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Abstract

Recent work on compiling Bayesian networks has
reduced the problem to that of factoring CNF en-
codings of these networks, providing an expressive
framework for exploiting local structure. For net-
works that have local structure, large CPTs, yet no
excessive determinism, the quality of the CNF en-
codings and the amount of local structure they cap-
ture can have a significant effect on both the offline
compile time and online inference time. We ex-
amine the encoding of such Bayesian networks in
this paper and report on new findings that allow us
to significantly scale this compilation approach. In
particular, we obtain order–of–magnitude improve-
ments in compile time, compile some networks
successfully for the first time, and obtain orders–
of–magnitude improvements in online inference for
some networks with local structure, as compared to
baseline jointree inference, which does not exploit
local structure.

1 Introduction
It was shown recently that compiling Bayesian networks cor-
responds to factoring multi–linear functions (MLFs)[Dar-
wiche, 2003]. In particular, each Bayesian network can be
characterized by an MLF of exponential size, whose eval-
uation and differentiation solves the exact inference prob-
lem. Moreover, the MLF can be factored into an arith-
metic circuit (AC) whose size is not necessarily exponen-
tial, allowing one to use ACs as a compiled representation
of Bayesian networks. Interestingly,[Park and Darwiche,
2003] has shown that building a jointree[Jensenet al., 1990;
Shenoy and Shafer, 1986] for a Bayesian network corre-
sponds in a precise sense to a process of factoring the MLF
into an AC, which is embedded by the jointree structure.

These findings created new possibilities for performing ex-
act inference, as they provided a new computational frame-
work based on factoring MLFs. In fact, a specific MLF factor-
ing method was proposed in[Darwiche, 2002], which can ex-
ploit the structure inherent in network parameters. According
to this approach, one encodes the MLF using a propositional
theory in Conjunctive Normal Form (CNF), factors the CNF,

and then immediately extracts the AC from the CNF factor-
ization. The benefit of this logical approach is twofold. First,
it allows one to encode local structure in the form of deter-
minism and context specific independence (CSI)[Boutilier et
al., 1996]. For example, using this approach, it became prac-
tical to compile some Bayesian networks with binary vari-
ables and excessive determinism (induced by relational mod-
els) and having treewidths in excess of200 by compiling the
AC in minutes and evaluating them in seconds[Chaviraet al.,
2004]. The second advantage of this approach is its ability to
accommodate different representations of conditional prob-
ability tables (CPTs) (decision trees, rules, noisy–or, etc.),
without the need for algorithmic change. In this paper, we
consider only tabular representations.

The critical computational step in the above approach is
clearly that of factoring/compiling the CNF, which is done us-
ing an exhaustive and refined version of the DPLL algorithm
[Davis et al., 1962; Darwiche, 2004]. The key observation
underlying this paper is that the efficiency of the factoring
step—both factoring time and size of factorization—can be
significantly improved through careful CNF encodings which
capture as much local structure as possible, and by passing
additional information about these CNFs to the factoring al-
gorithm. This becomes especially true when handling net-
works that have local structure, large CPTs, yet no excessive
determinism. We do indeed propose a particular CNF en-
coding which appears quite effective on networks with such
properties. We also identify a key semantic property of the
resulting CNFs, which we exploit in the CNF factoring al-
gorithm. By incorporating these findings, we show dramatic
improvements in the both offline compile time and online in-
ference. In the offline compilation phase, we get an order–of–
magnitude improvement in some cases and an ability to com-
pile some networks for the first time. In the online phase, we
observe orders–of–magnitude improvements on some well
known benchmarks, such asPathfinder, Munin1, andWater,
over online inference by the baseline jointree algorithm.

