
MUP: A Minimal Unsatisfiability Prover

Jinbo Huang
Computer Science Department

University of California, Los Angeles
jinbo@cs.ucla.edu

Abstract—After establishing the unsatisfiability of

a SAT instance encoding a typical design task, there

is a practical need to identify its minimal unsatisfiable

subsets, which pinpoint the reasons for the infeasibil-

ity of the design. Due to the potentially expensive

computation, existing tools for the extraction of un-

satisfiable subformulas do not guarantee the minimal-

ity of the results. This paper describes a practical

algorithm that decides the minimal unsatisfiability of

any CNF formula through BDD manipulation. This

algorithm has a worse-case complexity that is expo-

nential only in the treewidth of the CNF formula. We

provide an empirical evaluation of the algorithm, high-

lighting its efficiency on a set of hard problems as well

as its ability to work with existing subformula extrac-

tion tools to achieve optimal results.

I. Introduction

In a typical design task formulated as an instance of
Propositional Satisfiability (SAT), a satisfying assignment
for the Boolean formula, in Conjunctive Normal Form
(CNF) by custom, represents a design solution. When
the CNF is found unsatisfiable, on the other hand, a need
arises to identify the causes of its unsatisfiability in order
that a feasible design may be obtainable by revising its
specifications. Practical tools take a step in this direc-
tion by extracting small unsatisfiable subformulas from
the target CNF [6, 5, 29, 19].

An interesting example is given in [19] where an FPGA
routing problem is formulated as SAT and found to have
no solution. While unsatisfiability alone offers no clue as
to its causes, on closer examination the CNF in question is
discovered to have four minimal unsatisfiable (MU) sub-
sets. Each of the first two encodes a local requirement
that three particular nets are to be routed through a 2-
track channel—a pigeonhole problem bound to be insolu-
ble. The other MU subsets, by contrast, pinpoint a culprit
net which apparently contributes to the unroutability of
both channels. While such MU subformulas no doubt im-
part valuable information on possible ways to rectify the
design, their being minimal, in particular, helps ensure
that the conveyed information is not needlessly obscured.

Existing tools for extracting unsatisfiable subformulas,
unfortunately, stop short of guaranteeing their minimal-

ity, and do indeed produce suboptimal results in this re-
spect [6, 5, 29, 19]. This is understandable, to be sure,
because checking minimal unsatisfiability is a hard prob-
lem known to be DP -complete1 [20].

Formally, a CNF formula is minimal unsatisfiable if it
is unsatisfiable but becomes satisfiable with any clause
removed. There has been extensive work toward efficient
algorithms for checking minimal unsatisfiability, centering
on the notion of deficiency of the CNF formula, which is
the number of its clauses minus the number of its vari-
ables. Let MU(k) be all MU formulas with deficiency k.
It was shown in [1] that for k ≤ 0, MU(k) is the empty
set—all MU formulas have positive deficiency. Algorithms
were provided for MU(1) and MU(2) with quadratic and
cubic complexity in [11, 8], respectively, and for general
MU(k) with complexity nO(k) in [17, 13]. Finally, MU(k)
was shown to be decidable in O(2kn4) time, and thus
fixed-parameter tractable with respect to k [25].

Although efficiency is guaranteed for small k, an algo-
rithm of complexity O(2kn4) may not be viable for prob-
lems arising from practical applications, where k is often
unbounded. The pigeonhole problem we have mentioned,
for example, has k = O(h3) in its standard CNF encoding,
where h is the number of holes into which h+1 pigeons are
to be placed. As k grows in a real-world situation, these
problems will likely be better solved by a new algorithm
that is susceptible to a more tractable parameter.

Such an algorithm is the main subject of this paper.
Our proposed method combines the strengths of both
theoretical work on treewidth-based computation [12] and
practical advances in efficiently manipulating Binary De-
cision Diagrams (BDDs) [7, 24]. As a result, not only
are we able to offer a formal guarantee on the complexity
of the algorithm, but we show that our implementation
of this algorithm, which we shall refer to as MUP (Mini-
mal Unsatisfiability Prover), is able to quickly prove the
minimal unsatisfiability of some particularly hard classi-
cal problems, of which even to prove the unsatisfiability
alone can be difficult for state-of-the-art SAT solvers.

