
A Compiler for Deterministic, Decomposable Negation Normal Form

Adnan Darwiche
Computer Science Department

University of California
Los Angeles, CA 90095
darwiche@cs.ucla.edu

Abstract

We present a compiler for converting CNF formulas into de-
terministic, decomposable negation normal form (d-DNNF).
This is a logical form that has been identified recently and
shown to support a number of operations in polynomial time,
including clausal entailment; model counting, minimization
and enumeration; and probabilistic equivalence testing. d-
DNNFs are also known to be a superset of, and more succinct
than, OBDDs. The polytime logical operations supported by
d-DNNFs are a subset of those supported by OBDDs, yet are
sufficient for model-based diagnosis and planning applica-
tions. We present experimental results on compiling a variety
of CNF formulas, some generated randomly and others cor-
responding to digital circuits. A number of the formulas we
were able to compile efficiently could not be similarly han-
dled by some state-of-the-art model counters, nor by some
state-of-the-art OBDD compilers.

Introduction
A tractable logical form known asDeterministic, Decom-
posable Negation Normal Form,d-DNNF, has been pro-
posed recently (Darwiche 2001c), which permits some gen-
erally intractable logical queries to be computed in time
polynomial in the form size (Darwiche 2001c; Darwiche &
Marquis 2001). These queries include clausal entailment;
counting, minimizing, and enumerating models; and test-
ing equivalence probabilistically (Darwiche & Huang 2002).
Most notably, d-DNNF has been shown to be more succinct
than OBDDs (Bryant 1986), which are now quite popular in
supporting various AI applications, including diagnosis and
planning. Moreover, although OBDDs are more tractable
than d-DNNFs (support more polytime queries), the extra
tractability does not appear to be relevant to some of these
applications.

An algorithm has been presented in (Darwiche 2001a;
2001c) for compiling Conjunctive Normal Form (CNF) into
d-DNNF. The algorithm is structure-based in two senses.
First, its complexity is dictated by the connectivity of given
CNF formula, with the complexity increasing exponentially
with increased connectivity. Second, it is insensitive to non-
structural properties of the given CNF: two formulas with
the same connectivity are equally difficult to compile by the

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

given algorithm. However, most CNF formulas of interest—
including random formulas and those that arise in diagno-
sis, formal verification and planning domains—tend to have
very high connectivity and are therefore outside the scope of
this structure-based algorithm. Morever, some of these for-
mulas can be efficiently compiled into OBDDs using state-
of-the-art compilers such asCUDD. Given that d-DNNF is
more succinct than OBDDs (in fact, d-DNNF is a strict su-
perset of OBDD), such formulas should be efficiently com-
pilable into d-DNNF too.

We present in this paper a CNF to d-DNNF com-
piler which is structure-based, yet is sensitive to the non-
structural properties of a CNF formulas. The compiler is
based on the one presented in (Darwiche 2001a) but in-
corporates a combination of additional techniques, some
are novel, and others are well known in the satisfiability
and OBDD literatures. Using the presented compiler, we
show that we can successfully compile a wide range of CNF
formulas, most of which have very high connectivity and,
hence, are inaccessible to purely structure-based methods.
Moreover, most of these formulas could not be compiled
into OBDDs using a state-of-the-art OBDD compiler. The
significance of the presented compiler is two fold. First, it
represents the first CNF to d-DNNF compiler that practi-
cally matches the expectations set by theoretical results on
the comparative succinctness between d-DNNFs and OB-
DDs. Second, it allows us to answer queries about certain
CNF formulas that could not be answered before, including
certain probabilistic queries about digital circuits.

Tractable forms: d-DNNF and OBDD
A negation normal form (NNF) is a rooted directed acyclic
graph in which each leaf node is labeled with a literal,true
or false, and each internal node is labeled with a conjunction
∧ or disjunction∨. Figure 1 depicts an example. For any
noden in an NNF graph,Vars(n) denotes all propositional
variables that appear in the subgraph rooted atn, and∆(n)
denotes the formula represented byn and its descendants. A
number of properties can be stated on NNF graphs:

• Decomposabilityholds whenVars(ni) ∩ Vars(nj) = ∅
for any two childrenni andnj of an and-noden. The
NNF in Figure 1 is decomposable.

• Determinismholds when∆(ni) ∧ ∆(nj) is logically in-

¬¬A B ¬¬ B A C ¬¬ D D ¬¬ C

and and and and and and and and

or or or or

and and

or

Figure 1: A negation normal form graph.

consistent for any two childrenni andnj of an or-noden.
The NNF in Figure 1 is deterministic.

• Decisionholds when the root node of the NNF graph is
a decision node. Adecision nodeis a node labeled with

true, false, or is an or-node having the formX ¬¬Xα β

and

or

and

,
whereX is a variable,α andβ are decision nodes. Here,
X is called thedecision variableof the node. The NNF
in Figure 1 does not satisfy the decision property since its
root is not a decision node.

• Orderingis defined only for NNFs that satisfy the decision
property. Ordering holds when decision variables appear
in the same order along any path from the root to any leaf.