2 Factoring Multi–linear Functions
Our investigation is based on three technical observations
[Darwiche, 2003]: that every Bayesian network can be inter-
preted as an exponentially–sized MLF whose evaluation and
differentiation solves the exact inference problem; that such
an MLF can be factored into an AC whose size may not be ex-
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row A B C Pr(c | a, b)
1 a1 b1 c1 θc1|a1b1 = 0
2 a1 b1 c2 θc2|a1b1 = 0.5
3 a1 b1 c3 θc3|a1b2 = 0.5
4 a1 b2 c1 θc1|a1b2 = 0.2
5 a1 b2 c2 θc2|a1b1 = 0.3
6 a1 b2 c3 θc3|a1b1 = 0.5
7 a2 b1 c1 θc1|a2b2 = 0
8 a2 b1 c2 θc2|a2b2 = 0
9 a2 b1 c3 θc3|a2b1 = 1
10 a2 b2 c1 θc1|a2b1 = 0.2
11 a2 b2 c2 θc2|a2b2 = 0.3
12 a2 b2 c3 θc3|a2b2 = 0.5

Figure 1: A small Bayesian network with one of its CPTs,
showing local structure in the form of determinism and CSI.
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Figure 2: An MLF factored into an AC.

ponential; and that the MLF factoring process can be reduced
to factoring a CNF encoding of the MLF.

The MLF for a network contains two types of variables.
For each valuex of each network variableX, there is anin-
dicator variableλx. For each network parameterPr(x|u),
there is aparameter variableθx|u. The MLF contains a term
for each instantiation of the network variables, and the term is
the product of all indicators and parameters that are consistent
with the instantiation. For the network in Figure 1, variables
A andB have two values, and variableC has three values.
The MLF corresponding to this network is as follows:

λa1λb1λc1θa1θb1θc1|a1,b1 + λa1λb1λc2θa1θb1θc2|a1,b1+
. . .
λa2λb2λc2θa2θb2θc2|a2,b2 + λa2λb2λc3θa2θb2θc3|a2,b2

To compute the probability of evidencee, we evaluate the
MLF after setting indicators that contradicte to 0 and other
indicators to1. For example, to computePr(a2, b1), we set
indicatorsλa1 andλb2 to 0, set other indicators to1, and eval-
uate the reduced MLF:Pr(a2, b1) =

θa2θb1|a2θc1|a2,b1 + θa2θb1|a2θc2|a2,b1 + θa2θb1|a2θc3|a2,b1

As is obvious from the above example, the MLF has an ex-
ponential size. Yet the MLF can be factored into an AC whose
size may not be exponential, leading one to formulate the ex-
act inference problem as a problem of factoring MLFs into
ACs. An AC is a DAG with internal nodes labeled with mul-
tiplications/additions and leaves labeled with variables and
constants; see Figure 2.1

1Representations such as ADDs and their variations are more re-

One way to factor an MLF into an AC is by encoding the
MLF into CNF and then factoring the CNF. To illustrate the
encoding scheme, consider again the MLFf in Figure 2 over
real–valued variablesa, b, c, d. The basic idea is to specify
this MLF using a propositional theory that has exactly four
models, one for each term inf . Specifically, the propositional
theory∆f = Va ∧ (Vb ⇒ Vd) ∧ (Vc ⇒ Vb) over Boolean
variablesVa, Vb, Vc, Vd has exactly four models and encodes
f as follows:

Model Va Vb Vc Vd encoded term
σ1 true false false false a
σ2 true false false true ad
σ3 true true false true abd
σ4 true true true true abcd

That is, modelσ encodes termt sinceσ(Vj) = true precisely
when termt contains the real–valued variablej.

By factoring/compiling the CNF∆f as discussed in[Dar-
wiche, 2004], one can immediately extract an AC represen-
tation of the MLFf in time and space proportional to the
factored CNF[Darwiche, 2002]. We will discuss this process
later, but we first provide more detail on the encoding step.
We start here with the baseline encoding[Darwiche, 2002],
which we refer to asPREV.

