
New Advances in Compiling CNF to Decomposable
Negation Normal Form

Adnan Darwiche1

Abstract. We describe a new algorithm for compiling conjunctive
normal form (CNF) into Deterministic Decomposable Negation Nor-
mal (d-DNNF), which is a tractable logical form that permits model
counting in polynomial time. The new implementation is based on
latest techniques from both the SAT and OBDD literatures, and ap-
pears to be orders of magnitude more efficient than previous algo-
rithms for this purpose. We compare our compiler experimentally
to state of the art model counters, OBDD compilers, and previous
CNF2dDNNF compilers.

1 INTRODUCTION

A tractable logical form known asDeterministic, Decomposable
Negation Normal Form,d-DNNF, has been proposed recently, which
permits some generally intractable logical queries to be computed
in time polynomial in the form size [4, 5, 6]. These queries include
clausal entailment; model counting; model minimization based on
model cardinality; model enumeration; and probabilistic equivalence
testing. Most notably, d-DNNF is a strict superset of, and more suc-
cinct than, OBDDs [2], which are popular in supporting various AI
applications, including diagnosis and planning. Moreover, although
OBDDs are more tractable than d-DNNFs (support more polytime
queries), the extra tractability does not appear to be relevant to some
of these applications.

An algorithm has been presented in [4, 5] for compiling Conjunc-
tive Normal Form (CNF) into d-DNNF. The algorithm is structure–
based in two senses. First, its complexity is dictated by the connectiv-
ity of given CNF, with the complexity increasing exponentially with
increased connectivity. Second, it is insensitive to non–structural
properties of the given CNF: two CNFs with the same connectiv-
ity are equally difficult to compile by the given algorithm. However,
many CNFs of interest—including random CNFs and those that arise
in diagnosis, formal verification and planning domains—tend to have
very high connectivity and are therefore outside the scope of this
structure–based algorithm. This problem has been addressed in [6],
which presents aCNF2DDNNF compiler that is structure-based, yet
is sensitive to the non–structural properties of a CNFs. The compiler
is based on the one presented in [4] but incorporates a combination
of additional techniques, some are novel, and others are well known
in the SAT and OBDD literatures. The compiler of [6] was the first
CNF to d-DNNF compiler that practically matched some of the ex-
pectations set by theoretical results on the comparative succinctness
between d-DNNFs and OBDDs [7].

We present a third–generation compiler in this paper for convert-
ing CNF into d-DNNF, which incorporates two key new techniques:

1 Computer Science Department, University of California, Los Angeles, CA
90095, USA, email: darwiche@cs.ucla.edu

conflict-directed backtracking and a new method for caching inter-
mediate results. We show that the new compiler can be orders of
magnitude more efficient than the compiler of [6] on problems that
have been solved before. We also point to a number of CNF bench-
marks that could be compiled for the very first time using the new
compiler.

2 Deterministic DNNF

¬¬A B ¬¬ B A C ¬¬ D D ¬¬ C

and and and and and and and and

or or or or

and and

or

Figure 1. A negation normal form.

A negation normal form (NNF) is a rooted directed acyclic graph
in which each leaf node is labeled with a literal,true or false, and
each internal node is labeled with a conjunction∧ or disjunction
∨. Figure 1 depicts an example. For any noden in an NNF graph,
Vars(n) denotes all propositional variables that appear in the sub-
graph rooted atn, and∆(n) denotes the formula represented byn
and its descendants. A number of properties can be stated on NNF
graphs:

• Decomposabilityholds whenVars(ni) ∩ Vars(nj) = ∅ for any
two childrenni andnj of an and-noden. The NNF in Figure 1 is
decomposable.

• Determinismholds when∆(ni) ∧ ∆(nj) is logically inconsis-
tent for any two childrenni andnj of an or-noden. The NNF in
Figure 1 is deterministic.

• Decisionholds when the root node of the NNF graph is a decision
node. Adecision nodeis a node labeled withtrue, false, or is

an or-node having the formX ¬¬Xα β

and

or

and

, whereX is a variable,α
andβ are decision nodes. Here,X is called thedecision variable

of the node. The NNF in Figure 1 does not satisfy the decision
property since its root is not a decision node.

