannot
lead to an instantiation with a better score than b, the
following may be possible. For some fixed instantiation
of other variables in a potential φ containing variable
V , the entry corresponding to V = v in φ may have
the largest value. Thus, when variable V is maximized
out, the value of some of the entries in the resulting
potential may include entries corresponding to V = v,
therefore, loosening the bound.

Initialization. To initialize the search, we used a
MAP approximation technique based on local search.
In particular, we used the technique of hill climbing
coupled with sequential initialization, as described in
[7], but we omit the details for space limitations.

Algorithms 3 and 4 provide pseudocode of our system-
atic search algorithm for solving MAP exactly, which
combines all of the techniques we discussed thus far.

5 Experimental Results

We applied the search algorithm to both randomly
generated and real–world networks, and collected
statistics about the computations.

We generated random networks using the method de-
scribed in [1] while including 100 nodes in each net-
work, and using a connectivity parameter of 20 (which
tends to produce networks with treewidths of about



Algorithm 3 ComputeMAP(Φ,M, e): Returns an
instantiation m, which maximizes the probability of
e,m, and its corresponding probability. Φ are the
CPTs/potentials of a Bayesian network.

Ψ := all φe where φ ∈ Φ
T := a jointree for potentials Φ
r := a root in jointree T
s := size of largest cluster in T
promote(r, T, r,M, s)
bSol := an instantiation m of variables M obtained
using sequential initialization and pure hill climbing
bScore := probability of instantiation m, e
Search(M,{})
Return bSol and bScore

Algorithm 4 Search(X,z): Sets the values of global
variables bSol and bScore.
1: B := BD(X, z) (jointree inward pass)
2: If B ≤ bScore, then return
3: If X = ∅, then bScore := B, bSol := z, return
4: for each variable V ∈ X do
5: for each value v of V do
6: Bv := BD(X \ V, zv) (jointree outward pass)
7: assert(V 6= v) for each v where Bv ≤ bScore
8: V := variable in X that maximizes MV /TV

9: for values v of V in decreasing order of Bv do
10: If Bv > bScore, then assert(V = v) and call

Search(X \ V ,zv)
11: Retract the assertions performed on lines 6 and 10.

20). For the first set, we generated 50 networks, ran-
domly selecting 30 MAP variables. We set as evidence
the leaf nodes, taking care to ensure that the probabil-
ity of the evidence was positive. The computation for
each MAP problem was given 10 minutes to complete.
For each problem instance we computed the time to
encounter the solution, the time for the search to com-
plete, and the approximate constrained treewidth, as
computed by the min–fill heuristic.

One of the 50 problems did not complete in 10 min-
utes of computation. Statistics for the remaining 49
appear in Figure 2 in the Rand-30 data set. The re-
sults reported are the number completed within the
time limit, and the minimum, median, mean and max-
imum values for each of the following: the time to find
the solution, the time to complete the search, and the
approximate constrained treewidth. Next, we gener-
ated another set of results using the same experiments
as before, except 40 variables were chosen to be maxi-
mization variables. 7 of the problems were not solved
after 10 minutes of computation. Statistics on the re-
maining 43 problems appear in Figure 2 labeled as the
Rand-40 data set.

Set #/50 find finisih c-w
Rand-30 49 min .2 0.6 27.0

median 1.3 11.9 33.0
mean 2.8 31.5 32.3
max 22.6 242.5 37.0

Rand-40 43 min 0.1 2.1 25.0
median 3.6 26.7 40.0
mean 9.2 43.4 39.6
max 85.2 220.4 44.0

Figure 2: The results for the random network prob-
lems. The columns report the number out of 50 that
were solved, and statistics on the time to find the so-
lution, the time to complete the search (both in sec-
onds), and the constrained treewidth for the problems
that completed.

We also tested the search algorithm on real–world
networks Barley, Diabetes, Mildew, Munin2, Munin3,
Munin4, Pigs and Water. For each network, we ran
10 experiments. In each experiment, we selected the
MAP variables randomly. Because the number of val-
ues per variable differs, we selected the MAP variables
so that the state space of the MAP variables was about
230. Specifically, we randomly selected network vari-
ables without replacement, adding the selected vari-
able to the set of MAP variables if the total state space
remained less than or equal to 230, until no variables
remained. We again instantiated the leaf nodes, ensur-
ing that the evidence had positive probability. Each
problem was given 10 minutes to run. Figure 3 reports
the number that completed, and contains statistics on
the results of the runs that did complete.

The first thing to notice is that nearly all of the prob-
lems have an approximate constrained treewidths far
too large to be computed using structure–based meth-
ods. In spite of the large widths, the search based
algorithm was able to solve many of the problems rel-
atively quickly.

Another thing to notice is the significant variability
of solution time both for the random and the real–
world networks. There are a number of factors that
influence the difficulty, including the treewidth of the
network (which influences the time per search step),
the size of the prime factors of the variables (which
limits the amount of possible promotion), the relative
magnitude of the solution as compared to the non–
solutions (which significantly affects pruning), and of
couse luck in choosing the variable and value orderings
so as to encounter the true solution early in the search.
So, for example, problems for the Pigs network which
have small treewidth, small variables and significant
determinism proved much easier than those for Barley,
which has large factor variables, and large treewidth.



