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Abstract

Fundamentally different from DPLL, a new approach to
SAT has recently emerged that abandons search and en-
lists BDDs to symbolically represent clauses of the CNF.
These BDDs are conjoined according to a schedule where
some variables may be eliminated by quantification at each
step to reduce the size of the intermediate BDDs. SAT solv-
ing then reduces to checking whether the final BDD is the
zero constant. For this approach to be practical, finding a
good quantification schedule is critical. We study the use of
a variable elimination algorithm for this purpose, as well as
two specific methods for the generation of good elimination
orders based on CNF structure. While neither method ap-
pears to dominate, we show how one can heuristically se-
lect the better using the notion of width. We implement a
symbolic SAT solver based on these techniques and eval-
uate its efficiency and robustness on a set of benchmarks
against five other solvers, each having unique characteris-
tics, including winners of the most recent SAT competition.

1. Introduction

Given a propositional theory in Conjunctive Normal
Form (CNF), the problem of Propositional Satisfiability
(SAT) is to determine whether there exists a truth assign-
ment to its variables under which it evaluates to true. Ow-
ing to the significance of SAT in complexity theory as well
as its widespread applications in various fields of computer
science, substantial effort has been put into the engineer-
ing of efficient SAT solvers. The majority of state-of-the-
art SAT solvers [4] are based on the DPLL algorithm [12],
where a search is conducted in the space of variable as-
signments for one that satisfies the target propositional the-
ory. After decades of research the efficiency of these solvers
has reached unprecedented heights thanks to a combina-
tion of modern techniques such as new variable ordering
heuristics, watched literals, conflict-directed backtracking,
nogood learning, and restarts [3, 25, 28, 39, 16].

A fundamentally different approach to SAT has recently
emerged [1, 23, 30], which eliminates search by symboli-
cally representing clauses of the CNF with Binary Decision
Diagrams (BDDs) [6]. When these BDDs are conjoined,
SAT reduces to checking in constant time whether the re-
sult is identical to zero. On the theoretical side, it has been
proved that this approach, which we refer to asSymbolic
SAT Solving, is incomparable to those based on resolution,
including the DPLL search (whose underlying proof sys-
tem is resolution) [17]. Specifically, there are known classes
of problems which are easy for the former but exponen-
tially hard for the latter, and vice versa. This analysis is
matched by empirical studies where the comparative perfor-
mance of the two methods has been observed to be problem-
dependent [36, 21, 30]. Given the overwhelming popularity
enjoyed by DPLL, these results justify more extended re-
search on techniques suited for the BDD-based alternative.

For symbolic SAT solving to be practical, variables are
eliminated by existential quantification as early as pos-
sible to reduce the size of the intermediate BDDs con-
structed, and a good quantification schedule is critical. We
show in this paper that thevariable eliminationprocedure,
which has been studied in the field of probabilistic infer-
ence [14, 40], can be used as an approach to quantification
scheduling. Furthermore, we describe two specific meth-
ods, recursive decomposition [11] and min-cut linear ar-
rangement [3], that can be used to generate good elimina-
tion orders—which are crucial for efficient variable elimi-
nation in general—for symbolic SAT solving in particular.
While neither method appears to dominate, we show that
one can heuristically select the better based on thewidth of
the elimination order generated.

This selection heuristic is theoretically justified in that
variable elimination algorithms are known to have a com-
plexity that is exponential only in the width of the elimina-
tion order used [14]. In the context of symbolic SAT solv-
ing, the width plus 1 translates into the maximum number of
variables any intermediate BDD can have. Choosing an or-
der with a smaller width therefore helps minimize the size
of these intermediate BDDs.



On the empirical side, we implement a symbolic SAT
solver based on these techniques and compare it on a set of
benchmarks against five other programs, including zChaff
[28] and Marcheq [18], winners of the 2004 SAT Compe-
tition in the industrial and handmade category respectively
[32]. While some of these solvers exhibit a highly optimized
performance on certain benchmarks, we observe that our
new symbolic solver is the only one to have successfully
solved all benchmarks on which the comparison is made.