Furthermore, we point out that with a straightforward
extension, this program also doubles as an MU subfor-
mula extractor. This means that MUP can be used as an

1The complexity class DP can be defined as all languages that
are the intersection of a language in NP and one in coNP [21, 20].
DP -complete problems are both NP-hard and coNP-hard.

optimizer for any existing tool that extracts unsatisfiable
subformulas. This feature is particularly useful for certain
problems where running MUP on the original CNF may
not be the most efficient choice. One example of this situ-
ation will be given in Section IV, where the CNF formulas
have a relatively large number of clauses not contributing
to the MU cores, and existing tools based on search and
resolution, such as zCore [29] and AMUSE [19], can do a
good job in trimming them down quickly.

The rest of the paper is organized as follows. We briefly
review previous work on unsatisfiable subformula extrac-
tion in Section II, and describe in detail our minimal un-
satisfiability prover in Section III. Section IV empirically
evaluates the efficiency of the program as well as its abil-
ity to detect and optimize suboptimal results returned by
existing tools. Section V concludes our presentation.

II. Previous Work

We briefly review three most recent algorithms that
have been proposed for the extraction of unsatisfiable sub-
formulas. The algorithm of Bruni and Sassano [6, 5] is
based on a SAT search tree where branching occurs on
clauses instead of variables. When a clause is selected for
branching, one of its variables is chosen and instantiated
so as to satisfy the clause. On backtracking from a con-
flict, the previously chosen variable is set to the opposite
value and a new variable instantiated such that the clause
is again satisfied. During this search a hardness measure
is calculated for each clause based on how many times the
clause has been visited, how many times a conflict has oc-
curred on the clause, and the length of the clause. The
“adaptive core search” then starts with an empty set and
iteratively adds the hardest clauses to it until the set is
unsatisfiable, or throws clauses out if the satisfiability of
the set has not been determined after a certain number of
branchings. As noted in [19], the quality of the cores ex-
tracted by this algorithm greatly depends on the settings
of a few control parameters, which have to be hand-picked
based on the specific problem.

An extension of the zChaff SAT solver from Princeton
[18], the zCore program [29] utilizes the unsatisfiability
proof produced by zChaff in the form of a resolution DAG.
The roots of this DAG are original clauses of the CNF and
every other node is the resolvent of its parents. A sink
representing the empty clause then proves the unsatisfia-
bility of the CNF. The set of roots having a path to this
sink is hence an unsatisfiable subset of the CNF, which
is identified and returned by zCore. This subformula can
be passed back to zChaff and the whole process repeated
until a fixed point is reached after some iterations.

Similar to zCore, the AMUSE program capitalizes on
the resolution procedure involved during SAT search [19].
However, a new technique is used where each clause of the
CNF is disjoined with a new variable. These variables
serve as selectors for the clauses and together with the

learning process of the SAT solver allow AMUSE to im-
plicitly search for unsatisfiable subformulas. AMUSE was
noted for its ability to locate different unsatisfiable cores
upon repeated runs, as well as its inability to perform well
on large formulas since a new variable is added for each
clause, growing the search space considerably [19].

As we have mentioned, these existing programs do not
guarantee the minimality of the formulas extracted. We
present next a practical prover for minimal unsatisfiabil-
ity, which can then double as an extractor of unsatisfiable
subformulas that are guaranteed to be minimal.

III. A Minimal Unsatisfiability Prover

We will present the algorithm used by our prover in two
steps. First, we propose a formal method that reduces
minimal unsatisfiability of a CNF to model counting an
augmented formula with auxiliary variables. Second, we
show how this can be implemented as a variable elimi-
nation procedure on BDDs, which has a worst-case com-
plexity exponential only in the treewidth of the original
CNF. In the third part of this section we give a simple
extension to the algorithm so that it can also be used to
extract MU subformulas from an unsatisfiable CNF.