• Orderingis defined only for NNFs that satisfy the decision prop-
erty. Ordering holds when decision variables appear in the same
order along any path from the root to any leaf.

Satisfiability and clausal entailment can be decided in linear time
for decomposable negation normal form (DNNF) [4]. Moreover, its
models can be enumerated in output polynomial time, and any sub-
set of its variables can be forgotten (existentially quantified) in linear
time. Deterministic, decomposable negation normal form (d-DNNF)
is even more tractable as we can count its models given any variable
instantiation in polytime [5, 7]. Decision implies determinism. The
subset of NNF that satisfies decomposability and decision (hence,
determinism) corresponds to Free Binary Decision Diagrams (FB-
DDs) [8]. The subset of NNF that satisfies decomposability, decision
(hence, determinism) and ordering corresponds to Ordered Binary
Decision Diagrams (OBDDs) [2, 7]. In OBDD notation, however,

the NNF fragmentX ¬¬Xα β

and

or

and

is drawn more compactly asα β

X

.
Hence, each non-leaf OBDD node generates three NNF nodes and
six NNF edges.

Immediate from the above definitions, we have the following strict
subset inclusions OBDD⊂ FBDD⊂ d-DNNF⊂ DNNF. Moreover,
we have OBDD> FBDD > d-DNNF > DNNF, where> stands
for “less succinct than.”2 OBDDs are more tractable than DNNF, d-
DNNF and FBDD. General entailment among OBDDs can be de-
cided in polytime. Hence, the equivalence of two OBDDs can be de-
cided in polytime. The equivalence of two DNNFs cannot be decided
in polytime (unless P=NP). The equivalence question is still open for
d-DNNF and FBDD, although both support polynomial probabilistic
equivalence tests [1]. For a comprehensive analysis of these forms,
the reader is referred to [7].

3 THE COMPILER

We will discuss in this section an algorithm for converting a CNF
into an equivalent d-DNNF. We will refer to our algorithm as a “com-
piler” since the resulting d-DNNF can be used for efficient, mostly
linear, inference for answering a wide variety of queries, including
model counting.

The two main advances underlying our proposed compiler are (1)
the use of conflict-directed backtracking with clause learning [11,
10], and (2) a new method for characterizing the state of clauses, to
be used as keys for indexing into a cache. We will first describe both
of these techniques and then show how they are integrated into the
new compiler.

3.1 A Recursive DPLL Implementation

Our new compiler utilizes a DPLL–based SAT solver that we de-
veloped especially to support the compilation task. The solver is
based on state–of–the–art solvers, zchaff in particular [10], but the
basic DPLL procedure is implemented recursively instead of itera-
tively. Iterative implementations of DPLL are now the standard in
SAT solvers, but we found the utilization of iterative implementa-
tions for our purpose to be more complex.

Our implementation of DPLL is based on the following primi-
tive procedures: decide(l), undo-decide(l), at-assertion-level(), and

2 That DNNF is strictly more succinct than d-DNNF assumes the non-
collapse of the polynomial hierarchy [7].

Algorithm 1 sat(V)
1: if V is emptythen
2: returntrue
3: choose a variablev from V
4: choose literall of variablev
5: if decide(l) and sat(V \ {v}) then
6: undo-decide(l)
7: returntrue
8: undo-decide(l)
9: if at-assertion-level()then

10: return assert-cd-literal() and sat(V \ {v})
11: returnfalse

assert-cd-literal(), wherel is a literal. Algorithm 1 illustrates these
procedures by using them to implement a SAT solver that utilizes
conflict–directed backtracking with clause learning. Here’s a brief
description of these primitives:

• decide(l) will set literal l to true and mark the variable ofl as a
decisionvariable, and assign it adecision level:a number which
is incremented each time a new decision is made. decide(l) will
then apply unit resolution which would potentiallyimply other
literals. decide(l) succeeds if no contradiction is discovered by
unit resolution, otherwise, it will fail after having constructed a
conflict–driven clause as described in [10]. The mentioned method
will construct a conflict–driven clause which is also an assert-
ing clause, in the sense that adding this clause to the knowledge
base will lead to implying the negation of literall, ¬l, which is
known as a conflict–driven assertion. Another side effect of a fail-
ing decide(l) is to compute theassertion level, which is the second
largest level for any literal in the conflict–driven clause.