Interestingly, the variable elimination algorithm we use
corresponds exactly to the original Davis-Putnam (DP) pro-
cedure [13] for SAT, except that resolution is now replaced
with BDD conjunction and quantification (or theAndExists
operation which combines the two [26]). Our successful im-
plementation of the algorithm indicates that DP can be a
very practical algorithm, after all, as long as one chooses an
appropriate representation for CNF clauses so that existen-
tial quantification can be efficiently carried out.

A major contribution of the present paper is therefore
a theoretical study of an example of such representation,
namely BDDs, and the demonstration of its practical effi-
ciency in conjunction with good elimination orders. In re-
lated work, the ZRes SAT solver, which shall be part of
our empirical study, provides another example, where zero-
suppressed BDDs [22] are used to encode sets of clauses (as
opposed to sets of models in the case of BDDs), and a spe-
cial algorithm is designed to perform resolution on the en-
coded clauses [9].

The remainder of the paper is organized as follows. We
start with the basics of symbolic SAT solving in Section 2.
In Section 3 we describe the use of variable elimination for
symbolic SAT solving as well as two specific methods that
can be used to generate good elimination orders. We pro-
vide an empirical evaluation of these methods in Section 4
and conclude in Section 5.

2. Symbolic SAT Solving

We review in this section the definition of SAT and the
fundamentals of the symbolic approach to SAT solving. As
is customary, we consider propositional formulas in CNF. A
CNF formula is defined as a conjunction of clauses, where
each clause is a disjunction of literals. A literal is an in-
stance of a Boolean variable or its negation. The following
is an example of a four-clause CNF formula over six vari-
ables:(u∨x∨y)∧ (x∨¬z)∧ (¬u∨w∨z)∧ (v∨¬w∨z).

An instance of the SAT problem takes as input a CNF∆,
and asks whether variables of∆ can be each assigned one
of two Boolean valuestrue andfalse such that∆ evalu-
ates totrue. If such asatisfying assignment, also known as
a model, exists, the formula is declaredsatisfiable; other-
wise it is declaredunsatisfiable.
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Models encoded:

x1 = false                                
x2 = true                                
x3 = true

x1 = true                                
x2 = false                               
x3 = true

x1 = true
x2 = true                                 
x3 = don’t care

0
Figure 1. A BDD and the models it encodes.

Algorithms based on DPLL [12] constitute the predomi-
nant approach adopted by modern SAT solvers that are de-
signed to becomplete, i.e., guaranteed to solve the problem
given sufficient resources. This approach formulates SAT as
a systematic search in the space of variable assignments. To
find a satisfying assignment it instantiates variables one at
a time and backtracks whenever a contradiction is reached.
See [39] for a detailed description of this algorithm along
with additional techniques commonly employed.

Unlike DPLL that searches for a model, the symbolic
approach bases itself on the fact that the set of all models
can be encoded as a BDD which can be obtained without
search. Figure 1 depicts an example BDD over three vari-
ables together with the models it encodes. Formally, a BDD
is a rooted directed acyclic graph where there are at most
two sinks, labeled with0 and1 respectively, and every other
node is labeled with a Boolean variable and has exactly two
children, distinguished aslow andhigh [6]. A BDD repre-
sents a propositional theory whose models can be enumer-
ated by taking all paths from the root to the 1-sink: taking
the low (high) child of a node labeled withxi corresponds
to assigningfalse (true) to xi; in casexi does not appear
on the path, it is marked as “don’t care” which means ei-
ther value can be assigned.

In practice, BDDs are usually maintained so that vari-
ables appear in the same order on any path from the root to a
sink, that there is no node whose two children are identical,
and that there are no isomorphic sub-graphs. Under these
conditions BDDs are known to be a canonical form, mean-
ing that there is a unique BDD for any propositional theory
under a given variable order [6]. Moreover, any binary op-
eration on two BDDs with the same variable order can be
carried out using theApplyalgorithm [6], whose complex-
ity is linear in the product of the operand sizes.