A. Augmenting the CNF

Let ∆ = c1∧. . .∧cm be the CNF whose minimal unsatis-
fiability is in question, and X = {x1, . . . , xn} its variables.
Let ∆i be a subformula of ∆ obtained by removing clause
ci. Our goal is to determine the unsatisfiability of ∆ and
the satisfiability of all ∆i for 1 ≤ i ≤ m—a total of m + 1
theories to test. We start by introducing a set of new vari-
ables Y = {y1, . . . , yk}, where we make k = dlog(m + 1)e
for reasons that will soon be clear. Note that this also
distinguishes our approach from that adopted by AMUSE
where a total of m variables are added. The idea here is
that we wish to construct a new formula ∆′ over variables
X ∪ Y such that each instantiation of Y will result in ∆′

simplying to one of our m + 1 target theories. This can
be done by enlisting the minterms over variables Y .

Recall that a minterm over a set of k variables is a
conjunction of k literals where each variable appears ex-
actly once. When k = 3, for example, there are a total
of 8 minterms: y1y2y3, y1y2y3, y1y2y3, y1y2y3, y1y2y3,
y1y2y3, y1y2y3, y1y2y3 (the over-bar denotes negation;
the conjunction symbols have been omitted).

Let MY be an array of all the 2k minterms over variables
Y in arbitrary order, and let M i

Y denote its ith element,
the array index starting at 1. We will now construct the
new formula ∆′ by augmenting each clause ci of CNF ∆
with a disjunct which is a minterm over variables Y :

∆′ =
m∧

i=1

(M i
Y ∨ ci).

Given any truth assignment α for variables Y , it is clear
that there is a unique 1 ≤ p(α) ≤ 2k such that M

p(α)
Y eval-

uates to 1 and all other minterms M i
Y , i 6= p(α), evaluate

to 0. A minterm M i
Y , when evaluating to 1 (0), has the

effect of removing (retaining) the corresponding clause ci

with which it is disjoined in ∆′. Hence it is not hard to
see that when ∆′ simplifies under assignment α, we have

Lemma 1 ∆′|α =
{

∆p(α), 1 ≤ p(α) ≤ m
∆, otherwise.

In other words, out of the 2k instantiations of variables
Y , exactly m of them will lead to simplifications of ∆′

which correspond to the m subformulas of CNF ∆ ob-
tained by removing a single clause; all other instantiations
of Y will equate ∆′ with ∆.

Using the existential quantification operator ∃X, we
will now establish the following correspondence between
the minimal unsatisfiability of CNF ∆ and the number of
models of ∃X∆′. Recall that ∃Xf(X, Y) is defined as the
theory f ′(Y) whose models are exactly those of f(X, Y)
after references to the X variables are removed.

Theorem 1 CNF ∆ is minimal unsatisfiable iff ∃X∆′

has exactly m models over variables Y .

Proof. Consider all the 2k assignments α for variables Y .
Assume that ∆ is minimal unsatisfiable, which means that
∃X∆ = 0 and ∃X∆i = 1 for all 1 ≤ i ≤ m. According to
Lemma 1, therefore, we have

(∃X∆′)|α = ∃X(∆′|α) =
{∃X∆p(α) = 1, 1 ≤ p(α) ≤ m
∃X∆ = 0, otherwise.

In other words, ∃X∆′ has exactly m models.
Now for the reverse direction assume that ∃X∆′ has

exactly m models. This implies that ∆ is unsatisfiable
because otherwise we would have ∃X∆ = ∃X∆i = 1 for
all 1 ≤ i ≤ m and ∃X∆′ would be a tautology with 2k

models. Furthermore, all ∆i must be satisfiable because
otherwise (∃X∆′)|α = ∃X(∆′|α) would only be true for
less than m assignments α according to Lemma 1, mean-
ing that ∃X∆′ would have less than m models.