Satisfiability and clausal entailment can be decided in lin-
ear time for decomposable negation normal form (DNNF)
(Darwiche 2001a). Moreover, its models can be enumerated
in output polynomial time, and any subset of its variables
can be forgotten (existentially quantified) in linear time. De-
terministic, decomposable negation normal form (d-DNNF)
is even more tractable as we can count its models given
any variable instantiation in polytime (Darwiche 2001c;
Darwiche & Marquis 2001). Decision implies determin-
ism. The subset of NNF that satisfies decomposability
and decision (hence, determinism) corresponds to Free Bi-
nary Decision Diagrams (FBDDs) (Gergov & Meinel 1994).
The subset of NNF that satisfies decomposability, deci-
sion (hence, determinism) and ordering corresponds to Or-
dered Binary Decision Diagrams (OBDDs) (Bryant 1986;
Darwiche & Marquis 2001). In OBDD notation, however,

the NNF fragmentX ¬¬Xα β

and

or

and

is drawn more compactly as

α β

X

. Hence, each non-leaf OBDD node generates three
NNF nodes and six NNF edges.

Immediate from the above definitions, we have the fol-
lowing strict subset inclusions OBDD⊂ FBDD⊂ d-DNNF
⊂ DNNF. Moreover, we have OBDD> FBDD > d-DNNF

CNF2DDNNF(n, Ω)
1. if n is a leaf node, returnclause2ddnnf(Clauses(n) | Ω)
2. ψ←cnf2key(Clauses(n) | Ω)
3. if cachen(ψ) 6= nil, returncachen(ψ)
4. Γ←case analysis(n, Ω)
5. cachen(ψ)←Γ
6. returnΓ

CASE ANALYSIS(n, Ω)
7. Σ←Sep(n, Ω)
8. if Σ = ∅, returnCONJOIN(cnf2ddnnf(nl, Ω),cnf2ddnnf(nr, Ω))
9. X← choose a variable inΣ
10. WHILE CASE(X,true,Π):
11. if Π = ∅, α+←false
12. elseα+←conjoin(Π,case analysis(n, Π ∪ Ω))
13. WHILE CASE(X,false,Π):
14. if Π = ∅, α−←false
15. elseα−←conjoin(Π,case analysis(n, Π ∪ Ω))
16. returnDISJOIN(α+,α−)

Figure 2: Compiling a CNF into d-DNNF.

> DNNF, where> stands for “less succinct than.”1 OB-
DDs are more tractable than DNNF, d-DNNF and FBDD.
General entailment among OBDDs can be decided in poly-
time. Hence, the equivalence of two OBDDs can be decided
in polytime. The equivalence of two DNNFs cannot be de-
cided in polytime (unless P=NP). The equivalence question
is still open for d-DNNF and FBDD, although both support
polynomial probabilistic equivalence tests (Blum, Chandra,
& Wegman 1980; Darwiche & Huang 2002). For a com-
prehensive analysis of these forms, the reader is referred to
(Darwiche & Marquis 2001).

We close this section by noting that the polytime op-
erations supported by DNNF are sufficient to implement
model-based diagnosers whose complexity is linear in the
size of compiled device, assuming the device is expressed as
a DNNF (Darwiche 2001a). Moreover, for planning and for-
mal verification applications, there is no need for a polytime
test for general entailment as long as the goal (or property to
be verified) can be expressed as a CNF (clausal entailment
can be used here). Finally, polytime equivalence testing is
not needed here as it is only used to check for fixed points:
whether the models of some theory∆t (reachable states at
time t) equal the models of some theory∆t+1 (reachable
states at timet+1), where∆t |= ∆t+1 (the states reachable
att are included in those reachable att+1). The two theories
are equivalent in this case iff they have the same number of
models. Hence, counting models is sufficient to detect fixed
points in these applications.

Compiling CNF into d-DNNF
Figure 2 depicts the pseudocode of an algorithm for compil-
ing a CNF into a d-DNNF. The presented algorithm uses a

1That DNNF is strictly more succinct than d-DNNF assumes
the non-collapse of the polynomial heirarchy (Darwiche & Marquis
2001).

Figure 3: A decomposition tree for a CNF. Each leaf node is
labeled with a clause (a set of literals). Each internal node is
labeled with a separator (S) and a context (C).

data structure, known as adecomposition tree (dtree),which
is a full binary tree with its leaves corresponding to clauses
in the given CNF (Darwiche 2001a). Figure 3 shows an ex-
ample dtree, where each leaf node is labeled with a clause
and each internal node is labeled with two sets of vari-
ables to be explained later. The algorithm works as fol-
lows. Each noden in the dtree corresponds to the set of
clauses,Clauses(n), appearing in the subtree rooted atn.
Let nl and nr denote the left and right children of node
n. If Clauses(nl) andClauses(nr) do not share variables,
then we can convertClauses(nl) into a d-DNNFαl and
Clauses(nr) into a d-DNNFαr and simply returnαl ∧ αr

as the d-DNNF ofClauses(n). In general,Clauses(nl) and
Clauses(nr) do share variables, called aseparatorfor dtree
node noden . In that case, we choose one of these variables,
call it X, and then perform a case analysis on it.