To solve a CNF∆ = c1 ∧ c2 ∧ . . . ∧ cm for SAT in the
symbolic approach, therefore, one can convert each of them
clauses into a BDD and conjoin them one by one usingAp-

ply to produce a BDD for∆: BDD(∆) =
m∧

i=1

BDD(ci).



Owing to the canonicity of BDDs, the result is then identi-
cal to the 0-sink if and only if∆ is unsatisfiable.

A potential hurdle to this incremental BDD construction
is that the intermediate results may be too large for the con-
junction to be efficient. Besides, it would be an overkill in
any case to actually produce the final BDD that encodes
all models, because to test satisfiability all one need know
is whether thereis a model. In other words, one need only
check if∃X∆ = true, whereX = {x1, . . . , xn} are the
variables of∆, which amounts to the computation of

∃XBDD(∆) = ∃X
m∧

i=1

BDD(ci). (1)

Recall that according to the rules of quantified Boolean
logic, an existential quantifier can be restricted to a conjunct
if the variable being quantified does not appear in other con-
juncts. That is,

∃x[f(x, Y ) ∧ g(Z)] ≡ [∃xf(x, Y )] ∧ g(Z) (2)

whereY andZ are sets of variables not includingx. This
means that when BDDs are conjoined (two at a time) in
Equation 1,∃x1, . . . , xn need not all be performed at the
end, but can be moved to the individual conjunction steps
by virtue of Equation 2. As variables are quantified early on,
the intermediate BDDs are expected to have reduced sizes
because they now have fewer variables.

This technique is known asearly quantification[35, 7,
19], and has been extensively used in such areas as symbolic
model checking where current state variables are quanti-
fied in image computation [7]. Thequantification schedul-
ing problem is then to order the conjuncts so as to minimize
the size of intermediate BDDs. Finding optimal quantifica-
tion schedules is known to be NP-hard [19], and various
heuristics have been proposed and studied in the context of
image computation [31, 38, 27]. In the next section we de-
scribevariable elimination[14, 40] as an approach to quan-
tification scheduling for symbolic SAT solving, as well as
two specific methods for the generation of good elimina-
tion orders based on the structure of the CNF formula.

3. Toward Good Elimination Orders

We describe here the variable elimination algorithm as
pertains to our specific task of symbolic SAT solving, and
refer the reader to [14] for a detailed presentation of the
technique in general. See Algorithm 1 for the pseudocode.

To start with, each clauseci of CNF∆ = c1∧c2∧. . .∧cm

is converted into a BDDBDD(ci) (implicit on Line 5).
Given a total orderπ on the variables of∆—known as an
elimination order, abucketBv is created for each variablev
(Lines 1 and 2) and eachBDD(ci) is assigned to the bucket
of its first variable according to orderπ (Lines 3–5). These

Algorithm 1 VE (CNF∆, orderπ)
1: for each variablev of ∆ do
2: create empty bucketBv

3: for each clausec of ∆ do
4: v = first variable ofc according to orderπ
5: Bv = Bv ∪ {BDD(c)}
6: for each variablev of ∆ in orderπ do
7: if Bv is not emptythen
8: BDDr = conjunction of all elements ofBv

9: if BDDr = zerothen
10: return UNSATISFIABLE
11: BDDr = ∃vBDDr

12: u = first variable ofBDDr according to orderπ
13: Bu = Bu ∪ {BDDr}
14: return SATISFIABLE

buckets are then processed one at a time, using orderπ and
skipping empty buckets (Lines 6–13). When a bucketBv is
processed, all BDDs in it are conjoined (Line 8) in arbitrary
order and variablev is existentially quantified (Line 11) so
that it is eliminatedfrom the result, which is then thrown
into the bucket of its first variable (Lines 12 and 13). Dur-
ing this iteration process if any BDD constructed ends up
being the zero constant, the CNF is declared unsatisfiable
(Line 10); otherwise it is declared satisfiable (Lines 14).