B. Variable Elimination with BDDs

To decide the minimal unsatisfiability of CNF ∆, it now
remains to count the models of ∃X∆′. For this purpose
we will first construct a BDD for ∃X∆′, which will be
over variables Y and hence have a size of O(m) because
|Y | = k = O(log m). Counting the models of such a BDD
can therefore be done in O(m) time [7].

Recall that ∆′ is a conjunction of augmented clauses,
each in the form of M i

Y ∨ ci, where M i
Y is a minterm

over variables Y and ci is a disjunction of literals over
variables X. Such a “clause” can be easily converted into
a BDD, which has exactly k+|ci|+2 nodes. The following
augmented clause: y1y2y3 ∨ x1 ∨ x2 ∨ x3, for example,
translates into the BDD depicted in Fig. 1.

y1
���

����

0

y2

y3

x1

x2

x3

1

Fig. 1: A Binary Decision Diagram encoding y1y2y3 ∨x1 ∨x2 ∨x3.

Algorithm 1 VE(conjuncts ∆′, variables X, order π):
constructs a BDD for ∃X∆′ by variable elimination
1: for each variable x ∈ X do
2: create empty bucket Bx

3: for each conjunct c of ∆′ do
4: x = first X variable of c according to order π
5: Bx = Bx ∪ {BDD(c)}
6: for each variable x ∈ X in order π do
7: if Bx is not empty then
8: bdd = conjunction of all elements of Bx in arbitrary order
9: bdd = ∃x bdd

10: if bdd = 0 then
11: return 0
12: else if bdd mentions a variable in X then
13: x′ = first X variable of bdd according to order π
14: Bx′ = Bx′ ∪ {bdd}
15: return bdd

The next step is then to conjoin these m BDDs while
existentially quantifying out the X variables. This calls
for a well-studied technique known as early quantification
[27, 9, 14], which has been extensively used in such ar-
eas as symbolic model checking where current state vari-
ables are quantified in image computation [9]. The idea is
that one should take care to perform the quantifications
as early as possible, rather than all at the end, so that
the intermediate BDDs will have fewer variables and a
likely smaller size. The rules of quantified Boolean logic,
however, allow an existential quantifier to be pushed in-
side a conjunct only if the variable being quantified does
not appear elsewhere. Under this constraint, identifying
an optimal quantification schedule where the intermediate
BDDs are minimized is not a trivial task [14].

For our purposes, we enlist the variable elimination
(VE) procedure, which has been long established in the
field of probabilistic inference [12]. Although VE has not
traditionally been used for BDD construction, we shall see
that it can indeed be a very efficient choice, and that it
allows us to offer structure-based guarantees on the com-
plexity of the algorithm.

Algorithm 1 describes VE as tailored specifically to our
BDD construction task. It takes as inputs a list of con-
juncts ∆′ to be conjoined, a set of variables X to be elim-

inated (i.e., existentially quantified), and an ordering π
on variables X, known as an elimination order. We start
by converting each conjunct of ∆′ into a BDD (implicit
on Line 5), as described earlier and illustrated in Fig. 1.

We now create an empty bucket Bx for each variable x
to be eliminated (Lines 1 and 2), and throw the BDD for
each conjunct of ∆′ into the bucket of its first X variable
(recall that ∆′ mentions both X and Y variables) accord-
ing to order π (Lines 3–5). We then process the buckets
using order π, skipping empty ones. When a bucket Bx is
processed, all BDDs in it are conjoined in arbitrary order
(Line 8) using the standard Apply operation [7], and vari-
able x is existentially quantified (Line 9). The result is
then thrown into the bucket of its first X variable (Lines
13 and 14), the exceptions being if a contradiction is en-
countered, which terminates the algorithm (Lines 10 and
11), or if the result only mentions Y variables, which is
simply ignored (Line 12). The result of processing the last
bucket will then be exactly a BDD for ∃X∆′ (Line 15).

