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Abstract

We show that the trace of an exhaustive DPLL
search can be viewed as a compilation of the propo-
sitional theory. With different constraints imposed
or lifted on the DPLL algorithm, this compilation
will belong to the language of d-DNNF, FBDD, and
OBDD, respectively. These languages are decreas-
ingly succinct, yet increasingly tractable, support-
ing such polynomial-time queries as model count-
ing and equivalence testing. Our contribution is
thus twofold. First, we provide a uniform frame-
work, supported by empirical evaluations, for com-
piling knowledge into various languages of interest.
Second, we show that given a particular variant of
DPLL, by identifying the language membership of
its traces, one gains a fundamental understanding of
the intrinsic complexity and computational power
of the search algorithm itself. As interesting exam-
ples, we unveil the “hidden power” of several re-
cent model counters, point to one of their potential
limitations, and identify a key limitation of DPLL-
based procedures in general.

1 Introduction
Knowledge compilation has been a key direction of research
in automated reasoning[Selman and Kautz, 1991; Marquis,
1995; Selman and Kautz, 1996; Cadoli and Donini, 1997;
Darwiche and Marquis, 2002]. When propositional theories
are compiled into a suitable target language, some generally
intractable queries may be answered in time polynomial in
the size of the compilation. Compiling combinational circuits
into OBDDs, for example, allows functional equivalence to
be tested in polynomial time (or constant time if the same
variable order is used)[Bryant, 1986]. More recent applica-
tions of compilation can be found in the fields of diagnosis
and planning, involving the use of the DNNF language[Dar-
wiche, 2001a; Barrett, 2004; Palacioset al., 2005].

Propositional Satisfiability (SAT), on the other hand, has
been an area of no less importance, or activity. Aside
from its theoretical significance as the prototypical NP-
complete problem, SAT finds practical applications in many
areas of artificial intelligence and computer science at large.
While SAT algorithms have substantially improved over the

decades, many of them continue to build on what is known
as the DPLL search[Davis et al., 1962] (for examples,
see complete SAT solvers in the 2004 SAT Competition:
http://satlive.org/SATCompetition/2004/).

This paper sets out to demonstrate a deep connection be-
tween SAT solving and knowledge compilation. In the first
direction, we show how advances in search-based SAT algo-
rithms will carry over, via an exhaustive version of DPLL, to
compiling propositional theories into one of several tractable
languages. We start by pointing out that the trace of an ex-
haustive DPLL search, recorded compactly as a DAG, can be
viewed as a compiled representation of the input theory. With
different constraints imposed or lifted on the search process,
we then show that the compilation will be in the language of
d-DNNF, FBDD, and OBDD, respectively. These languages
are known to decrease in succinctness: A propositional the-
ory may have a polynomial-size representation in d-DNNF,
but not in FBDD; or in FBDD, but not in OBDD[Darwiche
and Marquis, 2002].

In the second direction, we formulate two principles by
which the intrinsic complexity and computational power of
a DPLL-based exhaustive search is related to the language
membership of its traces. Applying these principles, we point
out that several recent model counters are doing enough work
to actually compile theories into d-DNNF. We also discuss a
potential limitation on the efficiency of these model counters,
as well as knowledge compilers using similar algorithms,
based on the fact that these algorithms only generate traces
in a specific subset of d-DNNF. Finally, we note that the ef-
ficiency of all DPLL-based exhaustive search algorithms are
inherently limited by their inability to produce traces beyond
d-DNNF. This realization is significant because some impor-
tant computational tasks, such as existential quantification of
variables and computation of minimum-cardinality models,
could be efficiently accomplished with a weaker representa-
tion known as DNNF, a strict superset of d-DNNF.