• undo-decide(l) will erase the decisionl and all other literals that
were derived by unit resolution after having assertedl. The current
decision level will also be decremented.

• at-assertion-level() is a predicate that succeeds if the current de-
cision level equals the assertion level computed by the last call to
decide(l)

• assert-cd-literal() will add the conflict–driven clause constructed
by the last call to decide(l). This will in turn lead to implying¬l,
the conflict–driven assertion. Unit resolution will then be applied
which would potentially imply new literals. This may also lead to
discovering a contradiction in which case assert-cd-literal() will
fail, after having constructed a conflict–driven clause and com-
puted a new assertion level (just like a call to decide()).

Some key points to observe regarding the above implementation.
First, every set literal is either set by a decision or by an implication.
This distinction is crucial for our caching scheme which we discuss
later. Second is the notion of a “current decision level” which is the
level assigned to the last decision made by the algorithm. All literals
implied by unit resolution based after a decision is made will assume
the same level of that decision (although the level will be called an
implication level instead of a decision level).

3.2 Decomposing CNFs

The main technique that underlies our CNF to d-DNNF compiler is
that of decomposition. Specifically, given a CNF∆, we partition its
clauses into∆l and∆r. If ∆l and∆r share no variables, we can then
compile them independently and simply conjoin the results. Suppose,
however, that the two sets turn out to share a variablev. We will then

use what is known as Boole’s or Shannon’s expansion:

∆ = v ∧ ((∆l ∧∆r)|v)
∨
¬v ∧ ((∆l ∧∆r)|¬v),

where(∆l∧∆r)|v represents the result of replacing the occurrences
of variablev with true in ∆l ∧ ∆r, and(∆l ∧ ∆r)|¬v represents
the result of replacing the occurrences of variablev with false in
∆l ∧∆r.

Figure 2. A decomposition tree for a CNF. Each leaf node is annotated
with a distinct clause in the CNF. Each internal noden is annotated with a

separatorS (variables shared between clauses in left subtree ofn and
clauses in the right subtree ofn), and a contextCt (variables shared between

clauses below noden and clauses not below noden).

To control this decomposition process, we use adecomposition
tree (dtree). A dtree for a given CNF is a binary tree whose leaves
are tagged with the CNF clauses—see Figure 2. Our compiler con-
structs a decomposition tree for the given CNF as discussed in [6]. A
dtree provides a recursive decomposition of the given CNF: the root
t of the dtree partitions the CNF into two sets of clauses, those corre-
sponding to its left and right children,t.left andt.right. Each one
of these children is then a root of a smaller dtree which recursively
partitions its corresponding set of clauses.

Theseparatorof dtreet is the set of all variables that are shared by
clauses int.left andt.right. The main function of our compiler is
to instantiate enough of the separator variables fort so as to decom-
pose the clauses int.left andt.right; that is, get to a point where no
variables are shared between these sets of clauses. At this point, the
compiler can compile the two sets independently and simply conjoin
the results to obtain a compilation for the clauses int. Two impor-
tant points to observe here. First, there is no need to set all vari-
ables in the separator fort to decompose the clauses int.left and
t.right. Specifically, after setting some of these variables, enough
clauses may be subsumed that the rest of the separator variables may
no longer be shared betweent.left and t.right. This observation
was indeed made in [6], who called for the re-computation of the
separator fort each time a new variable is decided. We do indeed fol-
low this strategy here as it is extremely effective. However, the addi-
tion of conflict–driven clauses does complicate this strategy a bit: the
number of conflict–driven clauses maybe too large (at least in com-
parison to the initial set of clauses) that we cannot afford to perform
the computation based on original and added clauses. In fact, a dtree
is constructed once for the initial set of clauses and it would be com-
putationally prohibitive (and algorithmically complex) to construct a
new dtree each time a conflict–driven clause is added.