Network #/10 find finish c-w
Barley 3 min 29.4 78.3 31.5

median 33.1 86.5 32.1
mean 57.3 140.6 34.7
max 109.5 257.0 40.4

Diabetes 6 min 3.5 14.0 33.8
median 4.4 87.5 37.7
mean 40.9 213.6 37.0
max 222.6 592.8 40.1

Mildew 10 min 18.3 27.0 29.3
median 43.0 74.8 31.7
mean 43.8 73.7 31.4
max 85.8 114.1 34.2

Munin2 10 min 4.1 4.9 33.1
median 4.4 5.6 35.6
mean 4.4 5.6 35.2
max 5.0 6.1 36.1

Munin3 10 min 5.0 6.0 29.8
median 6.1 7.3 33.0
mean 6.3 7.6 34.4
max 8.0 9.8 42.0

Munin4 10 min 20.8 26.4 34.2
median 28.9 33.4 36.6
mean 27.7 33.8 36.1
max 35.6 48.0 37.1

Pigs 10 min 2.6 3.4 29.1
median 3.2 4.2 30.7
mean 3.4 4.6 31.2
max 4.6 7.0 37.0

Water 10 min 74.4 115.8 26.9
median 93.1 146.0 29.1
mean 116.0 155.3 29.4
max 215.3 223.2 32.5

Figure 3: Results on real–world networks. The
columns report the number out of 10 that were solved,
and statistics on the time to find the solution, the time
to complete the search (both in seconds), and the ap-
proximate constrained treewidth for the problems that
completed.

Also, notice that the solution was often found far be-
fore algorithm was able to prove that that was the
solution. Appart from this, the algorithm produces a
candidate solution very quickly, and so can be used as
an any time algorithm as well.

Overall, the search algorithm was able to solve the vast
majority of the MAP problems we generated. The al-
gorithm succeeds where structure–based methods can-
not be applied because of the significant pruning af-
forded by the tightness of the upper bound.

6 Conclusion

We introduced a simple upper bound for MAP based
on relaxing the elimination ordering constraint of vari-
able elimination. Experimental results show that this
bound is significantly tighter than previous MAP up-
per bounds. We used this upper bound as the basis for

a systematic search algorithm for MAP. The search al-
gorithm is able to solve many problems that are far be-
yond the reach of previous methods for solving MAP,
significantly extending the class of MAP problems that
can be solved efficiently.

References

[1] A. Darwiche. Recursive conditioning. Artificial
Intelligence, 126(1-2):5–41, 2001.

[2] R. Dechter. Bucket elimination: A unifying frame-
work for probabilistic inference. In Proceedings of
the 12th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 211–219, 1996.

[3] R. Dechter and I. Rish. Mini-buckets: A general
scheme for approximating inference. Journal of the
ACM, 50(2):1–61, 2003.

[4] C. Huang and A. Darwiche. Inference in belief net-
works: A procedural guide. International Journal
of Approximate Reasoning, 15(3):225–263, 1996.

[5] F. V. Jensen, S. Lauritzen, and K. Olesen.
Bayesian updating in recursive graphical models by
local computation. Computational Statistics Quar-
terly, 4:269–282, 1990.

[6] J. Park. Map complexity results and approxima-
tion methods. In Proceedings of the 18th Con-
ference on Uncertainty in Artificial Intelligence
(UAI), pages 388–396, San Francisco, California,
2002. Morgan Kaufmann Publishers, Inc.

[7] J. Park and A. Darwiche. Approximating map us-
ing local search. In Proceedings of the 17th Con-
ference on Uncertainty in Artificial Intelligence
(UAI), pages 403–410, San Francisco, California,
2001. Morgan Kaufmann Publishers, Inc.

[8] P. P. Shenoy and G. Shafer. Propagating belief
functions with local computations. IEEE Expert,
1(3):43–52, 1986.

[9] N. L. Zhang and D. Poole. A simple approach to
bayesian network computations. In Proceedings of
the Tenth Conference on Uncertainty in Artificial
Intelligence (UAI), pages 171–178, 1994.

Proof of Theorem 1

For each case, we will consider a function ψ, where
ψxy = φxyz for a particular fixed z. For part 1, be-
cause X and Y have a finite number of values, the
expression on the left can be tranformed to the ex-
pression on the right, simply by rearranging the terms
in the summation.



For part 2, as X and Y are finite, there are a fi-
nite number of values of the function ψ, and so there
is a maximal value m. Then for some value y of
Y , maxX ψy = m, and for any other value y′ of
Y , maxX ψy′ ≤ m. Thus, maxY maxX ψ = m.
By an analogous argument maxX maxY ψ = m, so
maxX maxY ψ = maxY maxX ψ.