Case analysis.To perform case analysis on a variableX
is to consider two cases, one under whichX is set to true and
another under which it is set to false. Under each case,X is
eliminated from the given set of clauses. Ifα+ is the result
of convertingClauses(n) into d-DNNF underX = true,
and if α− is the result of convertingClauses(n) into d-
DNNF underX = false, then(X ∧ α+) ∨ (¬X ∧ α−) is a
d-DNNF equivalent toClauses(n).2 Case analysis is imple-
mented using the macroWHILE CASE(X,v,Π) on Lines 10
& 13, which replaces every occurrence of the variableX by
v, performs unit resolution, and then collects all derived lit-
erals (includingX = v) in Π. Note here thatΠ not only
contains the literalX = v as suggested above, but also all
other literals derived by unit resolution (this leads to better
results in general). If unit resolution derives a contradiction,
Π is then the empty set.

2This is known as the Shannon expansion ofClauses(n) in the
literature on Boolean logic. It was initially proposed by Boole,
however (Boole 1848).

Separators. We may have to perform case analy-
sis on more than one variable before we can decompose
Clauses(nl) andClauses(nr); that is, before we eliminate
every common variable between them. In general though,
we do not need to perform case analysis on every variable
common betweenClauses(nl) andClauses(nr). By setting
a variableX to some value, some clauses undernl ornr may
become subsumed, hence, eliminating some more variables
that are common between them. This is why the separator
for noden is defined with respect to a set of literalsΩ on
Line 7. That is,Sep(n, Ω) is defined as the variables com-
mon betweenClauses(nl) | Ω andClauses(nr) | Ω, where
Clauses(.) | Ω is the result ofconditioningthe clauses . on
the literalsΩ. That is,Clauses(.) | Ω is the set of clauses
which results from eliminating the variables inΩ from . and
replacing them by either true or false according to their signs
in Ω.3 Figure 3 depicts the separator for each node the given
dtree, assumingΩ = ∅.

The choice of which variable to set next from the sepa-
ratorSep(n,Ω) on Line 9 has an effect on the overall time
to compile into d-DNNF and also on the size of resulting d-
DNNF. In our current implementation, we choose the vari-
able that appears in the largest number of binary clauses.
Finally, the base case in the recursive procedure of Figure 2
is when we reach a leaf noden in the dtree (Line 1), which
means thatClauses(n) contains a single clause. In this case,
clause2ddnnf(.) is a constant time procedure which con-
verts a clause into a d-DNNF.4

Unique nodes. Another technique we employ comes
from the literature on OBDDs and is aimed at avoiding the
construction of redundant NNF nodes. Two nodes are redun-
dant if they share the same label (disjunction or conjunction)
and have the same children. To avoid redundancy, we cache
every constructed NNF node, indexed by its children and la-
bel. Before we construct a new NNF node, we first check
the cache and construct the node only if no equivalent node
is found in the cache. This technique is implicit in the im-
plementation ofCONJOINandDISJOIN.5

Caching. Probably the most important technique we em-
ploy comes from the literature on dynamic programming.
Specifically, each time we compileClauses(n) | Ω into a
d-DNNF α, we store (the root of) d-DNNFα in a cache as-
sociated with dtree noden; see Line 5. When the algorithm
tries to compileClauses(n) | Ω again, the cache associ-
ated with node noden is first checked (Lines 2&3). The
cache keywe use to store the d-DNNFα is a string gener-
ated fromClauses(n) | Ω: each non-subsumed clause in
Clauses(n) | Ω has two characters, one capturing its iden-
tity and the other capturing its literals. The generation of
such a key is expensive, but the savings introduced by this

3This process is also known asrestriction in the literature on
Boolean logic.

4A clausel1, . . . , lm can be converted into a d-DNNF as fol-
lows:

∨m

i=1
li

∧i−1

j=1
¬lj .

5CONJOINandDISJOINwill construct nodes with multiple chil-
dren when possible. For example, when conjoining two conjunc-
tions,CONJOIN will generate one node labeled with∧ and have it
point to the children of nodes being conjoined.

caching scheme are critical. This caching scheme is a ma-
jor improvement on the one proposed in (Darwiche 2001a;
2001c). In the cited work, acontextfor noden, Context(n),
is defined as the set of variables that appear in the sepa-
rator of some ancestor ofn and also in the subtree rooted
at n; see Figure 3. It is then suggested that d-DNNFα
of Clauses(n) | Ω be cached under a key, which corre-
sponds to the subset of literalsΩ pertaining to the variables
in Context(n). That is, ifClauses(n) = {A∨¬B,C∨D},
thenClauses(n) | {A} could be cached under keyA, and
Clauses(n) | {¬B} could be cached under key¬B, hence,
generating two different subproblems. Using our caching
approach, bothClauses(n) | {A} andClauses(n) | {¬B}
will generate the same key, and will be treated as instances of
the same subproblem, since both are equivalent to{C ∨D}.