As we have pointed out, it is not hard to ascertain that
this algorithm corresponds exactly to the original DP pro-
cedure [13] for satisfiability, except that resolution is now
replaced with BDD conjunction and quantification, attain-
ing the same purpose of variable elimination. The compact-
ness of the BDD representation then affords an opportunity
for efficiency to be attained where the original DP may suf-
fer from the well-known problem of space explosion.

The complexity of Algorithm 1 will greatly depend on
the elimination order used, and the quality of the latter is
typically measured by itswidth [14]. The width of an elim-
ination order can be defined with respect to theconnectivity
graph of the CNF formula, where each CNF variable be-
comes a node of the graph and there is an edge between
two nodes if the corresponding variables appear together
in some clause of the CNF. When each node is eliminated
(deleted together with edges incident on it) from the graph
according to some elimination order, we pairwise connect
all neighbors of the node before its deletion. The maximum
number of neighbors any node has right before its deletion
is then defined as the width of the elimination order.

It is important to note that in the context of the above al-
gorithm for SAT solving, the width of an elimination or-
der plus 1 represents the maximum number of variables
any intermediate BDD can have. Width minimization will
hence be a step toward minimizing the size of the inter-
mediate BDDs and the complexity of the overall elimina-
tion algorithm. We describe next two methods that can be



used to generate low-width elimination orders in general,
and demonstrate in Section 4 their effectiveness for sym-
bolic SAT solving in particular.

3.1. Recursive Decomposition

Recursive decomposition is one of the more competitive
methods available for generating elimination orders of low
width; on a set of belief networks it has been reported to
outperform themin-fill heuristic, which was among the best
techniques previously used for width minimization [11]. To
use this method, one first converts the CNF into a hyper-
graph where each clause becomes a vertex and each variable
a hyperedge connecting all the clauses in which it appears.
Using an existing software tool called hMeTis [24], the ver-
tices of this hypergraph are partitioned into two balanced
(roughly equal-sized) parts while minimizing the number
of hyperedges across; these two parts are then each recur-
sively partitioned in the same fashion, until they contain a
single vertex. The result of this process is referred to as a
dtree, short for decomposition tree, and it is shown that the
hypergraph partitioning process heuristically minimizes the
widthof the dtree—which we define next—and a low-width
dtree can be used to induce an elimination order also of a
low width [11].

The notion of dtree originated in the context of belief net-
works [10]. When applied to a CNF formula∆, a dtree can
be formally defined as a full binary tree whose leaves corre-
spond to the clauses of∆. See Figure 2 for an example. One
can define thevariablesof a dtree node as the set of vari-
ables of the clauses under it, and thecutsetof a dtree node
as the intersection of its two children’s variables, exclud-
ing all those variables that already appear in the cutsets of
its ancestor nodes; for a leaf node the cutset is simply its
variables, again excluding those in the cutsets of its ances-
tors. Theclusterof a dtree node is then defined as its cut-
set, plus any of its variables that also appear in its ances-
tors’ cutsets. The size of the largest cluster of a dtree minus
1 is defined as thewidthof the dtree [10].

Figure 2 (top) depicts a dtree for a four-clause CNF,
where the cutset is shown inside each node. By travers-
ing such a dtree in post-order one can enumerate all
its (nonempty) cutsets in a sequence. For example,
{v}, {w}, {y}, {x}, {u, z} is a possible outcome of such
a traversal on the dtree of Figure 2. A sequence of vari-
able groups can be considered as a constraint on the
variable order. It is shown in [11] that any elimination or-
der consistent with such a cutset sequence is guaranteed to
have no greater width than the dtree. This effectively pro-
vides a method for the generation of low-width elimination
orders through low-width dtrees constructed by recur-
sive decomposition.

{u,z}

{w}

{y} { } {v}

u V x V y x V ¬z ¬u V w V z v V ¬w V z

{x}

{ }

u v w x y z

cutwidth = 4

Figure 2. A dtree and the cutwidth of a vari-
able order for a four-clause CNF.