The CNF has one Boolean variableVλ for each indicator
variableλ, and one Boolean variableVθ for each parameter
variableθ. For brevity though, we will abuse notation and
simply write λ and θ instead ofVλ and Vθ. CNF clauses
fall into three sets. First, for each network variableX with
domainx1, x2, . . . , xn, we have:

Indicator clauses: λx1 ∨ λx2 ∨ . . . ∨ λxn

¬λxi
∨ ¬λxj

, for i < j

For example, variableC in Figure 1 generates:

λc1 ∨ λc2 ∨ λc3 , ¬λc1 ∨ ¬λc2 , ¬λc1 ∨ ¬λc3 , ¬λc2 ∨ ¬λc3

These clauses ensure that exactly one indicator variable for
C appears in each term of the MLF. The remaining sets of
clauses correspond to network parameters. In particular, for
each parameterθxn|x1,x2,...,xn−1 , we have:

IP clause: λx1 ∧ λx2 ∧ . . . ∧ λxn
⇒ θxn|x1,x2,...,xn−1

PI clauses: θxn|x1,x2,...,xn−1 ⇒ λxi
, for eachi

For example, parameterθc1|a1,b1 in Figure 1 generates:

λa1 ∧ λb1 ∧ λc1 ⇒ θc1|a1,b1
θc1|a1,b1 ⇒ λa1 , θc1|a1,b1 ⇒ λb1 , θc1|a1,b1 ⇒ λc1

(1)

The models of this CNF are in one–to–one correspondence
with the terms of the MLF. In particular, each model of the
CNF will correspond to a unique network variable instantia-
tion, and will set to true only those indicator and parameter
variables which are compatible with that instantiation.

3 Encoding Techniques
ThePREVencoding as discussed does not encode information
about parameter values (local structure). However, it is quite

stricted representations of MLFs (they can be unfolded into ACs).



Table 1: —: jointree ran out of memory.

Max AC Inference Improvement
Network Cluster Time (s) Over JT
bm-5-3 23 0.0068 4,028
stud-3-2 25 0.0052 1,181
mm-4-8-3 26 0.0516 1,114
mm-3-8-5 54 0.6835 —
bm-22-3 104 4.7000 —
stud-6-24 233 13.0000 —

easy to encode information about determinism within this en-
coding. Consider Figure 1 and the parameterθc1|a1,b1 = 0,
which generates the four clauses in (1). These clauses en-
sure that the parameterθc1|a1,b1 appears in an MLF term iff
that term contains the indicatorsλa1 , λb1 and λc1 . How-
ever, given that this parameter is known to be0, all terms
that contain this parameter must vanish. Therefore, we can
suppress the generation of a Boolean variable for this param-
eter, and then replace the above clauses by a single clause:
¬λa1 ∨¬λb1 ∨¬λc1 . This clause has the effect of eliminating
all CNF models which correspond to vanishing terms, those
containing the parameterθc1|a1,b1 .

Armed with determinism, thePREV encoding can produce
impressive results when applied to networks with only bi-
nary variables, that contain small CPTs, and that contain large
numbers of0 parameters. For example,[Chaviraet al., 2004]
reports on networks with such properties, generated from re-
lational models, and Table 1 reviews some of these results. As
is clear from the table, one gets exponential improvements
over the standard jointree method, which does not take ad-
vantage of network determinism.2 Similar results have also
been reported in[Darwiche, 2002] with respect to Bayesian
networks corresponding to digital circuits.

For Bayesian networks with local structure, large CPTs, yet
no excessive determinism, the encoding of determinism alone
may not be so effective. Table 2 lists a set of benchmark net-
works, some having variables with large cardinalities, others
having very large CPTs, and where the amount of determin-
ism is not necessarily excessive. Table 3 provides statistics on
the CNFs generated for some of these networks, according to
the PREV encoding, while also encoding determinism as dis-
cussed above. These CNFs are quite large, but the striking
property they have is the large percentage (up to99% in some
cases) of Boolean variables that represent parameters versus
those representing indicators. Some of these CNFs proved
challenging to factor, some taking too long and others run-
ning out of memory. There are two key observations, how-
ever, that allowed us to handle these networks successfully,
leading to significant improvements in both offline compile
time and online inference time. We explain each of these in
some detail next, but after providing an overview of the CNF
factoring/compilation algorithm of[Darwiche, 2004].

2The technique of “zero compression” can be employed to ex-
ploit determinism in jointrees, but it requires inference on the full
jointree first, which is prohibitive in this case.

Table 3: CNFs generated byPREV (determinism encoded).