The good news, however, is that the added conflict–driven clauses
are redundant and can therefore be ignored as long as one is careful in

handling the following potential complication. Suppose that we have
a dtreet, wherey is the only variable shared between the children
t.left andt.right. If we set enough variables and subsume enough
clauses, theny may no longer be shared between the children oft (the
separator oft becomes empty). One outcome of this decomposition is
this: when applying unit resolution to clauses int.left we can never
derive literals that appear int.right and vice versa. This actually
will no longer be true in the presence of conflict–driven clauses. For
example, suppose that conflict–directed backtracking ends up adding
the clausex ∨ z to the above example, wherex appears int.left
and z appears int.right. This clause will not appear in the dtree
and will therefore not be accounted for by separator decomposition.
Now, if in the process of recursing ont.left, we setx to false, unit
resolution will derivez which appears int.right.3 This is taken care
of on Line 1 of Algorithm 2—to be discussed later—which states that
when working on a dtree, we should collect literals that only pertain
to that dtree, to avoid collecting literals that are derived by conflict–
driven clauses about other dtrees (that would have been disconnected
from the current dtree if we were not to have conflict–driven clauses).

3.3 CNF Caching

The last key topic we need to discuss before presenting our compiler
is the way we cache our results. Specifically, our compiler will be
trying to compile the same subset of clauses, say∆ = α1, . . . , αm,
but under different variable settings, say,γ = l1, . . . , lm, where each
li is a literal. We will use∆|γ to denote the set of clauses∆ after
having set the values of variables as given byγ. The key point here
is that even though we may have two different variable settingsγ
andγ′, the CNFs∆|γ and∆|γ′ may be equivalent. Recognizing this
equivalence is critical to the efficiency of our compiler as it will al-
low it to avoid redundant compilations. The compiler given in [4, 5]
uses the identity of variable instantiationsγ andγ′ as the key to the
cache. This clearly fails to recognize some equivalences, yet it was
sufficient to prove some useful bounds on the complexity of pro-
posed algorithm. An improvement on this was given in [6], where
the CNFs∆|γ and∆|γ′ where each captured using a bit vector, with
one bit for each literal in a CNF. If a clause is subsumed, all its bits
are set to 0, otherwise, only the bits of resolved literals are set to 0.
The bit vector is then used as the key to a cache. This more sophis-
ticated scheme was claimed to be a critical reason for the efficiency
of the compiler given in [6], allowing it to compile CNFs that could
never be compiled before. We will now actually describe an even
more sophisticated caching scheme which significantly improves the
scalability of our compiler.

The new caching scheme will be described in three steps. First,
suppose that we have a set of clauses∆ and a specific set of vari-
ablesV , and letγ andγ′ be two instantiations of all variables inV .
Consider now the CNF∆|γ, which results from replacing variables
V in ∆ with true/false according to instantiationγ. Our first goal
is to find a way to efficiently test whether∆|γ and∆|γ′ are logically
equivalent. We first observe that each clauseα in ∆ can be in only
one of two states in∆|γ. That is, eitherα|γ is satisfied (reduces to
true) if one of the literals ofα is satisfied byγ, orα|γ is not satisfied
in which case all literals ofα whose variables are inV must be falsi-
fied byγ and removed fromα. The key point is that the state of clause

3 In this case, the literalz must be implied by the current clauses int.right
and, hence, the derivation ofz by unit resolution on conflict–driven clauses
can be safely ignored. Recall that conflict–driven clauses are redundant:
anything that is implied using these clauses is also implied using only the
original clauses.