For part 3, for any fixed x, maxY ψx ≥ ψxy for any
y. So, summing over X yields

∑
X maxY ψ ≥

∑
X ψy.

This is true for all values y of Y , and so is true for
the y that maximizes

∑
X ψy. Hence

∑
X maxY ψ ≥

maxY

∑
X ψ.

Proof of Theorem 2

First, we prove a simple lemma that will aid in the
proof of the theorem.

Lemma 4 Let Φ be a set of potentials, ΦV be the po-
tentials of Φ whose domain include V , and let Φo =
Φ \ ΦV . Then

∑
V

∏
φ∈Φ φ = φs

∏
φ∈Φo

φ where φs =∑
V

∏
φ∈ΦV

φ. Similarly, maxV

∏
φ∈Φ = φm

∏
φ∈Φo

φ,
where φm = maxV

∏
φ∈ΦV

.

The proof is a simple process of factoring. Note that∑
V

∏
φ∈Φ φ =

∑
V

(∏
φ∈Φo

φ
) (∏

φ∈ΦV
φ
)
. Now,

since the first product does not mention V , it
can be factored out of the summation, yielding
(
∏

φ∈Φo
φ)

∑
V

∏
φ∈ΦV

φ = φs

∏
φ∈Φo

φ. Similar argu-
ments apply to the maximization equation.

Notice that Lemma 4 is just a statement about what
happens during each step of variable elimination. Thus
repeated application of Lemma 4 shows that perform-
ing variable elimination with order π yields

Oπ(n)Oπ(n−1) . . . Oπ(1)

∏
φ∈Φ

φ

where OX =
∑

X if X ∈ S, and maxX otherwise.
Now, as discussed in the main text we can produce
a valid order from any order by successively commut-
ing adjacent summation and maximization variables,
where the maximization variable appears first. By
Theorem 1, each commutation yields an order that
produces a value less than or equal to the previous.
Thus, the value produced by any order is an upper
bound on the MAP value.

For a non-negative function f ,
∑

X f ≥ maxX . Now,
consider the expression generated by any order. Be-
cause the product of potentials is a non-negative func-
tion, we can replace each maximization with a summa-
tion over the same variable, and produce an expression
that is greater or equal to the original expression. But
this resulting expression yields Pr(e). Thus, the value
produced by any order is bounded below by the true

MAP probability, and bounded above by the probabil-
ity of evidence.

Proof of Theorem 3

First, we provide some simple semantics for the mes-
sages, then use that to prove the theorem.

Lemma 5 The message Mij from cluster
i to neighboring cluster j is equivalent to
Oπ(n)Oπ(n−1) . . . Oπ(1)

∏
φ∈Φij

φ, for some order
π of the variables that appear in the i side of the
jointree, but not on the j side, where OX =

∑
X if X

is a summation node, maxX otherwise, and Φij is the
set of potentials assigned to the i side of the tree.

The proof is by induction on the depth of the tree
rooted at i, when the j side of the tree is removed. For
the base case when i is a leaf, the message definition
is maxX

∑
Y φi, where X and Y are the maximization

and summation variables that appear in i, but not in
j. So the lemma criteria is satisfied using any order
where the variables Y are eliminated, then the the
variables X. Now, assume by way of induction that
the lemma is satisfied for all messages whose subtrees
are up to depth k. Now, consider a message from
cluster i to j whose subtree has a depth of k + 1.
The message is defined by maxX maxY φi

∏
l 6=j Mli.

By the inductive hypothesis, each message can be
replaced by its corresponding expression, yielding
maxX maxY φi

∏
l 6=j Oπl(nl)Oπl(nl−1) . . . Oπl(1)

∏
φ∈Φli

φ.
Since any summation or maximization occurs only
over variables that appear only in that message,
the potentials can be multiplied and the operators
for all of the messages can simply be concatenated.
Similarly, as the variables of φ do not appear in any
of the operators of the other messages, φi can be
moved inside the innermost product. Choosing an
order πX and πY, and letting π be the concatenation
πl1 ...πlnπYπX of the orders corresponding to the child
messages, and the variables eliminated from i to j,
we have Mij = Oπ(n)Opi(n−1) . . . Oπ(1)

∏
φ∈Φij

φ. This
completes the inductive step.

Now, for a cluster i, with maximization variables X,
and summation variables Y, using the above Lemma,
and using the same arguments it employed regard-
ing pushing the multiplications inside, and concate-
nating the operators, we have maxX

∑
Y φi

∏
k Mki =

Oπ(n)Oπ(n−1) . . . Oπ(1)

∏
φ∈Φ φ for some order π. As

this is the same result as variable eliminatio with order
π, it yields an upper bound on the MAP probability.

For the second part of the theorem, choose π so that
X is the last variable eliminated. Before performing
the last operation (maximizing out X), we have a po-
tential over variable X, where each entry bounds the



probability of the maximal instantiation of the other
MAP variables, which is compatible with that value of
X. This then is equivalent to a bound on the MAP
probability for MAP(M \ {X}, xe).