We conclude this subsection by noting that VE algo-
rithms are known to have a complexity that is exponen-
tial only in the width of the elimination order used, which
corresponds to the treewidth of the CNF formula. We re-
fer to reader to [12] for formal definitions of these notions,
but point out here that in the context of Algorithm 1, the
width of the elimination order π, plus 1, translates into
the maximum number of variables any intermediate BDD
can have. It is then easy to confirm that Algorithm 1 has
time and space complextiy O(m ·exp(w+log m)) where w
is the width of order π with respect to the original CNF,
because at most m−1 conjunctions need be performed and
the Apply operation is linear in the product of its operand
sizes [7], which are all bounded by O(exp(w + log m)).
Note that the extra log m introduced by the CNF aug-
mentation only boils down to a polynomial factor. In
Section IV we shall describe the method and tools we use
to construct elimination orders of low width.

C. A Simple Extension

Now that we have a minimal unsatisfiability prover
MUP, it is but natural to consider the possibility of using
it also as a MU subformula extractor. When a CNF ∆
is found by MUP to be unsatisfiable but not minimal,
the BDD that has been constructed contains informa-
tion about the satisfiability of all the m subformulas ∆i.
Specifically, each assignment α for the Y variables such
that 1 ≤ p(α) ≤ m and the BDD evaluates to 0 identi-
fies subformula ∆p(α) as unsatisfiable. This information
(one such assignment suffices) can be extracted in linear
time, and the unnecessary clause cp(α) removed. We can
then repeatedly run MUP to shrink the resulting formula
until it is proven to be minimal unsatisfiable. We point
out that this method can be more efficient than it may
appear, because the multiple runs of MUP are not com-
pletely independent—some work is shared through the
caches maintained during BDD manipulation.

Before presenting our experimental results, we point
out that running Algorithm 1 on the original CNF (i.e.,
without augmentation) will result in a BDD constant,
because all variables will have been gone by the end of
the elimination process. It is easy to see that this final
constant will be 1 if and only if the CNF is satisfiable.
One can therefore use this algorithm effectively as a SAT
solver. The performance of such a solver has been fa-
vorably evaluated in [16] for many benchmarks, including
some of those used here. Given this SAT solver, one can
simply run it m+1 times, on the original CNF ∆ and each
of its m subsets ∆i, as an alternative method for deciding
minimal unsatisfiability. Note that, again, the multiple
SAT tests can be more efficient than they appear owing
to the shared caches. We will refer to this method as
NAIVE and use it in the next section as a reference point
to evaluate the efficiency of MUP.

IV. Experimental Results

Our first set of experiments involves running MUP
and NAIVE on two classical families of hard SAT
benchmarks—pigeonhole and Urquhart2—plus the whole
bevan family (excluding the Urquhart instances) from
SAT 2003 competition benchmarks [15], all of which are
MU by construction. We use the CUDD package from
the University of Colorado [24] for all BDD operations.
To generate elimination orders of low width, which are es-
sential for the efficiency of VE, we use the same method as
described in [16]. This methond combines the benefits of
two generation tools for low-width orders, HGR2BDT [10]
and MINCE3 [2], by running them both and choosing the
result of smaller width.4 All our experiments are run on
a 2.4GHz processor with 3.7GB of RAM.

The results of these experiments are given in Table I,
where all running times are in seconds, represent the
group total, and include elimination order generation
times. The number of instances in each group is given
in the second column. For groups of multiple instances,
the number of variables and the number of clauses are
shown as a range.

It should be noted that these benchmarks have a his-
tory of baffling even the best SAT solvers [22]. The zChaff
solver [18], from example, cannot determine the unsatis-
fiability of phole-13, phole-14, phole-15, ten of the bevan
instances, or any of the urq-i instances for i > 3, within
a 2000-second time limit on our computer.

2Each pigeonhole instance, phole-i, encodes the problem of plac-
ing i+1 pigeons in i holes such that no pigeons share a hole [15]. The
Urquhart instances are also from [15] and based on the biconditional
formulas described in [28].