Under our uniform DPLL-based framework for knowledge
compilation, the power of successful modern SAT techniques
is harnessed, including sophisticated conflict analysis, clause
learning, faster detection of unit clauses, and new branching
heuristics. We also discuss caching methods specific to the
needs of compilation and tailored to the desired target compi-
lation language, as well as structure-based complexity guar-
antees. We finally relate our experimental results on imple-



¬¬¬¬A B ¬¬¬¬ B A C ¬¬¬¬ D D ¬¬¬¬ C

and and and and and and and and

or or or or

and and

or(a) NNF (b) Decision Node

or

andand

¬¬¬¬X Xαααα ββββ

(c) Alternatively 

X

αααα ββββ

Figure 1: An NNF sentence and a decision node.

mentations of the three respective compilers to the theoretical
succinctness relations of the corresponding languages.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews a number of propositional languages concerned
in this work and their theoretical roles and relations in knowl-
edge compilation. In Section 3, we describe a uniform frame-
work for knowledge compilation, with regard to these lan-
guages, based on recording the trace of an exhaustive DPLL
search, and discuss its implications on our understanding of
the complexity and computational power of various search
algorithms. We report experimental results in Section 4 and
conclude in Section 5.

2 Target Compilation Languages
A logical form qualifies as a target compilation language if
it supports some set of nontrivial queries, usually including
clausal entailment, in polynomial time. We will review in this
section several target compilation languages relevant to the
present paper, and refer the reader to[Darwiche and Marquis,
2002] for a more comprehensive discussion.

The languages we shall describe are all subsets of the more
general Negation Normal Form (NNF). A sentence in NNF is
a propositional formula where conjunction (and,∧), disjunc-
tion (or,∨) and negation (not,¬) are the only connectives and
negation only appears next to a variable; sharing of subformu-
las is permitted by means of a rooted DAG; see Figure 1a.

We start with the DNNF language, which is the set of all
NNF sentences that satisfydecomposability: conjuncts of
any conjunction share no variable. Our next language, d-
DNNF, satisfies both decomposability anddeterminism: dis-
juncts of any disjunction are pairwise logically inconsistent.
The formula of Figure 1a, for example, is in d-DNNF.

The FBDD language is the subset of d-DNNF where the
root of every sentence is adecisionnode, which is defined
recursively as either a constant (0 or 1) or a disjunction in
the form of Figure 1b whereX is a propositional variable
andα andβ are decision nodes. Note that an equivalent but
more compact drawing of a decision node—shown in Fig-
ure 1c—is widely used in the formal verification literature,
where FBDDs are equivalently known as Binary Decision
Diagrams (BDDs) that satisfy thetest-onceproperty: each
variable appears at most once on any root-to-sink path[Ger-
gov and Meinel, 1994]. See Figure 2c for an FBDD example
using this more compact drawing.

Table 1: Polytime queries supported by a language.◦ means
“not supported unless P=NP” and? means “do not know.”

Lang. CO VA CE IM EQ SE CT ME
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √
d-DNNF

√ √ √ √
? ◦ √ √

FBDD
√ √ √ √

? ◦ √ √
OBDD

√ √ √ √ √ ◦ √ √
OBDD<

√ √ √ √ √ √ √ √

The OBDD language is the subset of FBDD where all sen-
tences satisfy theordering property: variables appear in the
same order on all root-to-sink paths[Bryant, 1986]. See Fig-
ure 2d for an OBDD example. For a particular variable order
<, we also write OBDD< to denote the corresponding OBDD
subset where all sentences use order<.

Having an option among target compilation languages is
desirable, despite their succinctness relations which may be
known. The reason is that the succinctness of a language of-
ten runs counter to its tractability—that is, the set of queries
supported in polynomial time—and the best choice may de-
pend on the task at hand. Given this trade-off between the two
criteria, the rule of thumb, according to[Darwiche and Mar-
quis, 2002], is to choose the most succinct language that sup-
ports the desired set of queries in polynomial time (in some
cases the support oftransformations, such as Boolean opera-
tions, is also a consideration).

Table 1 lists a set of polynomial-time queries of in-
terest supported by each of these languages; the two-
letter abbreviations stand for the following eight queries,
respectively: COnsistency,VA lidity, Clausal Entailment,
IM plicant, EQuivalence, Sentential Entailment, model
CounTing, Model Enumeration[Darwiche and Marquis,
2002].