Network Vars Parm Vars Clauses Literals
pathfinder 55229 54781 300576 821814
water 6630 6514 49367 152686
mildew 38540 37924 683552 1958952
munin1 9551 8556 49363 129358
munin4 48864 43216 247582 641839
diabetes 113527 108845 814412 2196008

3.1 How the CNF factoring/compilation process
works

We provide in this section a sketch of the CNF factoring pro-
cess. We note, however, that this section may be skipped on
a first reading of the paper as it is not strictly needed for the
following sections.

Consider again the CNF∆f = Va ∧ (Vb ⇒ Vd) ∧
(Vc ⇒ Vb) from the previous section, and the MLFf =
a + ad + abd + abcd that it encodes. We now briefly de-
scribe the CNF factoring process which allows us to produce
the AC shown in Figure 2. First, the output of the factor-
ing process is shown on the left of Figure 3: It is a logi-
cal form known as negation normal form (NNF) which sat-
isfies decomposability (conjunctions do not share variables),
determinism (disjuncts must be logically incompatible), and
smoothness (disjuncts must mention the same sets of vari-
ables). Such a factorization is generated using an exhaustive
version of the DPLL procedure[Davis et al., 1962]. In par-
ticular, the algorithm will pick a variablex in the CNF, will
factor ∆|x and∆|¬x separately, and then combine the re-
sults intox ∧ factor(∆|x) ∨ ¬x ∧ factor(∆|¬x). To im-
prove performance, the algorithm keeps a cache that stores
CNFs that have been factored and their factorizations and
checks this cache before trying to factor a CNFΓ. Finally, be-
fore picking a variablex to split Γ on, the algorithm checks
the CNF to see if it can be broken into disconnected com-
ponents, sayα1 andα2. In that case, the algorithm factors
the components separately and combines their results into
factor(α1) ∧ factor(α2). The factoring algorithm we use
[Darwiche, 2004], utilizes a decomposition tree (dtree) to
manage this decomposition process. In particular, a dtree for
a CNF is a binary tree whose leaves correspond to the CNF
clauses. Moreover, each node in the dtree is associated with
a set of variables whose instantiation is guaranteed to decom-
pose the CNF into two independent components.

The above procedure generates NNFs that are decompos-
able and deterministic. Smoothness can be established easily
by a postprocessing step. Given an NNF that satisfies the
required properties, we can extract an AC by simply replac-
ing conjunctions with multiplications, disjunctions with ad-
ditions, and negative literals with the constant1. Positive lit-
erals are replaced by the real–valued variables they encode.
This decoding process is shown in Figure 3; see[Darwiche,
2002] for more details.

This factoring algorithm is indeed a logical version of the
recursive conditioning (RC) algorithm[Darwiche, 2001b].3

3Similar algorithms have been used recently to solve probabilis-



Table 2: The networks with which we experimented.

Network Max Clust Vars Card Ave Card Total Parms Max CPT Parms Ave CPT Parms %Det %DP
alarm 7.2 37 2-4 2.8 752 108 20 0.9 24.6
bm 20.0 1005 2-2 2.0 6972 8 7 99.6 100.0
diabetes 17.2 413 3-21 11.3 461069 7056 1116 78.2 17.6
hailfinder 11.7 56 2-11 4.0 3741 1188 67 15.7 26.9
mildew 21.4 35 3-100 17.6 547158 280000 15633 93.2 25.1
mm 23.0 1220 2-2 2.0 8326 8 7 98.7 75.0
munin1 26.8 189 1-21 5.3 19466 600 103 66.5 61.2
munin2 18.6 1003 2-21 5.4 83920 600 84 63.3 69.5
munin3 17.8 1044 1-21 5.4 85855 600 82 63.1 71.3
munin4 21.4 1041 1-21 5.4 98183 600 94 64.5 65.3
pathfinder 15.0 109 2-63 4.1 97851 8064 898 56.1 5.1
pigs 17.4 441 3-3 3.0 8427 27 19 56.2 23.9
students 22.0 376 2-2 2.0 2616 8 7 90.7 79.3
tcc4f 10.0 105 2-2 2.0 3236 512 31 0.4 35.6
water 19.9 32 3-4 3.6 13484 3072 421 54.0 57.0
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Figure 3: An NNF (left), its encoded AC (middle) and a simplification of the AC (right).