α|γ can be uniquely determined by knowing only whetherα|γ re-
duces totrue and without knowing the identity of instantiationγ: all
we need is the identity of variablesV . This implies that we can cap-
ture the state of CNF∆|γ using a bit vector, with one bit per clause
α in ∆ to indicate whetherα|γ is satisfied. We will usebv1(∆, γ)
to denote that bit vector. Our first technique is then to use this bit
vector as the key to a cache. That is, to test whether∆|γ is equiva-
lent to∆|γ′ we just need to test whetherbv1(∆, γ) = bv1(∆, γ′),
assuming thatγ andγ′ are complete instantiations of variablesV .4

This technique would work only ifγ andγ′ both instantiate the
same set of variablesV . This may not be true in our compiler as
we shall see next, sinceγ andγ′ may instantiate different subsets
of V . We can address this by including another bit vector in the key
which includes the state of variablesV , whether instantiated or not
(the specific values do not matter). We will usebv2(V, γ) to denote
the additional bit vector and we can now state that∆|γ is equivalent
to ∆|γ′ if bv2(V, γ) = bv2(V, γ′) andbv1(∆, γ) = bv1(∆, γ′).

Our algorithm actually takes the above technique a step further by
taking advantage of unit resolution. We first note that ifβ is a set of
literals implied by∆|γ, then∆|γ ≡ β ∧∆|γβ. Our algorithm will
actually compile∆|γβ instead of∆|γ, whereβ is the set of literals
derived by unit resolution from∆|γ, and then conjoin the result with
β. That is, before it tries to compile a subset of clauses∆ which are
known to have been conditioned onγ, the algorithm will first collect
all literalsβ that are derived by unit resolution from∆|γ. It will then
lookup the cache using the keysbv2(V, γβ) andbv1(∆, γβ). If an
entry is found, it will be conjoined withβ and returned as the result
of compiling∆|γ.

3.4 From CNF to d-DNNF

We are now ready to present our compiler which is given in Algo-
rithm 2. Let’s ignore Line 1 for now and consider Line 2 where the
separators for dtreet is computed. If this is empty, the dtreet is
already decomposed (current clauses int.left andt.right share no
variables) and recursive calls are made on Line 4. If the separator is
not empty, a variablev is chosen froms on Line 6 (we choose the
variable that appears in the largest number of un-subsumed clauses).
We then consider two cases, corresponding to the positive and neg-
ative literals of variablev. Lines 7-15 and Lines 16-24 are basically
symmetric except that each deals with one literal ofv. Consider now
the positive literalv. We first call decide(v) on Line 8, which as-
serts the literal as a decision and runs unit resolution. If that call
succeeds we make a recursive call on Line 9. The testp = false
on Line 11 will succeed for two reasons: either because decide(v)
failed on Line 8 or because we got a failure deeper in the DPLL tree
after making the recursive call on Line 9. In either case, we know
that a conflict–driven clause and an assertion level have been com-
puted. Line 12 checks whether we are currently at the assertion level,
in which case the conflict–driven clause is added to the CNF, the
conflict–driven literal is implied, and unit resolution is applied again
to imply any further literals. If all of this succeeds, we try again to
compile the dtree, except that we have implied some more literals
now, which may in turn simplify the separator further.

Note that Line 25 will be reached only if the two cases for variable
v have succeeded, in that each have returned a d-DNNF which is
not false. If either case fails, however, backtracking takes place.
This is very different from conflict–directed backtracking in classical
SAT solvers, which would not backtrack if one of the cases have

4 See [9] for another use of this technique for compiling CNFs into OBDDs.

Algorithm 2 cnf2ddnnf(dtreet): returns the root of a d-DNNF which
is equivalent to the conjunction of clauses stored at leafs of dtreet.

1: term = all newly implied (not decided) literals of dtreet
2: compute current separators of dtreet
3: if s emptythen
4: return conjoin(term,cnf2-aux(t.left),cnf2-aux(t.right))
5: else
6: select a variablev from separators
7: p = false /* positive case */
8: if decide(v) then
9: p =cnf2ddnnf(t)

10: undo-decide(v)
11: if p = false then
12: if at-assertion-level() and assert-cd-literal()then
13: return cnf2ddnnf(t) /* try again */
14: else
15: returnfalse /* backtracking */
16: n = false /* negative case */
17: if decide(¬v) then
18: n =cnf2ddnnf(t)
19: undo-decide(¬v)
20: if n = false then
21: if at-assertion-level() and assert-cd-literal()then
22: return cnf2ddnnf(t) /* try again */
23: else
24: returnfalse /* backtracking */
25: return conjoin(term,disjoin(conjoin(v,p),conjoin(¬v,n)))

succeeded. The reason we backtrack in this case, even if one of the
cases have succeeded, is due to our desire to assert the conflict–driven
clause, and any literals that may be implied by it, and this will have
to be done at the assertion level [10].