Interestingly, this table offers one explanation for the popu-
larity of OBDDs in formal verification where efficient equiv-
alence testing, among other things, is often critical. Although
more succinct, d-DNNF and FBDD are not known to admit
a polynomial-time equivalence test (a polynomial-time prob-
abilistic equivalence test is possible[Darwiche and Huang,
2002; Blumet al., 1980]). Note also that although there is no
difference between d-DNNF and FBDD to the extent of this
table, the question mark on the equivalence test (EQ) could
eventually be resolved differently for the two languages.

In the following section we will use the notion of recording
the trace of a DPLL search to establish an important link be-
tween SAT and knowledge compilation, providing a uniform
framework for compiling knowledge into some of these lan-
guages. From this point of view we will then discuss our new
understanding of the complexity and computational power of
algorithms based on exhaustive DPLL.

3 DPLL with a Trace
We start with the basic DPLL search as in[Daviset al., 1962].
To facilitate our subsequent discussion of variants of this al-
gorithm, we will omit unit resolution from the pseudocode.
(All our discussions, however, are valid in the presence of
unit resolution; see also the following two footnotes.)
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Figure 2: Exhaustive DPLL with a trace.

Algorithm 1 is a summary of DPLL for SAT. It works by re-
cursively doing a case analysis on the assignment to a selected
variable (Lines 5&6): The theory is satisfiable if and only if
either case results in a satisfiable subtheory.∆|x=0 (∆|x=1)
denotes the CNF obtained by replacing all occurrences ofx
with 0 (1) in ∆ and simplifying the formula accordingly. In
effect, this algorithm performs a search in the space of vari-
able assignments until it finds one that satisfies the given CNF
formula or realizes that no satisfying assignment exists.1

Now consider extending Algorithm 1 so that it will enu-
merate all satisfying assignments—by always exploring both
branches of Line 6—rather than terminate on finding the first
one. Figure 2b depicts the search tree of this exhaustive ver-
sion of DPLL on the CNF of Figure 2a, under some particular
variable ordering. We are using a dotted (solid) line to denote
setting the variable to0 (1), and will refer to the correspond-
ing branch of the search as thelow (high) branch. Note that
each leaf of this tree gives a partial variable assignment that
satisfies the theory regardless of the values of any unassigned
variables, and the whole tree characterizes precisely the set of
all satisfying assignments.

1To incorporate unit resolution into this simplified picture where
all assignments are by decision, one can assume that when a chosen
decision variable (Line 5 of Algorithm 1) has been implied by unit
resolution, the algorithm will simply proceed down the right branch
according to the implied value of the variable, noting that the other
branch leads to unsatisfiability. One may also assume that in choos-
ing a decision variable, those already implied by unit resolution will
be favored, although this would represent a restriction on the search
traces, which we describe shortly, that can be possibly generated.

Algorithm 1 DPLL(∆): returns satisfiability of CNF∆

1: if there is an empty clause in∆ then
2: return 0
3: if there is no variable in∆ then
4: return 1
5: select variablex of ∆
6: return DPLL(∆|x=0) or DPLL(∆|x=1)

As the title of this paper suggests, we like to think of this
complete search tree, also known as atermination treeor de-
cision tree, as thetrace left by the exhaustive DPLL search.
Such a trace corresponds to the portion of the search space
actually explored by a particular execution of the algorithm.
Furthermore, the trace can be viewed as a compiled repre-
sentation of the original CNF formula, because it uniquely
identifies the propositional theory—by specifying its models.

From the viewpoint of knowledge compilation, however, a
search trace recorded in its present form may not be immedi-
ately useful, because it will typically have a size proportional
to the amount of work done to produce it. Answering even a
linear-time query on such a compilation, for example, would
be as if one were running the whole search over again.

This problem can be remedied by reducing the trace from
a tree to a DAG, with repeated applications of the following
two rules: (i) Isomorphic nodes (i.e., nodes that have the same
label, same low child, and same high child) are merged; (ii)
Any node with identical children is deleted and pointers to it
are redirected to either one of its children[Bryant, 1986].