3.2. Min-Cut Linear Arrangement

Min-Cut linear arrangement has been proposed as a
method to generate variable orders that reduce the BDD
size as well as the complexity of DPLL-based SAT solv-
ing [3]. Similar to recursive decomposition, the technique
of hypergraph partitioning [8] is used, but this time each
variable of the CNF becomes a vertex and each clause a
hyperedge connecting its variables. Unlike in recursive de-
composition where every partitioning step is independent
of the others, a procedure known asterminal propagation
[15] is used so that the result is not a dtree, but a vertex or-
der that is expected to have a smallcutwidth, which is the
maximum number of hyperedges one can cut when the ver-
tices of the hypergraph are arranged in a linear order.

Figure 2 (bottom) illustrates the cutwidth of variable or-
deru, v, w, x, y, z for the same four-clause CNF: the largest
cut, of size4, occurs between variablesx andy. The use of
min-cut linear arrangement to generate CNF variable orders
of low cutwidth is referred to as the MINCE heuristic in [3].
Although this heuristic is not designed with variable elim-
ination in mind, we point out here that a variable order of
bounded cutwidth is immediately an elimination order of
bounded width, because it is known that for a given vari-
able order,width ≤ k · cutwidth [5, 34], wherek is the
maximum clause length of the CNF minus 1. This obser-
vation seems in line with our experimental results in Sec-
tion 4, where MINCE elimination orders appear to be com-
petitive with those produced by recursive decomposition.

Recursive decomposition and min-cut linear arrange-
ment have been implemented as theHGR2BDT program of
[11] and the MINCE program of [3]. In Section 4 we will
refer to them as DTREE and MINCE, respectively.



Instance Variables Clauses VE Using DTREE VE Using MINCE
Width Time Peak Nodes Width Time Peak Nodes

marg3x6 106 1232 72 5.62 1630090 39 0.47 15330
urquhart-s3-b6 54 688 52 1311.82 27538812 26 0.23 9198
urquhart-s4-b2 70 594 39 0.51 131838 25 0.23 7154

am 5 5 1076 3677 55 5.22 977032 639 ≥ 2000 –
homer17 286 1742 129 133.27 5039482 241 ≥ 2000 –

fpga 10 9 sat rcr 135 549 92 1.28 140014 101 2.56 794094

Table 1. Recursive decomposition vs. min-cut linear arrangement

4. Experimental Results

The purpose of our experiments is twofold. First, we
compare the quality of elimination orders generated by
DTREE and MINCE in terms of the corresponding run-
ning times of the variable elimination algorithm on BDDs.
Second, we show that the combined use of both methods
through a selection heuristic can be the basis for an efficient
and robust symbolic SAT solver, which provides a quality
alternative for situations where the standard DPLL-based
solvers may suffer.

To this end, we implemented a SAT solver based on Al-
gorithm 1, using the CUDD package from the University of
Colorado [33] for all BDD manipulations. Note that in us-
ing CUDD one needs a BDD variable order, in addition to
an elimination order required by Algorithm 1. For the for-
mer purpose we have used the MINCE orders, with dynamic
reordering turned off, for all benchmarks except the pigeon-
hole instances (for reasons we are yet to identify, the orig-
inal variable orders work out much better for pigeonhole).
In other words, the BDD variable order and the elimination
order will coincide when MINCE is used also for the lat-
ter. Our selection between DTREE and MINCE hereafter
will apply only to the elimination orders.

In our first set of experiments, we ran our solver twice
on the same set of benchmarks—we describe our selection
of these benchmarks later—with elimination orders gener-
ated by DTREE and MINCE respectively. We observe that
neither method dominates across the board. While on many
instances the two running times are close, occasionally the
difference is substantial—Table 1 includes some of these
instances. The running times shown are in seconds and in-
clude preprocessing (generation of DTREE and MINCE or-
ders) times; the Peak Nodes column gives the maximum
number of BDD nodes present in memory during the vari-
able elimination process—an indication of its complexity.
All our experiments were run on a 2.4GHz processor with
3.7GB of RAM under Red Hat Linux.

Table 1 clearly suggests a strong correlation between
width, running time, and number of peak nodes. Specifi-
cally, where the two methods lead to significantly different
running times for a given instance, the better performance

is usually associated with the elimination order of smaller
width. For our second set of experiments, therefore, we set
our SAT solver to try both methods as a preprocessing step,
and automatically select the elimination order with smaller
width to be used in the main algorithm.