Note also that after calling decide(), unit resolution may imply
further literals. All newly derived literals (those resulting from the
last call to decide()) are collected on Line 1 into a term, which is
conjoined with the results on Line 4 or Line 25, depending on which
case materializes. Note here that only literals set by an implication
are collected on Line 1, since literals set by a decision are accounted
for on Line 25.

It is important to note two key points about caching as handled
by the proposed algorithm. First, the cache is checked only when a
dtree node is first visited; that is, the cache is not checked each time
a separator variable is set as that leads to overhead that turns out
not to be worthwhile. Second, inconsistent CNFs (those that compile
into false) are not cached. There are two reasons for this: (1) most
of this type of caching is handled by conflict–driven clauses which
provide a form of caching as they allow unit resolution to detect in-
consistent CNFs that may have not been detectable before the clauses
were added; (2) the algorithm’s correctness depends on the assump-
tion that wheneverp on Line 9 orn on Line 18 are set tofalse, a
conflict–driven clause and an assertion level are computed, which are
referenced on Lines 12 and 21.

We finally point out that the functions conjoin() and disjoin() use
the unique-node technique from the OBDD literature in the sense that
they will not construct a new and/or-node which already exists (have
the same children). This is done by keeping unique-node tables for
and-nodes and for or-nodes. We actually do the same for term-nodes:
an and-node whose children are all literals. In fact, our implementa-
tion has three types of nodes: binary and-nodes (two children), binary
or-nodes and term-nodes.

Algorithm 3 cnf2-aux(dtreet)
1: if t is a leaf dtreethen
2: return a d-DNNF corresponding to current clause att
3: else
4: compute keykey of CNF corresponding to dtreet
5: if cache(key) != null then
6: returncache(key)
7: else
8: r = cnf2ddnnf(t)
9: if r! = false then

10: cache(key)=r
11: returnr

4 EXPERIMENTAL RESULTS

We now consider experimental results which illustrate the effective-
ness of our proposed compiler. Our implementation is in Standard
C, and our experiments were run on a 1.6GHz Intel processor, with
2GB of RAM. We will compare our compiler to the state–of–the–art
compiler presented in [6] for the same purpose. Since the successful
compilation of CNF into d-DNNF allows us to count the models of
given CNF, our compiler is already a model counter. We therefore
compare the performance to the state-of-the-art model counter,REL-
SAT5. The succinctness of d-DNNF in comparison to OBDDs has al-
ready been discussed in [6], which presents a number of benchmarks
for which an OBDD could not be constructed using a state–of–the–
art OBDD package (CUDD http://vlsi.colorado.edu/ fabio/CUDD/),
yet could be compiled into d-DNNFs.

We start with Table 1 which lists some benchmarks from
SATLIB.6 These are the most difficult ones from SATLIB that [6] re-
ported on—results from [6] are in parentheses. The table shows that
the new compiler is an order of magnitude more effective on flat200,
and about three times more effective on uf200.7 RELSAT average for
flat200 was8 seconds, and for uf200 was2 seconds and, hence, does
better on these problems.

Name Vars/Clause d-DNNF Time
edges (sec)

uf200 200/860 5774 (19273) 13 (37)
flat200 600/2237 7923 (46951) 50 (636)

Table 1. CNF benchmarks from SATLIB. uf200 and flat200 contains a 100
instances each; we report the average over all instances.

We now turn to Table 2 which lists some very difficult CNFs ob-
tained from the ISCAS858 and ISCAS899 circuit suites. These cir-
cuits were reported on in [6], but our proposed compiler is at least an
order of magnitude more efficient on them. Except for c432, which
it finishes in 1 second,RELSAT could not count the models of any of
the other CNFs within a cutoff time of few hours. We also point the
reader to [3], which employs the presented compiler in the domain
of reasoning with probabilistic relational models. Most of the CNFs
reported in [3], some having more than100, 000 clauses, could only
be handled using the compiler presented in this paper as they are not
accessible to the compiler of [6].