3MINCE directly minimizes the cutwidth, not the width, but the
two parameters are closely related through a third parameter known
as pathwidth: width ≤ pathwidth ≤ k · cutwidth [4, 26], where k is
the maximum clause length of the CNF minus 1.

4This combination seems to work well in general according to
[16]. For the pigeonhole and automotive benchmarks (described
later), however, we only use HGR2BDT as it seems to suffice.

TABLE II: Running MUP on Formulas Extracted by zCore

Benchmark zCore Extraction MUP Minimization

Name Variables Clauses Variables Clauses Time Minimal? Variables Clauses Time

C168 FW SZ 107 1698 6599 42 50 0.09 N 41 47 0.03

C168 FW UT 2468 1909 7487 32 36 0.07 N 32 35 0.03

C202 FS RZ 44 1750 6199 12 19 0.06 N 12 18 0.01

C202 FS SZ 84 1750 6273 206 221 0.09 Y – – 0.20

C202 FS SZ 97 1750 6250 26 35 0.06 N 26 33 0.02

C202 FW SZ 100 1799 8738 24 31 0.08 N 24 28 0.02

C202 FW SZ 103 1799 10283 140 160 0.18 N 140 159 0.29

C202 FW SZ 87 1799 8946 247 385 0.15 N 247 383 0.46

C202 FW SZ 96 1799 8849 210 215 0.11 Y – – 0.19

C210 FS SZ 55 1755 5781 29 49 0.06 N 29 46 0.02

C210 FW SZ 90 1789 7994 221 284 0.14 Y – – 0.35

C210 FW SZ 91 1789 7721 225 288 0.13 Y – – 0.35

C210 FW UT 8630 2024 9721 23 38 0.11 N 23 35 0.02

C220 FV SZ 55 1728 5753 246 312 0.19 N 246 310 0.43

C220 FV SZ 65 1728 4496 24 30 0.04 N 24 29 0.01

TABLE I: Proving Minimal Unsatisfiability

Benchmark Ins Variables Clauses MUP NAIVE

phole-6 1 42 133 0.23 0.26

phole-7 1 56 204 0.34 0.43

phole-8 1 72 297 0.51 0.99

phole-9 1 90 415 0.77 2.01

phole-10 1 110 561 1.07 3.60

phole-11 1 132 738 1.89 8.17

phole-12 1 156 949 2.10 16.32

phole-13 1 182 1197 4.81 28.32

phole-14 1 210 1485 13.58 109.33

phole-15 1 240 1816 83.86 10152.75

urq-3 10 36∼46 220∼470 2.54 8.36

urq-4 10 64∼87 356∼1030 5.84 40.25

urq-5 10 119∼127 978∼1336 24.18 137.51

urq-6 10 166∼180 1324∼1756 32.58 254.82

urq-7 10 229∼250 1880∼2420 61.95 596.07

urq-8 10 304∼327 2486∼3252 164.11 1391.95

dodecahedron 1 30 80 0.16 0.18

hcb2 1 12 32 0.09 0.09

hcb3 1 45 288 0.52 1.52

hcb4 1 112 2048 5.01 37.02

hcb5 1 225 12800 38.67 2472.37

hypercube4 1 32 128 0.21 0.24

hypercube5 1 80 512 1.13 2.29

hypercube6 1 192 2048 3.99 28.30

hypercube7 1 448 8192 22.20 526.12

icosahedron 1 30 192 0.22 0.32

icos stretch 1 45 352 0.27 0.67

marg 17 12∼156 32∼1232 10.28 31.27

We observe that MUP, by contrast, is able to prove the
unsatisfiability and minimality of all these CNFs, some
instantaneously and the hardest one in just 84 seconds.
NAIVE, on the other hand, is noticeably slower, although

it still solves many instances in reasonable time. This ap-
pears to justify our CNF augmentation method, because
all other techniques used are common to both programs.