We now compare the performance of this program,
which we will refer to as VE, with that of five other SAT
solvers: ZRes, zChaff, Cassatt, CirCUs, and Marcheq.
Our choice of these solvers is due to their unique charac-
teristics as well as evidenced efficiency. Performing res-
olution on zero-suppressed BDDs, ZRes [9] is a solver
very similar to ours in spirit, although the actual algo-
rithms are quite different. Based on DPLL, zChaff [28]
has been one of the most competitive SAT solvers pub-
lished: it won the SAT Competition in 2001 and 2002,
and again in 2004 in the industrial category [32]. Cas-
satt implements a novel breadth-first search also using
zero-suppressed BDDs, and is reported to surpass zChaff
on the pigeonhole and urq-3–8 benchmarks [29]. Cir-
CUs is a hybrid program combining symbolic and
DPLL-based SAT solving, and is also reported to outper-
form zChaff on a number of benchmark families [23]. Fi-
nally, Marcheq has been the winner of the 2004 SAT
Competition in the handmade category [32].

We have been able to download or obtain by email copies
of these SAT solvers except for CirCUs (whose release, as
part of the VIS package, is slated for the end of summer
2004 according to its authors). In order to compare with Cir-
CUs, we make part of our benchmarks the same as used in
their paper [23] so that we may directly quote their results.
Other benchmarks are selected so that we include classi-
cal problems from the literature as well as those from the
2003 SAT Competition, all downloadable from the Satisfia-
biliy Library [20] and Fadi Aloul’s SAT Benchmarks [2]: of
the pigeonhole family only five instances are available from
[20], but additional instances can be easily generated us-
ing the provided description; the urq-3–8 families are based
on the biconditional formulas described in [37]; the simon
and bevan families are from the handmade category, and
the kukula and sat02 families from the industrial category,
of the 2003 SAT Competition; the fpga-sat family is pro-
vided by Fadi Aloul [2].



Benchmark Ins Variables Clauses VE ZRes zChaff Cassatt CirCUs March eq
MINCE DTREE Main Total

phole6 1 42 133 0.07 0.04 0.01 0.12 0.06 0.01 0.01 – 0.01
phole7 1 56 204 0.12 0.06 0.02 0.20 0.11 0.03 0.02 – 0.14
phole8 1 72 297 0.14 0.08 0.02 0.24 0.18 0.11 0.02 – 1.35
phole9 1 90 415 0.13 0.12 0.03 0.28 0.31 0.80 0.03 – 16.20
phole10 1 110 561 0.16 0.15 0.05 0.36 0.50 13.09 0.03 – 291.64
phole11 1 132 738 0.16 0.19 0.07 0.42 0.82 128.59 0.04 – (0)
phole12 1 156 949 0.20 0.26 0.10 0.56 1.33 1204.99 0.08 – (0)
phole13 1 182 1197 0.20 0.33 0.17 0.70 1.94 (0) 0.07 – (0)
phole14 1 210 1485 0.26 0.43 0.64 1.33 3.03 (0) 0.09 – (0)
phole15 1 240 1816 0.30 0.55 4.28 5.13 4.38 (0) 0.11 – (0)

urq-3 10 36∼46 220∼470 1.15 0.65 0.22 2.02 1.73 454.35 (6) 0.96 – 0.00
urq-4 10 64∼87 356∼1030 1.92 1.50 0.41 3.83 5.33 (0) 15.40 – 0.00
urq-5 10 119∼127 978∼1336 2.89 2.69 0.94 6.52 12.53 (0) 120.63 – 0.00
urq-6 10 166∼180 1324∼1756 4.28 4.25 1.45 9.98 26.95 (0) 1241.57 (6) – 0.04
urq-7 10 229∼250 1880∼2420 6.91 6.21 2.53 15.65 50.41 (0) 6174.53 (7) – 0.08
urq-8 10 304∼327 2486∼3252 10.27 9.86 5.22 25.35 94.31 (0) (0) – 0.10