If we apply these reduction rules to the tree of Figure 2b,
and rename “sat/unsat” to “1/0”, we will get the DAG of Fig-
ure 2c (in this particular example the first rule only applies to
the terminal nodes and the second rule does not apply). Ob-
serve that this DAG is none other than a propositional theory
in the language of FBDD. And this is no accident!

3.1 Compiling CNF into FBDD
We are in fact in possession of a CNF-to-FBDD compiler, de-
scribed more formally in Algorithm 2. The main difference
from the original DPLL is on Line 6: We always explore both
branches, and the newly introduced function,get-node, pro-
vides a means of recording the trace of the search in the form
of a DAG. Specifically, get-node will return a decision node
labeled with the first argument, having the second argument
as the low child, and having the third argument as the high
child. Note that Lines 2&4 have been modified to return the
terminal decision nodes, instead of the Boolean constants.

We point out that the amount of space required by Algo-
rithm 2 to store the FBDD is only proportional to the size
of the final result. In other words, it will never create re-
dundant nodes to be reduced later. This is because the two
reduction rules are built-in by means of aunique nodesta-
ble, well-known in the BDD community[Somenzi, Release
240]. Specifically, all nodes created by get-node are stored
in a hash table and get-node will not create a new node if (i)
the node to be created already exists in the table (that existing
node is returned); or (ii) the second and third arguments are
the same (either argument is returned).

Algorithm 2 dpllf (∆): compiles CNF∆ into FBDD (dpll is low-
ercased to distinguish it from Algorithm 3, its full version)

1: if there is an empty clause in∆ then
2: return 0-sink
3: if there is no variable in∆ then
4: return 1-sink
5: select variablex of ∆
6: return get-node(x, dpllf (∆|x=0), dpllf (∆|x=1))



Caching. Despite the use of unique nodes which controls
the space complexity, Algorithm 2 still has a time complex-
ity proportional to the size of the tree version of the search
trace: Portions of the DAG can end up being explored mul-
tiple times. To alleviate this problem, one resorts toformula
caching[Majercik and Littman, 1998].

Algorithm 3 describes the same CNF-to-FBDD com-
piler, but now with caching: The result of a recursive call
DPLLf (∆) will be stored in a cache (Line 10) before being
returned, indexed by a key (computed on Line 5) identifying
∆; any subsequent call on some∆′ will immediately return
the existing compilation for∆ from the cache (Line 7) if∆′ is
found to be equivalent to∆ (by a key comparison on Line 6).

In practice, one normally focuses on efficiently recog-
nizing formulas that aresyntactically identical (i.e., have
the same set of clauses). Various methods have been pro-
posed for this purpose in recent years, starting with[Ma-
jercik and Littman, 1998] who used caching for probabilis-
tic planning problems, followed by[Darwiche, 2002] who
proposed a concrete formula caching method in the con-
text of knowledge compilation, then[Bacchuset al., 2003;
Sanget al., 2004] in the context of model counting, and then
[Huang and Darwiche, 2004; Darwiche, 2004] who proposed
further refinements on[Darwiche, 2002].

3.2 From FBDD to OBDD
We now turn to OBDD as our target compilation language.
Note that in Algorithm 3, DPLL is free to choose any variable
on which to branch (Line 8). This corresponds to the use of
a dynamic variable ordering heuristic in a typical SAT solver,
in keeping with the spirit of FBDD compilation.

Not surprisingly, a CNF-to-OBDD compiler can be ob-
tained by switching from dynamic to static variable ordering:
The new compiler will take a particular variable orderπ as
a second argument, and make sure that this order is enforced
when constructing the DAG. See Line 8 of Algorithm 4.