One can in principle use RC to compile a Bayesian network
directly into an AC (bypassing the CNF encoding), but the
approach we use allows us to capitalize on the state of the
art in logical reasoning for handling determinism and CSI,
even though it may incur more overhead in the factoring pro-
cess. In particular, our CNF factoring algorithm uses unit
resolution to propagate logical constraints; conflict directed
backtracking to recover more efficiently when conditioning
on variable settings that lead to contradictions; in addition to
clause learning as a means for avoiding such contradictions
early on in future conditioning. It also provides a more flexi-
ble framework for exploiting CSI through the use of two tech-
niques. First, it can detect non–structural decompositions,
that is, subproblems that become independent due to condi-
tioning on specific variable values—such independence can-
not be detected based only on structural considerations (net-
work topology). This is done by removing clauses that be-
come subsumed due to conditioning, therefore, disconnecting
subsets of the CNF under specific variable values. Second, it
uses a non–structural caching scheme which allows one to
prove the equivalence of subproblems under specific variable
values (therefore, avoiding multiple factorings of the same
subproblem). Again, these equivalences cannot be proven if
we were to only use structural considerations. Finally, the re-

tic inference using #SAT[Bacchuset al., 2003].

duction to CNF allows one to more naturally accommodate
other types of CPT structures (e.g., decision trees and rules)
without the need for algorithmic change. The reduction to
CNF factoring and the corresponding techniques lead to quite
a bit of overhead in some cases, but this is justified since
it will only be done once when compiling the network into
an AC. If the application of these techniques lead to smaller
ACs, the compile time can then be amortized over all online
queries. We will illustrate this benefit more concretely in the
experimental results section.

3.2 Encoding parameter equality / CSI

The CPT depicted in Figure 1 has12 parameters, yet only5
of these are distinct. Some of the equalities among parame-
ters imply context–specific independence; others do not. For
example, the equality between parameters in rows4− 6 with
those in rows10− 12 imply thatC is independent ofA given
B = b2. However, the equality between parameters in rows 2
and 3 do not imply a CSI.

From a purely encoding viewpoint, one would clearly want
to exploit parameter equality, at least to reduce the number of
Boolean variables one must generate. Table 2 shows the ex-
tent to which parameter equality can help in this regard. In
particular, the table reports as %DP the percentage of distinct
parameters among non–extreme parameters. That is, the per-



centage of parameters that would remain if, for each CPT,
we collapsed equal, non–extreme parameters into a single pa-
rameter. The dramatic example here ispathfinder:about half
of its parameters are extreme, and among the other half, only
about5% are distinct within their CPTs. In addition to gener-
ating smaller CNFs, encoding parameter equality allows the
compiler to run with less overhead, and togenerate smaller
ACs since parameter equality provides more opportunities for
factoring,which immediately translates to gains in online in-
ference.

A key observation here is that no two parameters in the
same CPT can ever appear in the same MLF term, as they
correspond to incompatible network instantiations. This ob-
servation suggests that we can use the same Boolean variable
to represent multiple parameters, assuming that such param-
eters have equal values and appear in the same CPT. How-
ever, the idea will not work when applied toPREV. Consider
again the CPT in Figure 1. If we use the same variableθ to
represent parametersθc2|a1,b1 and θc3|a1,b2 , which are both
equal to.5, we would get the following two PI clauses in the
CNF:θ ⇒ λb1 andθ ⇒ λb2 , which is inconsistent with other
clauses. More generally, PI clauses assert that a parameter
implies the corresponding family instantiation. Therefore, if
we simply use the same Boolean variable to represent equal
parameters, we would be implying inconsistent family instan-
tiations.4

The solution we adopt is to drop PI clauses from the encod-
ing! Note that dropping PI clauses introduces additional (un-
intended) models into the CNF, allowing MLF terms which
contain multiple parameters from the same CPT. These unin-
tended models/terms, however, can be easily filtered during
the decoding process given the following.

Theorem 1 Consider a Bayesian network withn variables.
Let ∆ be a CNF encoding which includes the indicator, IP
and PI clause sets, and letΓ be the CNF encoding which in-
cludes the indicator and IP clause sets only. Then∆’s models
have cardinality2n and are a subset ofΓ’s models. Moreover,
if σ is a model ofΓ but not∆, thenσ’s cardinality is> 2n.