In our second set of experiments, we run zCore to ex-
tract unsatisfiable subformulas from a suite of unsatisfi-
able benchmarks based on Automotive Product Configu-
ration5 [23, 3]. These CNFs “encode different consistency
properties of the configuration data base which is used to
configure DaimlerChrysler’s Mercedes car lines [23, 3].”
For each instance zCore is repeatedly called (via the pro-
vided run till fix script) until a fixed point is reached, that
is, the unsatisfiable subformula cannot be minimized fur-
ther. We then enlist MUP to check the minimality of the
results and reduce those that are found nonminimal. Our
goal here is to demonstrate the practicality and usefulness
of MUP on these real-world problems, both in proving and
in achieving optimality of the results.

The outcome of these experiments is summarized in Ta-
ble II. There are a total of 84 benchmarks in the group.
Due to space constraints we only include those instances
where the subformula extracted by zCore has over 200
variables or is nonminimal. It can be seen that at an al-
most negligible cost, MUP is always able to either prove
the minimality of the result, or reduce it so that it be-
comes minimal.

We note that running MUP directly on these bench-
marks appears to be inefficient, apparently because there
are a relatively large number of clauses not contributing
to the unsatisfiable cores, which nonetheless must par-
ticipate, in vain, in the BDD construction run by MUP.
On the other hand, zCore as well as the other extractor
AMUSE [19], both based on search and resolution, seem
to do a good job in quickly trimming down the formulas.

5These benchmarks have also been used to evaluate AMUSE [19],
which, however, is not available to us for empirical studies.

V. Conclusion

We have presented MUP—a minimal unsatisfiabilty
prover. This program is based on a novel CNF augmen-
tation method which reduces minimal unsatisfiability to
a model counting problem. Capitalizing on theoretical
and practical advances in such fields as treewidth-based
computation, fast generation of high quality elimination
orders, and engineering of efficient BDD packages, MUP is
able to quickly prove the minimal unsatisfiability of a set
of hard problems, of which even to prove unsatisfiability
alone can be difficult for state-of-the-art SAT solvers. We
have discussed the use of MUP as a minimal unsatisfiable
core extractor. In situations where MUP by itself may
not work best, we have demonstrated its ability to work
with existing tools toward optimization of the results.

Acknowledgments

Thanks to the anonymous reviewers for their comments
which will be valuable in extending our current results.
This work has been partially supported by NSF grant
IIS-9988543 and MURI grant N00014-00-1-0617.

References

[1] Ron Aharoni and Nathan Linial. Minimal non-two-colorable
hypergraphs and minimal unsatisfiable formulas. Journal of
Combinatorial Theory Series A, 43:196–204, 1986.

[2] Fadi Aloul, Igor Markov, and Karem Sakallah. Faster SAT
and smaller BDDs via common function structure. In In-
ternational Conference on Computer Aided Design (ICCAD),
University of Michigan, 2001. Tool available for download at
http://www.eecs.umich.edu/˜faloul/Tools/mince/.

[3] SAT Benchmarks from Automotive Product Configuration,
http://www-sr.informatik.uni-tuebingen.de/˜sinz/DC/.

[4] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks.
Approximating treewidth, pathwidth, and minimum elimina-
tion tree height. Journal of Algorithms, 18:238–255, 1995.

[5] Renato Bruni. Approximating minimal unsatisfiable subformu-
lae by means of adaptive core search. Discrete Applied Math-
ematics, 130(2):85–100, 2003.

[6] Renato Bruni and Antonio Sassano. Restoring satisfiability or
maintaining unsatisfiability by finding small unsatisfiable sub-
formulae. Electronic Notes in Discrete Mathematics, 9, 2001.

[7] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35:677–
691, 1986.

[8] Hans Kleine Büning. On subclasses of minimal unsatisfiable
formulas. Discrete Applied Mathematics, 107(1–3):83–98, 2000.

[9] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model
checking with partitioned transition relations. In Proceedings of
the International Conference on Very Large Scale Integration,
1991.