Caching. Naturally, any general formula caching method,
such as the ones we described earlier, will be applicable to
Algorithm 4. For this more constrained compiler, however,
a special method is available where shorter cache keys can
be used to reduce the cost of their manipulation. The reader
is referred to[Huang and Darwiche, 2004] for details of this
method, which allows one to bound the number of distinct
cache keys, therefore providing both a space and a time com-
plexity bound. In particular, due to this specific caching
scheme, the space and time complexity of compiling OBDDs

Algorithm 3 DPLLf (∆): compiles CNF∆ into FBDD

1: if there is an empty clause in∆ then
2: return 0-sink
3: if there is no variable in∆ then
4: return 1-sink
5: key = compute-key(∆)
6: if (result = cache-lookup(key)) 6= null then
7: returnresult
8: select variablex of ∆
9: result = get-node(x, DPLLf (∆|x=0), DPLLf (∆|x=1))

10: cache-insert(key, result)
11: returnresult

was shown to be exponential only in thecutwidthof the given
CNF. A variant caching scheme allows one to show a parallel
complexity in terms of thepathwidth(cutwidth and pathwidth
are not comparable).

Classical OBDD Construction. We emphasize here that
Algorithm 4 represents a distinct way of OBDD construction,
in contrast to the standard method widely adopted in formal
verification where one recursively builds OBDDs for compo-
nents of the system (or propositional theory) to be compiled
and combines them using theApplyoperator[Bryant, 1986].
A well-known problem with this latter method is that the in-
termediate OBDDs that arise in the process can grow so large
as to make further manipulation impossible, even when the
final result would have a tractable size. Considering that the
final OBDD is really all that one is after, Algorithm 4 affords
a solution to this problem by building exactly it, no more and
no less (although it may do more work than is linear in the
OBDD size, both because inconsistent subproblems do not
contribute to the OBDD size, and because the caching is not
complete). An empirical comparison of this compilation al-
gorithm and the traditional OBDD construction method can
be found in[Huang and Darwiche, 2004].

3.3 From FBDD to d-DNNF
Although any FBDD is also a d-DNNF sentence by definition,
it remains a reasonable option to compile propositional theo-
ries into d-DNNF only, given its greater succinctness. Con-
sidering that d-DNNF is a relaxation of FBDD, we can obtain
a d-DNNF compiler by relaxing a corresponding constraint
on Algorithm 3. Specifically, immediately before Line 8, we
need not insist any more that a case analysis be performed on
some variablex of the formula; instead, the following tech-
nique ofdecompositioncan be utilized. See Algorithm 5.2

As soon as variable instantiation finishes without contra-
diction, we will examine the remaining CNF formula, and
partition it into subsets that do not share a variable (Line 5).
These subsets can then be recursively compiled into d-DNNF
(Lines 7–9) and conjoined as anand-node (Line 10). Note
that decomposition takes precedence over case analysis: Only
when no decomposition is possible do we branch on a se-
lected variable as in regular DPLL (Lines 14&15).

2When unit resolution and clause learning are both integrated
into this algorithm, an issue arises regarding implications via learned
clauses that span otherwise disjoint components. See[Sanget al.,
2004] for more discussion on this issue.

Algorithm 4 DPLLo(∆, π): compiles CNF∆ into OBDDπ

1: if there is an empty clause in∆ then
2: return 0-sink
3: if there is no variable in∆ then
4: return 1-sink
5: key = compute-key(∆)
6: if (result = cache-lookup(key)) 6= null then
7: returnresult
8: x = first variable of order π that appears in∆
9: result = get-node(x, DPLLo(∆|x=0, π), DPLLo(∆|x=1, π))

10: cache-insert(key, result)
11: returnresult



Note that our relaxation of Algorithm 3 has resulted in a
new type of node, returned byget-and-nodeon Line 10. The
old get-node function (Line 15) still returns decision nodes
(in a relaxed sense, as their children now are not necessarily
decision nodes) in the form of Figure 1c. The unique nodes
technique can also be extended in a straightforward way so
that isomorphic and-nodes will not be created.

We point out here that Algorithm 5 onlyproduces sen-
tences in a subset of d-DNNF, because it only produces a
special type of disjunction nodes—decision nodes (again in
the relaxed sense). Recall that d-DNNF allows any disjunc-
tion as long as the disjuncts are pairwise logically inconsis-
tent. We will come back to this in the next subsection.