bevan/dodecahedron1 30 80 0.14 0.02 0.01 0.17 0.09 0.01 0.01 – 0.00
bevan/hcb2 1 12 32 0.07 0.01 0.01 0.09 0.04 0.00 0.01 – 0.00
bevan/hcb3 1 45 288 0.22 0.06 0.03 0.31 0.19 853.56 0.13 – 0.00
bevan/hcb4 1 112 2048 2.06 0.48 0.17 2.71 1.12 (0) (0) – 0.01
bevan/hcb5 1 225 12800 6.39 5.06 1.87 13.32 5.38 (0) (0) – 0.09
bevan/hypercube4 1 32 128 0.20 0.02 0.01 0.23 0.10 2.06 0.02 – 0.00
bevan/hypercube5 1 80 512 0.19 0.12 0.03 0.34 0.57 (0) 3.27 – 0.00
bevan/hypercube6 1 192 2048 0.84 0.63 0.24 1.71 3.31 (0) (0) – 0.01
bevan/hypercube7 1 448 8192 7.17 4.55 1.89 13.61 19.32 (0) (0) – 0.04
bevan/icosahedron 1 30 192 0.18 0.03 0.02 0.23 0.09 6.74 0.03 – 0.00
bevan/icosstretch 1 45 352 0.15 0.07 0.02 0.24 0.19 16.31 0.08 – 0.00
bevan/marg* 17 12∼156 32∼1232 2.07 1.14 0.42 3.63 6.38 229.88 (12) 62.31 1.33 (14) 0.00
bevan/urqh* 13 18∼226 96∼3168 3.57 3.05 0.99 7.61 11.31 395.36 (4) 155.02 (12) 4.81 (12) 0.02
bevan/urqh1c* 13 15∼191 64∼1984 2.21 1.79 0.54 4.54 7.91 4094.83 (6) 411.57 6.77 0.01
simon/urquhart* 13 45∼288 264∼1116 2.49 1.86 0.45 4.80 19.14 423.65 (1) 12.01 4.59 (10) 0.00
simon/x1* 19 106∼382 282∼1018 4.44 3.27 0.52 8.23 81.30 (0) 21.2 6.97 0.00
simon/x2* 9 118∼382 314∼1018 2.18 1.57 0.25 4.00 40.08 (0) 6.52 3.38 0.00

kulula/am4 4 1 433 1458 0.60 0.44 0.22 1.26 (0) 0.34 (0) – 0.88
kulula/am5 5 1 1076 3677 1.29 1.29 2.64 5.22 (0) 66.24 (0) – 201.55
kulula/am6 6 1 2269 7814 3.10 3.36 486.22 492.68 (0) (0) (0) – (0)
sat02/homer17 1 286 1742 0.38 0.47 132.42 133.27 (0) (0) 0.18 – (0)
sat02/homer18 1 308 2030 0.38 0.57 939.87 940.82 (0) (0) 0.19 – (0)

fpga108 sat rcr 1 120 448 0.93 0.12 0.44 1.49 (0) 0.02 0.07 – 0.01
fpga109 sat rcr 1 135 549 0.93 0.16 0.19 1.28 (0) 1.92 0.10 – 0.01
fpga128 sat rcr 1 144 560 0.68 0.17 0.91 1.76 (0) 65.52 0.11 – 0.01
fpga129 sat rcr 1 162 684 1.08 0.20 1.60 2.88 (0) 3.05 0.17 – 0.01
fpga1210 sat rcr 1 180 820 0.94 0.25 8.03 9.22 (0) 813.06 0.12 – 0.02
fpga1211 sat rcr 1 198 968 1.94 0.28 15.28 17.50 (0) 553.65 0.23 – 0.02
fpga1212 sat rcr 1 216 1128 0.56 0.34 39.06 39.96 (0) (0) 0.21 – 0.02
fpga139 sat rcr 1 176 759 1.35 0.22 2.28 3.85 (0) (0) 0.29 – 0.02
fpga1310 sat rcr 1 195 905 1.29 0.27 10.17 11.73 (0) 346.45 0.26 – 0.02
fpga1311 sat rcr 1 215 1070 1.7 0.32 24.57 26.59 (0) 347.87 0.20 – 0.03
fpga1312 sat rcr 1 234 1242 0.55 0.38 67.93 68.86 (0) (0) 0.18 – 0.03