Constructing dtrees. Another major factor that affects
the behavior of our algorithm is the choice of a dtree. At
first, one may think that we need to choose a dtree where
the sizes of separators are minimized. As it turns out, how-
ever, this is only one important factor which needs to be bal-
anced by minimizing the size of contexts as defined above.
The smaller the separators, the fewer case analyses we have
to consider. The smaller the contexts, the higher the cache
hit rate. Unfortunately, these two objectives are conflicting:
dtrees with small separator tend to have large contexts and
the other way around. A better paramater to optimize is the
size of clusters. The cluster of noden is the union of its
separator and context. The size of the maximum cluster -1
is known as thedtree width(Darwiche 2001a). In our cur-
rent implementation, we construct dtrees using the method
described in (Darwiche & Hopkins 2001), which is based on
recursive hypergraph decomposition. Specifically, the given
CNF∆ is converted into a hypergraphG, where each clause
in ∆ is represented as ahypernodein G. Each variableX
in CNF ∆ is then represented as ahyperedgein G, which
connects all hypernodes (clauses) ofG in whichX appears.
Once the hypergraphG is constructed, we partition it into
two piecesGl andGr, hence, partitioning the set of clauses
in ∆ into two corresponding sets∆l and∆r. This decom-
position corresponds to the root of our dtree, and the pro-
cess can be repeated recursively until the set of clauses in
∆ are decomposed into singletons. Hypergraph decompo-
sition algorithms try to attain two objectives: minimize the
number of hyperedges that cross betweenGl andGr, and
balance the sizes ofGl andGr. These two objectives lead
to generating dtrees with small widths as has been shown in
(Darwiche & Hopkins 2001). The construction of a dtree ac-
cording to the above method is quite fast and predictable, so
we don’t include the time for converting a CNF into a dtree
in the experimental results to follow. We have to mention
two facts though about the method described above. First,
the hypergraph partitioning algorithm we use is randomized,
hence, it is hard to generate the same dtree again for a given
CNF. This also means that there is no guarantee that one
would obtain the same d-DNNF for a given CNF, unless the
same dtree is used across different runs. Second, the hyper-
graph partitioning algorithm requires a balance factor, which
is used to enforce the balance constraint. We have found that
a balance factor of 3/1 seems to generate good results in gen-

eral. Therefore, if one does not have time to search across
different balance factors, a balance factor of 3/1 is our rec-
ommended setting.

We close this section by noting that to compile a CNF∆
into a d-DNNF, we have to first construct a dtree with rootn
for ∆ and then callcnf2ddnnf(n, ∅).

Experimental results
We will now apply the presentedCNF2DDNNF compiler to
a number of CNFs. The experiment were run on a Windows
platform, with a 1GHz processor. Our implementation is
in LISP! We expect a C implementation to be an order of
magnitude faster. The compiler is available through a web
interface—please contact the author for details.

Random CNF formulas
Our first set of CNFs comes from SATLIB6 and includes sat-
isfiable, random 3CNF formulas in the crossover region, in
addition to formulas corresponding to graph coloring prob-
lems; see Table 1.7 Random 3CNF formulas (uf50–uf200)
could be easily compiled with less than a minute on aver-
age for the largest ones (200 vars). Compiling such CNFs
into OBDDs using the state-of-the-artCUDD8 compiler was
not feasible in general.9 For example, we could not com-
pile the first instance of uf100 within four hours. Moreover,
the first instance in uf50 takes about 20 minutes to compile.
More than 2 million nodes are constructed in the process,
with more than 500 thousand nodes present in memory at
some point (the final OBDD has only 82 nodes though). We
have to point out here that we used CUDD in a straight-
forward manner. That is, we simply constructed an OBDD
for each clause and then conjoined these clauses accord-
ing to their order in the CNF. There are more sophisticated
approaches for converting CNFs into OBDDs that have
been reported recently (Aloul, Markov, & Sakallah 2001;
December 2001). No experimental results are available at
this stage, however, on compiling random CNFs into OB-
DDs using these approaches. We will report on these ap-
proaches with respect to other datasets later on though.

We also report on the compilation of graph coloring prob-
lems in Table 1 (flat100 and flat200). As is clear from the ta-
ble, these CNFs can be easily compiled into small d-DNNFs
that have a large number of models. Each one of these mod-
els is a graph coloring solution. Not only can we count these
solutions, but we can also answer a variety of queries about
these solutions in linear time. Examples: How many so-
lutions set the color of noden to c? Is it true that when
noden1 is assigned colorc1, then noden2 must be assigned
color c2? And so on? Although compiling a flat200 CNF
takes 11 minutes on average, answering any of the previous
queries can be done by simply traversing the compiled d-
DNNF only once (Darwiche 2001c), which takes less than a

6http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
7Sets uf50 and uf100 contain 1000 instances each. We only use

the first 100 instances.
8http://vlsi.colorado.edu/ fabio/CUDD/
9We used the sift-converge dynamic ordering heuristic in our

experiments.