Static vs. Dynamic Decomposition. Algorithm 5 sug-
gests a dynamic notion of decomposition, where disjoint
components will be recognized after each variable split. This
dynamic decomposition was initially proposed and utilized
by [Bayardo and Pehoushek, 2000] for model counting and
adopted by a more recent model counter[Sanget al., 2004].
[Darwiche, 2002; 2004] proposed another (static) method for
performing the decomposition by preprocessing the CNF to
generate adecomposition tree (dtree), which is a binary tree
whose leaves correspond to the CNF clauses. Each node in
the dtree defines a set of variables, whose instantiation is
guaranteed to decompose the CNF into disjoint components.
The rationale is that the cost of dynamically computing a par-
tition (Line 5) many times during the search is now replaced
with the lesser cost of computing a static and recursive parti-
tion once and for all. This method of decomposition allows
one to provide structure-based computational guarantees as
discussed later, and can be orders of magnitude more efficient
on some benchmarks, including the ISCAS85 circuits.3

3One may obtain results to this effect by running the
model counter [Sang et al., 2004], version 1.1, available
at http://www.cs.washington.edu/homes/kautz/Cachet/, on bench-
marks used in[Darwiche, 2004]. It should be noted that the two
programs differ in other aspects, but the decomposition method ap-
pears to be the major difference. Note also that using DPLL for
compilation incurs higher overhead than for model counting due to
the bookkeeping involved in storing the DPLL trace.

Algorithm 5 DPLLd(∆): compiles CNF∆ into d-DNNF

1: if there is an empty clause in∆ then
2: return 0-sink
3: if there is no variable in∆ then
4: return 1-sink
5: components = disjoint partitions of∆
6: if |components| > 1 then
7: conjuncts = {}
8: for all ∆c ∈ components do
9: conjuncts = conjuncts ∪ {DPLLd(∆c)}

10: return get-and-node(conjuncts)
11: key = compute-key(∆)
12: if (result = cache-lookup(key)) 6= null then
13: returnresult
14: select variablex of ∆
15: result = get-node(x, DPLLd(∆|x=0), DPLLd(∆|x=1))
16: cache-insert(key, result)
17: returnresult

Caching. Several caching methods have been proposed for
d-DNNF compilation, the latest and most effective of which
appeared in[Darwiche, 2004]. However, we refer the reader
to [Darwiche, 2001b] for a caching scheme that is specific to
the dtree-based decomposition method. This scheme is not
competitive with the one in[Darwiche, 2004] in that it may
miss some equivalences that would be caught by the latter, yet
it allows one to show that the space and time complexity of d-
DNNF compilation is exponential only in thetreewidthof the
CNF formula (as compared to the pathwidth and cutwidth in
OBDD compilation). Interestingly, no similar structure-based
measure of complexity appears to be known for FBDDs.

Relation to AND/OR Search. Recent work has explored
the long established notion of AND/OR search to process
queries on belief and constraint networks[Dechter and Ma-
teescu, 2004b; 2004a]. An AND/OR search is character-
ized by a search graph with alternating layers of and-nodes
and decision-nodes, the former representing decomposition
and the latter branching. The DAGs produced by Algo-
rithm 5 are indeed AND/OR graphs and, conversely, the
AND/OR search algorithms described in[Dechter and Ma-
teescu, 2004b; 2004a] can be used tocompile networks into
the multi-valued equivalent of d-DNNF. This implies that
these AND/OR search algorithms are capable of many more
tasks than what they were proposed for—model counting (or
other equivalent tasks such as computing the probability of a
random variable assignment satisfying the constraint query).
We discuss this further in the following subsection.

3.4 Understanding the Power and Limitations of
DPLL

The main proposal in this paper has been the view of
exhaustive-DPLL traces as sentences in some propositional
language. This view provides a unified framework for knowl-
edge compilation as we have shown earlier, but we now show
another major benefit of this framework: By using known re-
sults about the succinctness and tractability of languages, one
can understand better the intrinsic complexity and computa-
tional power of various exhaustive DPLL procedures.