Therefore, unintended models have a higher cardinality than
original models (which all have the same cardinality). As it
turns out, ifΓ is an NNF which satisfies decomposability, de-
terminism and smoothness, one can in linear time obtain an-
other NNFΓ′ whose models are exactly the minimum cardi-
nality models ofΓ and which satisfies the required properties
[Darwiche, 2001a]. Therefore, we can safely drop PI clauses
as long we minimize the resulting NNF before we decode the
AC.

By including only indicator and IP clauses, we can now
safely represent all equal parameters within the same CPT
by a single Boolean variable in the CNF encoding. For the
Pathfindernetwork for example, this drops the number of
Boolean variables needed to represent non–extreme param-
eters from42, 946 to 2, 186, a 95% reduction! Similar re-
ductions are obtained for many other networks; see Table 2.
As we show later, not only does this technique improve the
compilation time, but can lead to significantly smaller ACs.

4A restricted case of encoding parameter equality was discussed
in [Darwiche, 2002].

3.3 A more informed factoring algorithm
The CNF factoring algorithm employs two key techniques as
discussed earlier. The first is variable splitting, which can be
thought of as doing case analysis. The second is caching, so
that one can avoid factoring the same CNF subset multiple
times. Which variables the algorithm ends up splitting on can
very much affect its running time, and the size of factoriza-
tions it generates. Moreover, the complexity of the caching
scheme is proportional to the number of variables appearing
in the cached CNF subset, as the state of such variables are
used to generate keys that uniquely define CNFs. The fol-
lowing observations state interesting properties of our CNF
encodings, which if passed to the factoring algorithm can sig-
nificantly improve both the splitting and caching processes.

First, if two clauses share a parameter variable, then they
must also share indicators over the same network variable.
This property, and the presence of indicator clauses, allow the
CNF factoring algorithm to restrict its splitting to indicator
variables, which would be sufficient to decompose the prob-
lem into independent components (hence, no splitting/case
analysis is needed on parameter variables). Second, given
the structure of indicator and IP clauses, the state of indicator
variables are sufficient to characterize the state of parameter
variables. This property allows us to only involve indicator
variables when generating CNF keys during the caching pro-
cess. Both of the above optimizations can be exploited by
simply identifying parameter variables to the factoring algo-
rithm.

Another technique that we have used in some of the ex-
periments involves the construction of a decomposition tree
(dtree) for the given Bayesian network, and then converting it
into a dtree for its CNF encoding. A dtree for a Bayesian net-
work is simply a binary tree whose leaves correspond to the
network CPTs[Darwiche, 2001b]. A dtree for a CNF is also
a binary tree, but its leaves correspond to the CNF clauses.
Since each clause in the CNF encoding is generated by a CPT,
we can convert a network dtree into a CNF dtree by simply
unfolding the dtree node corresponding to a CPT into a sub-
tree whose leaves correspond to the clauses generated by that
CPT. The main point of this technique is to more efficiently
generate dtrees for very large CNF encodings that are gener-
ated by Bayesian networks with a small number of CPTs (this
happens when the network contains very large CPTs).

3.4 Other Optimizations
Our CNF encodings utilize some additional enhancements,
two of which are described next. First, we define a new type
of clause, called aneclause, which has the same syntax as a
regular clause but stronger semantics: it asserts thatexactly
one of it literals is true. We use eclauses for representing in-
dicator clauses, therefore reducing the size of CNFs consid-
erably in networks having multi–valued variables. Moreover,
we outfit the DPLL procedure used in factoring the CNF to
work directly with eclauses, without having to unfold them
into regular clauses. For another optimization example, the
indicators and parameters corresponding to the same state of
a root variable are logically equivalent, making it possible to
delete the parameter variables and the corresponding IP and
PI clauses, which establish the equivalence.