5 http://www.almaden.ibm.com/cs/people/bayardo/vinci/index.html
6 http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
7 We have excluded the time for dtree generation as is done in [6]. The dtree

generation algorithm employs randomness, so we generate a number of
dtrees and pick the one with the smallest width.

8 http://www.cbl.ncsu.edu/www/CBLDocs/iscas85.html
9 http://www.cbl.ncsu.edu/www/CBLDocs/iscas89.html

Name Vars/Clause d-DNNF Time
edges (sec)

c432 196/514 13767 (19779) 0 (6)
c499 243/714 2214814 (2919960) 6 (448)
c880 443/1112 20676927 (7949684) 80 (1893)
c1355 587/1610 2748340 (3295293) 15 (809)
c1908 913/2378 18376664 (12363322) 187 (5712)
s1423 748/1821 467935 (1132322) 3 (162)
s3330 1961/4605 2496907 (8889410) 13 (5853)

Table 2. CNFs for ISCAS85 and ISCAS89 circuits.

5 CONCLUSION

We presented a compiler for converting CNFs into d-DNNFs: a
tractable logical form which allows polytime algorithms for clausal
entailment, model counting, enumeration and minimization, in ad-
dition to a probabilistic test for equivalence. The new compiler uti-
lizes non–chronological backtracking and learning of conflict–driven
clauses, in addition to a new technique for characterizing the states
of instantiated CNFs to be used in the process of caching compila-
tions. Our compiler is shown to be orders–of–magnitude more effi-
cient than the state–of–the–art compiler on some benchmarks, and
was able to compile some CNFs that could not be compiled before.

REFERENCES
[1] Manuel Blum, Ashok K. Chandra, and Mark N. Wegman, ‘Equivalence

of free Boolean graphs can be decided probabilistically in polynomial
time’, Information Processing Letters, 10(2), 80–82, (1980).

[2] R. E. Bryant, ‘Graph-based algorithms for Boolean function manipula-
tion’, IEEE Transactions on Computers, C-35, 677–691, (1986).

[3] Mark Chavira, Adnan Darwiche, and Manfred Jaeger, ‘Compiling re-
lational Bayesian networks for exact inference’, Technical Report D–
139, Computer Science Department, UCLA, Los Angeles, Ca 90095,
(2004). Submitted to PGM’04.

[4] Adnan Darwiche, ‘Decomposable negation normal form’,Journal of
the ACM, 48(4), 608–647, (2001).

[5] Adnan Darwiche, ‘On the tractability of counting theory models and
its application to belief revision and truth maintenance’,Journal of Ap-
plied Non-Classical Logics, 11(1-2), 11–34, (2001).

[6] Adnan Darwiche, ‘A compiler for deterministic, decomposable nega-
tion normal form’, inProceedings of the Eighteenth National Confer-
ence on Artificial Intelligence (AAAI), pp. 627–634, Menlo Park, Cali-
fornia, (2002). AAAI Press.

[7] Adnan Darwiche and Pierre Marquis, ‘A knowlege compilation map’,
Journal of Artificial Intelligence Research, 17, 229–264, (2002).

[8] J. Gergov and C. Meinel, ‘Efficient analysis and manipulation of OB-
DDs can be extended to FBDDs’,IEEE Transactions on Computers,
43(10), 1197–1209, (1994).

[9] Jinbo Huang and Adnan Darwiche, ‘Using DPLL for efficient OBDD
construction’, inProceedings of the Seventh International Conference
on Theory and Applications of Satisfiability Testing, (2004).

[10] Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik, ‘Chaff: Engineering an efficient SAT solver’, in39th De-
sign Automation Conference, Las Vegas, (2001).

[11] Joao Silva and Karem Sakallah, ‘Grasp—a new search algorithm for
satisfiability’, inProceedings of the International Conference on Com-
puter Aided Design, (1996).