Consider a particular variation of DPLL, say DPLLx, and
suppose that its traces belong to languageLx. We then have:

1. DPLLx will not run in polynomial time on formulas for
which no polynomial-size representation exists inLx.

2. If DPLLx runs in polynomial time on a class of formu-
las, then DPLLx (with some trivial modification) can an-
swer in polynomial time any query on these formulas
that is known to be tractable for languageLx.

Take for example the model counters recently proposed in
[Bayardo and Pehoushek, 2000; Sanget al., 2004], which
employ the techniques of decomposition and (the latter also)
caching. A simple analysis of these model counters shows
that their traces are in the d-DNNF language (for specific
illustrations, see the DDP algorithm of[Bayardo and Pe-
houshek, 2000] and Table 1 of[Sanget al., 2004]). There-
fore, neither of these model counters will have a polynomial
time complexity on formulas for which no polynomial-size
representations exist in d-DNNF.



In fact, one can take this analysis one step further as fol-
lows. These model counters, and the compiler of[Darwiche,
2004], actually produce traces in a strict subset of d-DNNF,
call it d-DNNF′, which employs a syntactic notion of deter-
minism; that is, every disjunction in their trace has the form
(x ∧ α) ∨ (¬x ∧ β), wherex is a splitting variable. The d-
DNNF language, however, does not insist on syntactic deter-
minism: It allows disjunctionsη ∨ψ whereη ∧ψ is logically
inconsistent, yetη andψ do not contradict each other on any
particular variablex. If d-DNNF′ turns out to be not as suc-
cinct as d-DNNF, then one may find another generation of
model counters and d-DNNF compilers that can be exponen-
tially more efficient than the current ones.

As an example of the second principle above, consider the
query of testing whether the minimization of a theory∆ im-
plies a particular clauseα, min(∆) |= α, wheremin(∆) is
defined as a theory whose models are exactly the minimum-
cardinality models of∆. This query is at the heart of di-
agnostic and nonmonotonic reasoning and is known to be
tractable if∆ is in d-DNNF. Therefore, this query can be
answered in polynomial time for any class of formulas on
which the model counters in[Bayardo and Pehoushek, 2000;
Sanget al., 2004] have a polynomial time complexity. Sim-
ilarly, a probabilistic equivalence test can be performed in
polynomial time for formulas on which these models coun-
ters run in polynomial time.

Beyond DPLL. DPLL traces are inherently bound to be
NNF sentences that are both deterministic and decompos-
able. Decomposability alone, however, is sufficient for the
tractability of such important tasks as clausal entailment test-
ing, existential quantification of variables, and cardinality-
based minimization[Darwiche and Marquis, 2002]. DPLL
cannot generate traces in DNNF that are not in d-DNNF, since
variable splitting (the heart of DPLL) amounts to enforcing
determinism. It is this property of determinism that provides
the power needed to do model counting (#SAT), which is es-
sential for applications such as probabilistic reasoning. But
if one does not need this power, then one should go beyond
DPLL-based procedures; otherwise one would be solving a
harder computational problem than is necessary.

4 Experimental Results
By way of experimentation, we compiled a set of CNF formu-
las into OBDD, FBDD and d-DNNF, both to show the practi-
cality of the DPLL-based compilation approach and to relate
the results to the theoretical succinct relations of the three lan-
guages. The benchmarks we used include random 3-CNF and
graph coloring problems from[Hoos and Sẗutzle, 2000], and
a set of ISCAS89 circuits.4 The compilation was done with
the OBDD compiler of[Huang and Darwiche, 2004], using
the MINCE variable order[Aloul et al., 2001], an FBDD
compiler we implemented according to Subsection 3.1 us-
ing the VSIDS variable ordering heuristic[Moskewiczet al.,
2001], and the d-DNNF compiler of[Darwiche, 2004].