[10] Adnan Darwiche and Mark Hopkins. Using recursive decom-
position to construct elimination orders, jointrees and dtrees.
In Trends in Artificial Intelligence, Lecture notes in AI, 2143,
pages 180–191. Springer-Verlag, 2001.

[11] Gennady Davydov, Inna Davydova, and Hans Kleine Büning.
An efficient algorithm for the minimal unsatisfiability problem
for a subclass of CNF. Annals of Mathematics and Artificial
Intelligence, 23(3–4):229–245, 1998.

[12] Rina Dechter. Bucket elimination: A unifying framework for
probabilistic inference. In Proceedings of the 12th Conference
on Uncertainty in Artificial Intelligence, pages 211–219, 1996.

[13] Herbert Fleischner, Oliver Kullmann, and Stefan Szeider.
Polynomial-time recognition of minimal unsatisfiable formu-
las with fixed clause-variable difference. Theoretical Computer
Science, 289(1):503–516, 2002.

[14] R. Hojati, S. C. Krishnan, and R. K. Brayton. Early quan-
tification and partitioned transition relations. In Proceedings
of the International Conference on Computer Design, pages
12–19, 1996.

[15] Holger H. Hoos and Thomas Sttzle. SATLIB: An Online
Resource for Research on SAT. In I.P.Gent, H.v.Maaren,
T.Walsh, editors, SAT 2000, pages 283–292. IOS Press, 2000.
SATLIB is available online at www.satlib.org.

[16] Jinbo Huang and Adnan Darwiche. Toward good elimination
orders for symbolic SAT solving. In Proceedings of the 16th
IEEE International Conference on Tools with Artificial Intel-
ligence (ICTAI), November 2004.

[17] Oliver Kullmann. An application of matroid theory to the SAT
problem. In Proceedings of the 15th Annual IEEE Conference
on Computational Complexity, pages 116–124, 2000.

[18] Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT
solver. In Proceedings of the 39th Design Automation Confer-
ence, 2001.

[19] Yoonna Oh, Maher N. Mneimneh, Zaher S. Andraus, Karem A.
Sakallah, and Igor L. Markov. AMUSE: a minimally-
unsatisfiable subformula extractor. In Proceedings of the 41st
Annual Conference on Design Automation, pages 518–523.
ACM Press, 2004.

[20] Christos H. Papadimitriou and David Wolfe. The complexity of
facets resolved. In Proceedings of the 26th Annual Symposium
on Foundations of Computer Science, pages 74–78, 1985.

[21] Christos H. Papadimitriou and Mihalis Yannakakis. The com-
plexity of facets (and some facets of complexity). In Proceedings
of the 14th Annual ACM Symposium on Theory of Computing,
pages 255–260. ACM Press, 1982.

[22] The Annual SAT Competitions:
http://www.satlive.org/SATCompetition/.

[23] Carsten Sinz, Andreas Kaiser, , and Wolfgang Kchlin. Formal
methods for the validation of automotive product configuration
data. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 17(2), 2003.

[24] Fabio Somenzi. CUDD: CU Decision Diagram Package. Release
2.4.0.

[25] Stefan Szeider. Minimal unsatisfiable formulas with bounded
clause-variable difference are fixed-parameter tractable. In Pro-
ceedings of the Nineth International Computing and Combina-
torics Conference, pages 548–558. Springer Verlag, 2003.

[26] Dimitrios Thilikos, Maria Serna, and Hans Bodlaender. A poly-
nomial algorithm for the cutwidth of bounded degree graphs
with small treewidth. Lecture Notes in Computer Science,
2161:380–390, 2001.

[27] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit enumeration of finite state
machines using BDDs. In Proceedings of the IEEE Interna-
tional Conferece on Computer Aided Design, pages 130–133,
1990.

[28] Alasdair Urquhart. Hard examples for resolution. Journal of
the ACM, 34(1):209–219, 1987.

[29] Lintao Zhang and Sharad Malik. Extracting small unsatisfiable
cores from unsatisfiable Boolean formula. Presented at the
Sixth International Conference on Theory and Applications of
Satisfiability Testing, 2003.