Name Vars/Clause d-DNNF d-DNNF Model Time
nodes edges count (sec)

uf50 50/218 111 258.4 362.2 1
uf100 100/430 1333.3 4765.3 1590706.1 2
uf150 150/645 3799.8 15018.5 68403010 8
uf200 200/860 4761.8 19273.3 1567696500 37
flat100 300/1117 1347.2 8565.2 8936035 4
flat200 600/2237 4794.9 46951.3 2.2202334e+13 636

Table 1: CNF benchmarks from SATLIB. Each set contains a 100 instances. We report the average over all instances.

0

100000

200000

300000

400000

500000

600000

700000

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5

Nodes#
Edges#
Time (ms)

Figure 4: Difficulty of compilation according to clauses/vars
ratio. Each point is the average over 100 instances.

second in this case. Hence, the compilation time is amor-
tized over all queries which makes the time-to-compile a
worthy investment in this case. We note here that the first
instance of flat100 could not be compiled into an OBDD us-
ing CUDD within a cutoff time of 1 hour. One can count the
models of flat100 efficiently however using theRELSAT10

model counter, but we report in the following section on
other CNFs which could not be handled efficiently using
RELSAT.

We also experimented with planning CNFs from SATLIB.
We could compile blocks-world CNFs anomaly, medium,
huge, and large.a within a few minutes each. But we could
not compile large.b, nor the logistics CNFs within a few
hours.

We close this section by noting that random 3CNF for-
mulas in the crossover region, those with clauses/vars ratio
of about 4.3, are easier to compile than formulas with lower
ratios. The same has been observed for counting models,
where the greatest difficulty is reported for ratios around 1.2
by (Birnbaum & Lozinskii 1999) and around 1.5 by (Ba-

10http://www.almaden.ibm.com/cs/people/bayardo/vinci/index.html

yardo & Pehoushek 2000). Figure 4 plots information about
compilations of random 3CNFs with50 variables each, for
clauses/vars ratio ranging from.5 to 3.5 at increments of.1.
As is clear from this plot, the peak for the number of nodes,
number of edges, and time is around a ratio of1.8.

Boolean Circuits

We now consider CNFs which correspond to digital circuits.
Suppose we have a circuit with inputsI, outputsO and let
W stand for all wires in the circuit that are neither inputs
nor outputs. We will distinguish between three types of rep-
resentations for the circuit:

Type I representation:A theory∆ over variablesI, O, W
where the models of∆ correspond to instantiations of
I, O,W that are compatible with circuit behavior. A CNF
corresponding to Type I representation can be easily con-
structed and in a modular way by generating a set of clauses
for each gate in the circuit.11

Type II representation:A theory ∆ over input/output
variablesI, O, where the models of∆ correspond to in-
put/output vectors compatible with circuit behavior. If
∆ is a Type I representation, then∃W∆ is a Type II
representation.12

Type III representation for circuit outputo: A theory over
inputsI, where the models correspond to input vectors that
generate a 1 at outputo. If ∆ is a Type II representation,
then∃o.∆ ∧ o is a Type III representation for outputo.

Clearly, Type I is more expressive than Type II, which
is more expressive than Type III. The reason we draw this
distinction is to clarify that in the formal verification litera-
ture, one usually constructs Type III representations for cir-
cuits since this is all one needs to check the equivalence of
two circuits. In AI applications, however, such as diagnosis,
one is mostly interested in Type I representations, which are
much harder to obtain.

We compute Type II representations by simply replacing
Lines 12 & 15 inCNF2DDNNF by

α+←conjoin(Π′,case analysis(n,Π ∪ Ω)),

11Type I representations are calledCircuit Consistency Func-
tions in (Aloul, Markov, & Sakallah 2001; December 2001).

12Recall:∃w∆, wherew is a single variable, is defined as∆+∨
∆−, where∆+ (∆−) is the result of replacingw with true (false)
in ∆. ∃W∆ is the result of quantifying over variables inW , one
at a time (Darwiche & Marquis 2001).

and

α−←conjoin(Π′,case analysis(n,Π ∪ Ω)),

respectively, whereΠ′ is obtained fromΠ by remov-
ing all literals corresponding to variables inW . We
also have to modify the boundary condition handled by
CLAUSE2DDNNF, so thatCLAUSE2DDNNF(.) returnstrue
if the clause . contains a literal pertaining toW , and behaves
as usual otherwise. Given the above changes—which imple-
ment the proposal given in (Darwiche 2001a) for existential
quantification—cnf2ddnnf(n, ∅) is then guaranteed to re-
turn ∃W∆ in d-DNNF, wheren is the root of a dtree for
CNF∆.13

To compute efficient Type III representations, one needs
to use multi-rooted NNFs, where each root corresponds to
the compilation of one circuit output. This is how it is done
in the formal verification literature, where multi-rooted OB-
DDs are known asshared OBDDs.Our compiler does not
handle multi-rooted d-DNNFs yet, so we do not report on
Type III representations.