4The CNF formulas used for these sequential circuits model the
functionality of their combinational parts; they also define the tran-
sition relations of the circuits. Compilations of these theories will
thus be useful, for example, for reachability analysis of the circuits.

Table 2: Compiling CNF into OBDD, FBDD, and d-DNNF.

CNF Number of OBDD FBDD d-DNNF
Name Models Size Time Size Time Size Time

uf75-01 2258 10320 0.14 3684 0.02 822 0.02
uf75-02 4622 22476 0.15 14778 0.04 1523 0.03
uf75-03 3 450 0.02 450 0.02 79 0.01
uf100-01 314 2886 2.22 2268 0.01 413 0.02
uf100-02 196 1554 0.91 1164 0.07 210 0.04
uf100-03 7064 12462 0.78 9924 0.12 1363 0.02
uf200-01 112896 8364 651.04 7182 35.93 262 3.66
uf200-02 1555776 – – 12900 33.72 744 2.64
uf200-03 804085558 – – 662238 56.6186696 10.64

flat75-1 24960 23784 0.16 10758 0.04 2273 0.01
flat75-2 774144 13374 0.28 8844 0.04 1838 0.01
flat75-3 25920 84330 0.29 26472 0.07 4184 0.04
flat100-1 684288 62298 0.78 37704 0.10 3475 0.03
flat100-2 245376 88824 1.57 39882 0.30 6554 0.09
flat100-3 11197440 15486 0.15 21072 0.09 2385 0.02
flat200-1 5379314835456 – – – – 184781 56.86
flat200-2 13670940672 – – 134184 7.07 9859 23.81
flat200-3 15219560448 – – 358092 4.13 9269 3.28

s820 8388608 1372536 72.99 364698 0.69 23347 0.07
s832 8388608 1147272 76.55 362520 0.70 21395 0.05

s838.1 73786976294838206464 87552 0.24 – – 12148 0.02
s953 35184372088832 2629464 38.811954752 4.01 85218 0.26
s1196 4294967296 4330656 78.264407768 12.49206830 0.44
s1238 4294967296 3181302 158.844375122 12.14293457 0.94
s1423 2475880078570760549798248448 – – – – 738691 4.75
s1488 16384 6188427 50.35 388026 1.14 51883 0.19
s1494 16384 3974256 31.67 374760 1.07 55655 0.18

The results of these experiments are shown in Table 2,
where the running times are given in seconds based on a
2.4GHz CPU. The size of the compilation reflects the num-
ber of edges in the NNF DAG. A dash indicates that the com-
pilation did not succeed given the available memory (4GB)
and a 900-second time limit. It can be seen that for most of
these propositional theories, the compilation was the smallest
in d-DNNF, then FBDD, then OBDD; a similar relation can
be observed among the running times. Also, the number of
instances successfully compiled was the largest for d-DNNF,
then FBDD, then OBDD. This tracks well with the theoreti-
cal succinctness relations of the three languages. (However,
note that FBDD and d-DNNF are not canonical representa-
tions and therefore compilations smaller than reported here
are perfectly possible; smaller OBDD compilations are, of
course, also possible under different variable orderings.)

We close this section by noting that the implementations
of these knowledge compilers bear witness to the advantage
of the DPLL-based framework we have described. The first
compiler is based on an existing SAT solver[Moskewiczet
al., 2001], and the other two on our own implementation of
DPLL, all three benefiting from techniques that have found
success in SAT, including conflict analysis, clause learning,
and data structures for efficient detection of unit clauses.

5 Conclusion
We established an important relationship between SAT and
knowledge compilation, based on studying the trace of an ex-



haustive DPLL search. This relationship provides a uniform
framework for compiling propositional theories into various
languages of interest, and throws light on the intrinsic com-
plexity and computational power of various DPLL-based al-
gorithms. As interesting examples, we unveiled the “hidden
power” of several recent model counters and discussed one of
their potential limitations. We also pointed out the inability
of exhaustive DPLL to produce traces in strict DNNF, which
limits its power from a knowledge compilation point of view.
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