Table 2. Running times of six SAT solvers (shown in parentheses is the number of instances solved)



The results of this comparison are shown in Table 2,
where running times are in seconds and represent the to-
tal for each group, whose size is given in the second col-
umn. The number of variables and the number of clauses
are shown in the third and fourth column, as a range in case
of multiple instances in a group. The time limit was 2000
seconds per instance for all solvers. In case a solver did not
solve all instances of a group, either because it ran out of
time or memory, the number of instances solved is shown
in parentheses. To offer a clearer picture of the overhead in-
volved in generating both orders while using only one of
them, the running time of VE is broken down into three
parts: time to generate the elimination order by MINCE and
by DTREE is shown respectively in columns 5 and 6; the ac-
tual SAT solving time is shown in column 7; column 8 gives
the total. As we have alluded to, for CirCUs we only include
results as reported in [23]; where data is unavailable a dash
is shown instead. Running times reported in [23] for Cir-
CUs are based on the same CPU speed as ours (and 500
MB of RAM); hence we include them as is.

Our main observation here is that VE is the only solver
to have successfully solved all instances of every bench-
mark family. Although the cost of generating the elimina-
tion orders (columns 5 and 6) is often nontrivial compared
with that of the actual SAT solving (column 7), it appears to
be reasonable insurance against potential pitfalls caused by
bad orders, as indicated by Table 1.

While the efficiency of VE versus zChaff on these bench-
marks is apparent—for many groups zChaff failed to solve
any instance at all given the time limit and available mem-
ory, we look more closely at the comparison between VE
and the other four solvers. The performance of ZRes was
comparable to that of VE on many of the benchmarks,
but significantly worse on some (e.g., simon/x1* and si-
mon/x2*), especially the industrial and fpga-sat instances,
none of which were solved by ZRes. The pigeonhole in-
stances are one benchmark family for which it has been
proved that both resolution and symbolic solving will have
an exponential complexity [17]. On these instances Cas-
satt has been shown to exhibit only a polynomial complex-
ity, approximatelyO(n4) [29]. This seems consistent with
our results where Cassatt was decidedly faster than VE, al-
though VE still gained a remarkable speedup over zChaff
and Marcheq. On the urq families, it is clear that VE scales
much better than Cassatt. Comparing with Cassatt on other
instances, and also with CirCUs on the applicable instances,
the robustness of VE is notable. All instances were suc-
cessfully solved by VE, while quite a few of them were
not solved by Cassatt and CirCUs given the time limit and
available memory. Finally, Marcheq exhibited a highly op-
timized performance on the urq, simon, bevan, and fpga-sat
families, but failed to solve some of the pigeonhole, kukula,
and sat02 instances, again speaking to the robustness of VE.

5. Conclusion

We have shown that symbolic SAT solving based on
variable elimination can be a very efficient alternative on
problems where standard SAT algorithms may suffer. We
have studied two specific methods for the generation of
good elimination orders based on CNF structure, and shown
how one can heuristically select the better using the notion
of width. In comparison with five other programs includ-
ing winners of the most recent SAT Competition, our im-
plementation of this symbolic SAT solver is the only one
to have successfully solved all benchmarks we have used
given the time limit and available memory.

We have also pointed out that the original DP procedure
for SAT, though long in disuse, can in fact be very practical
as long as one uses an appropriate representation for CNF
clauses where existential quantification can be efficiently
carried out. The previous work on ZRes and the present pa-
per provide two examples of such representation, namely
zero-suppressed BDDs and regular BDDs, both leading to
promising results on many benchmarks where the tradi-
tional DPLL-based solvers tend to suffer. This motivates
further research on alternative DP implementations in par-
ticular, and alternative SAT solving methods in general.
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