Tables 2 and 3 contain results on the first five circuits in
the ISCAS85 benchmark circuits.14 We were able to obtain
Type I and Type II representations for all these circuits ex-
pressed as d-DNNFs. The most difficult was c1908, which
took around 1.5 hrs, followed by c880 which took around
30 minutes. We are not aware of any other compilations of
these circuits of Types I and II, although the formal veri-
fication literature contains successful compilations of Type
III, represented as multi-rooted OBDDs. We could not com-
pile c499, c880, c1355, nor c1908 into Type I OBDDs us-
ing CUDD, nor could we count their models usingRELSAT,
within cutoff times of 1hr, 1hr, 1hr and 3hrs, respectively
(we actually triedCUDD on c499 for more than a day). For
c432, we tried several OBDD ordering heuristics. The best
OBDD we could obtain for this circuit had 15811 nodes.

We note here that although d-DNNF does not support
a deterministic test of equivalence, one can easily test the
equivalence of a d-DNNF∆, and a CNFΓ = γ1 ∧ . . .∧ γm,
which corresponds to a Type I representation of a circuit. By
construction, the number of models forΓ is 2k, wherek is
the number of primary inputs for the circuit. Therefore,∆
andΓ are equivalent iff (1) the number of models for∆ is 2k

and (2)∆ |= Γ. The first condition can be checked in time
linear in the size of∆ since d-DNNF supports model count-
ing in linear time. The second condition can be checked
by verifying that∆ |= γi for eachi, a test which can also
be performed in time linear in the size of∆ since d-DNNF
supports a linear test for clausal entailment. We actually use
the above technique for checking the correctness of our d-
DNNF compilations.

Table 4 contains further results from ISCAS89.15 These
are sequential circuits, which have been converted into com-

13In general, this only guarantees that the result is in DNNF
(Darwiche 2001a). For CNFs corresponding to digital circuits,
however, determinism is also guaranteed due to the following prop-
erty: for every instantiationα of I, O, there is a unique instantia-
tion β of W such that∆ ∧ α |= β.

14http://www.cbl.ncsu.edu/www/CBLDocs/iscas85.html
15http://www.cbl.ncsu.edu/www/CBLDocs/iscas89.html

Name Vars/Clause d-DNNF d-DNNF Clique Time
nodes edges size (sec)

c432 196/514 2899 19779 28 6
c499 243/714 691803 2919960 23 448
c880 443/1112 3975728 7949684 24 1893
c1355 587/1610 338959 3295293 23 809
c1908 913/2378 6183489 12363322 45 5712

Table 2: Type I compilations of ISCAS85 circuits.

Name I/O vars d-DNNF d-DNNF Time
nodes edges (sec)

c432 36/7 952 3993 1
c499 41/32 68243 214712 127
c880 60/26 718856 2456827 1774
c1355 41/32 65017 201576 483
c1908 33/25 326166 1490315 4653

Table 3: Type II compilations of ISCAS85 circuits.

binational circuits by cutting feedback loops into flip-flops,
treating a flip-flop’s input as a circuit output and its output
as a circuit input. Most of these circuits are easy to com-
pile and have relatively small d-DNNFs. Type I OBDD
representations for some ISCAS89 circuits are reported in
(Aloul, Markov, & Sakallah 2001; December 2001), which
is probably the most sophisticated approach for convert-
ing CNFs into OBDDs. In addition to proposing a new
method for ordering OBDD variables based on the connec-
tivity of given CNF, a proposal is made for ordering the
clauses during the OBDD construction process. (Aloul,
Markov, & Sakallah 2001; December 2001) report on the
maximum number of OBDD nodes during the construc-
tion process, not on the size of final OBDDs constructed.
Yet, their experiments appear to confirm the theoretical re-
sults reported in (Darwiche & Marquis 2001) on the rela-
tive succinctness of d-DNNF and OBDD representations.
For example, circuits s832, s953, s1196 and s1238 were
among the more difficult ones in these experiments, lead-
ing to constructing115 × 103, 1.8 × 106, 2 × 106, and
2×106 nodes, respectively—s1238 is the largest circuit they
report on. These numbers are orders of magnitude larger
than what we report in Table 4.16 We note here that the
total number of nodes constructed by our d-DNNF com-
piler is rarely more than twice the number of nodes in the
final d-DNNF.17 We finally note that no experimental re-
sults are provided in (Aloul, Markov, & Sakallah 2001;

16One has to admit though that it is hard to tell exactly how much
of this difference is due to relative succinctness of OBDD vs d-
DNNF, and how much of it is due to the effectiveness of different
compilation techniques, since none of the compilers discussed are
guaranteed to generate optimal OBDDs or d-DNNFs.

17This is in contrast to OBDD compilers, where the number of
intermediate OBDD nodes can be much larger than the size of final
OBDD returned. We believe this is due to the top-down construc-
tion method used by our compiler, as opposed to the bottom-up
methods traditionally used by OBDD compilers.

Name Vars/Clause d-DNNF d-DNNF Clique Time
nodes edges size (sec)

s298 136/363 830 4657 12 1
s344 184/429 962 4973 9 1
s349 185/434 1017 5374 10 1
s382 182/464 1034 5081 17 1
s386 172/506 1401 10130 21 2
s400 186/482 1021 5137 18 1
s444 205/533 1091 5872 16 1
s499 175/491 1090 5565 20 2
s510 236/635 967 5755 38 2
s526 217/638 2621 19605 22 1
s526n 218/639 2611 20115 22 1
s635 320/762 1360 4845 9 1
s641 433/918 7062 84596 21 1
s713 447/984 7128 90901 21 10
s820 312/1046 2774 21365 29 2
s832 310/1056 2757 21224 28 2
s938 512/1233 2207 12342 14 2
s953 440/1138 11542 110266 64 14
s967 439/1157 20645 443233 60 117
s991 603/1337 2382 13107 8 2
s1196 561/1538 12554 261402 51 60
s1238 540/1549 14512 288143 53 58
s1423 748/1821 112701 1132322 24 162
s1488 667/2040 6338 62175 49 11
s1494 661/2040 6827 64888 51 12
s1512 866/2044 12560 140384 21 27
s3330 1961/4605 358093 8889410 43 5853
s3384 1911/4440 44487 392223 17 45

Table 4: Type I compilations of ISCAS89 circuits.

December 2001) for Type I OBDD representations of IS-
CAS85 circuits, which are much harder to compile than IS-
CAS89 circuits.

One implication of our ability to compile these circuits is
that we can now perform a variety of reasoning tasks about
these circuits in time linear in the size of given d-DNNF.
Some example queries: Given a distribution over the circuit
inputs, what is the probability that Wire 45 is high? How
may circuit inputs will generate a high on the first circuit
output and a low on the fifth output? Is it true that whenever
Wires 33 and 87 are high, then Wire 19 must be low? How
may input vectors will generate a particular output vector?
Each one of these queries can be answered by a single traver-
sal of the d-DNNF circuit representation (Darwiche 2001b;
2001a; 2001c).

We also report in Tables 2–4 on the best clique sizes ob-
tained for these circuits when converting their structures into
jointrees (Jensen, Lauritzen, & Olesen 1990). This is needed
for reasoning about these circuits probabilistically using
state-of-the-art algorithms for Bayesian networks. These
algorithms have exponential complexity in the clique size.
Hence, most of these circuits are outside the scope of such
algorithms. We are not aware of any algorithm for prob-
abilistic reasoning which can handle these circuits, except
the one we report on in (Darwiche 2001b) which is based
on these d-DNNF compilations. We close this section

by noting that the algorithm reported in (Darwiche 2001a;
2001c) also has a time complexity which is exponential in
the clique size. Hence, most of the CNFs we considered in
this paper are outside the scope of the mentioned algorithm.

Relationship to Davis-Putnam
One cannot but observe the similarity between our proposed
algorithm and the Davis-Putnam (DP) algorithm for propo-
sitional satisfiability (Davis, Logemann, & Loveland 1962),
and its recent extensions for counting propositional models:
the CDP algorithm in (Birnbaum & Lozinskii 1999) and the
DDP algorithm in (Bayardo & Pehoushek 2000).

The DP algorithm solves propositional satisfiability by
performing case analysis until a solution is found or an in-
consistency is established. When performing case analy-
sis on variableX, the second value forX is considered
only if the first value does not lead to a solution. The
CDP algorithm in (Birnbaum & Lozinskii 1999) observed
that by always considering both values, we can extend the
DP algorithm to count models sinceModelCount(∆) =
ModelCount(∆+) + ModelCount(∆−), where ∆+ and
∆− are the result of settingX to true and to false, re-
spectively, in∆. The DDP algorithm in (Bayardo & Pe-
houshek 2000) incorporated yet another idea: If∆ can be
decomposed into two disconnected subsets∆1 and∆2, then
ModelCount(∆) = ModelCount(∆1)ModelCount(∆2).
Hence, DDP will apply case analysis until the CNF is dis-
connected into pieces, in which case each piece is attempted
independently.

The CDP algorithm can in fact be easily adapted to com-
pile a CNF into a d-DNNF, by simply constructing the NNF
fragmentX ∧cdp(∆+)∨¬X ∧cdp(∆−) each time a case
analysis is performed on variableX. Here,cdp(.) is the re-
sult of compiling . into d-DNNF using the same algorithm
recursively. This extension of CDP will generate a strict
subset of d-DNNF: the one which satisfies the decision and
decomposability properties (hence, an FBDD) and that also
has a tree structure (FBDDs have a graph structure in gen-
eral). FBDDs are known to be less succinct than d-DNNFs,
even in their graph form (Darwiche & Marquis 2001). The
tree-structured form is even more restrictive.

The DDP algorithm can also be easily adapted to com-
pile a CNF into a d-DNNF, by constructing the NNF frag-
mentX ∧ ddp(∆+) ∨ ¬X ∧ ddp(∆−) each time a case
analysis is performed onX, and by constructing the frag-
mentddp(∆1) ∧ ddp(∆2) each time a decomposition is
performed as given above. This extension of DDP will ac-
tually generate d-DNNFs which are not FBDDs, yet are still
tree-structured which is a major limitation. The important
point to stress here is that any CNF which can be processed
successfully using the DDP algorithm, can also be compiled
successfully into a d-DNNF.

The algorithm we present can be viewed as a further gen-
eralization of the discussedDDP extension in the sense that it
generates graph NNFs as opposed to tree NNFs. The graph
structure is due to two features ofCNF2DDNNF: the caching
and unique-node schemes. Each time a node is looked up
from a cache, its number of parents will potentially increase
by one. Moreover, theCONJOIN and DISJOIN operations

will often return a pointer to an existing NNF node instead
of constructing a new one, again, increasing the number of
parents per node.18 Another major difference with the above
proposed extension ofDDP is the use of dtrees to guide the
decomposition process as they restrict the set of variables
considered for case analysis at any given time. The use of
dtrees can then be viewed as a variable splitting heuristic
which is geared towards decomposition as opposed to solu-
tion finding.

Conclusion
We presented a compiler for converting CNF formulas
into deterministic, decomposable negation normal form (d-
DNNF). This is a logical form that has been identified re-
cently and shown to support a number of operations in poly-
nomial time, including clausal entailment; model count-
ing, minimization and enumeration; and probabilistic equiv-
alence testing. d-DNNFs are also known to be a super-
set of, and more succinct than, OBDDs. The logical op-
erations supported by d-DNNFs are a subset of those sup-
ported by OBDDs, yet are sufficient for model-based diag-
nosis and planning applications. We presented experimen-
tal results on compiling a variety of CNF formulas, some
generated randomly and others corresponding to digital cir-
cuits. A number of the formulas we were able to compile
efficiently could not be similarly handled by some state-of-
the-art model counters, nor by some state-of-the-art OBDD
compilers. Moreover, our ability to successfully compile
some of these CNFs allowed us to answer some queries for
the very first time.

Acknowledgments
The author would like to thank Fadi Aloul, Roberto Ba-
yardo, Rolf Haenni and Pierre Marquis for helpful com-
ments and suggestions regarding earlier drafts of this paper.
This work has been partially supported by NSF grant IIS-
9988543 and MURI grant N00014-00-1-0617.

References
Aloul, F. A.; Markov, I. L.; and Sakallah, K. A. 2001.
Faster SAT and smaller BDDs via common function struc-
ture. InInternational Conference on Computer Aided De-
sign (ICCAD), 443–448.

Aloul, F. A.; Markov, I. L.; and Sakallah, K. A. December,
2001. Faster SAT and smaller BDDs via common function
structure. Technical Report CSE-TR-445-01, Computer
Science and Engineering Division, University of Michigan.

Bayardo, R., and Pehoushek, J. 2000. Counting models
using connected components. InAAAI, 157–162.

Birnbaum, E., and Lozinskii, E. 1999. The good old Davis-
Putnam procedure helps counting models.Journal of Arti-
ficial Intelligence Research10:457–477.

18(Bayardo & Pehoushek 2000) rightfully suggest that “learning
goods,” which corresponds to caching non-zero counts, is essential
for efficient counting of models, but do not pursue the technique
citing technical difficulties.

Blum, M.; Chandra, A. K.; and Wegman, M. N. 1980.
Equivalence of free Boolean graphs can be decided prob-
abilistically in polynomial time. Information Processing
Letters10(2):80–82.
Boole, G. 1848. The calculus of logic.The Cambridge and
Dublin Mathematical Journal3:183–198.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation.IEEE Transactions on Computers
C-35:677–691.
Darwiche, A., and Hopkins, M. 2001. Using recursive de-
composition to construct elimination orders, jointrees and
dtrees. InTrends in Artificial Intelligence, Lecture notes in
AI, 2143. Springer-Verlag. 180–191.
Darwiche, A., and Huang, J. 2002. Testing equivalence
probabilistically. Technical Report D–123, Computer Sci-
ence Department, UCLA, Los Angeles, Ca 90095.
Darwiche, A., and Marquis, P. 2001. A perspective on
knowledge compilation. InProc. International Joint Con-
ference on Artificial Intelligence (IJCAI), 175–182.
Darwiche, A. 2001a. Decomposable negation normal form.
Journal of the ACM48(4):1–42.
Darwiche, A. 2001b. A logical approach to factoring be-
lief networks. Technical Report D–121, Computer Science
Department, UCLA, Los Angeles, Ca 90095. To appear in
KR-02.
Darwiche, A. 2001c. On the tractability of counting theory
models and its application to belief revision and truth main-
tenance. Journal of Applied Non-Classical Logics11(1-
2):11–34.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving.CACM5:394–397.
Gergov, J., and Meinel, C. 1994. Efficient analysis and
manipulation of OBDDs can be extended to FBDDs.IEEE
Transactions on Computers43(10):1197–1209.
Jensen, F. V.; Lauritzen, S.; and Olesen, K. 1990. Bayesian
updating in recursive graphical models by local computa-
tion. Computational Statistics Quarterly4:269–282.