4 Experimental Results
Experiments ran on a 1.6GHz Pentium M with 2GB of RAM,
using the networks in Table 2. Two important columns in Ta-
ble 2 are %Det, which is the percent of parameters that are
equal to0 or to 1 and %DP, which is the percent of non–
extreme parameters remaining after collapsing equal param-
eters within the same CPT. These two values give an idea
of the amounts of local structure in the form of determinism
and possibly CSI. bm-5-3, mm-3-8-3, and stud-3-2 are net-
works on whichPREV was already shown to perform well by
only encoding determinism[Chaviraet al., 2004]. These net-
works contain only binary variables, are highly deterministic,
and have small CPTs (no more than two parents per node). In
contrast, the other networks contain variables with higher car-
dinalities and lesser degrees of determinism and, sometimes,
very large CPTs. These networks came from various sources:
http://www2.sis.pitt.edu/∼genie; Hughes Research Labs; and
http://www.cs.huji.ac.il/labs/compbio/Repository.

The experiments serve to demonstrate three points. First,
the new CNF encoding and the additional information we
pass to the CNF factoring algorithm lead to significant im-
provement, both in the factoring time and the size of resulting
factorizations. Table 4 (1st three columns) illustrates the im-
provement in factoring time, showing order of magnitude im-
provements in some cases and allowing us to factor some net-
works for the first time under the given memory constraints.

The second point illustrated by our experiments concerns
the quality of factorizations (ACs) we obtain, compared to the
ones embedded in jointrees. Recall that every jointree em-
beds an AC[Park and Darwiche, 2003], whose size depends
only on the jointree size and, hence, is not dependent on local
structure. Our experiments are therefore set to illustrate the
extent to which local structure can help the factorization pro-
cess. Table 4 illustrates significant improvements in AC size,
as we obtained one to two orders of magnitude improvement
on networks such asWater, Pathfinder, Munin1, andMunin4.
For a more direct measure of improvement in online infer-
ence,5 we generated sixteen random sets of evidence, and for
each evidence set, we computed the marginal of each network
variable using jointree propagation and then using AC eval-
uation/differentiation.6 Table 4 shows the obtained improve-
ments in online inference, which are similar to improvements
in AC size.

Note that since the AC is compiled independently of evi-
dence, the improvements apply for computing all marginals
regardless of evidence. This is especially useful for tasks that
apply a massive number of queries to Bayesian networks,
including parameter estimation algorithms (e.g., EM) given
known local structure in the form of determinism and CSI,
and MAP algorithms based on branch&bound search.

[Poole and Zhang, 2003] present another approach for ex-
ploiting local structure, by providing a refinement on variable
elimination (VE). Their approach does not involve a compi-

5Online inference time is affected by the number of AC nodes
too (not reported), and by the structure of ACs which affects locality
of reference (the ACs embedded in jointrees have better locality).

6AC differentiation provides more information that just
marginals[Darwiche, 2003].

Table 5: Effect of local structure on AC size (edge count).

Local structure Pathfinder Water Munin4
Det/Equal Parms 42,810 134,140 5,762,690
Det only 130,380 138,501 9,997,267
Equal Parms only 200,787 11,111,104 17,612,036
No local structure 784,330 15,305,634 —
Jointree 981,178 13,777,166 116,136,985

lation step, and their results are sensitive to the given queries,
so a direct comparison between the two approaches is not too
meaningful. Yet, we mention here that on a re-parameterized
version of Water (to introduce local structure),[Poole and
Zhang, 2003] show a factor of4 improvement over standard
VE (total time over all queries; the speedup was more or less
depending on the query). Water is the only network from Ta-
ble 4 that[Poole and Zhang, 2003] report on. Note that the
exploitation of local structure can incur overhead that may
not be justifiable unless the savings due to local structure are
significant enough (not all of the cases in Table 4 lead to sig-
nificant savings). This appears to be less an of an issue in our
approach, since the overhead is pushed into the compilation
step. However, in[Poole and Zhang, 2003] which does not
involve a compilation step, this overhead is incurred in every
query which may or may not lead to overall savings depend-
ing on the query—being query specific, however, may some-
times pay off quite significantly, since work performed can
sometimes be simplified given specific evidence and specific
query variables.

Our final point regards the effect of local structure on the
quality of factorizations. Consider Table 5, which shows AC
sizes under different encodings of local structure. First, it is
obvious that encoding local structure is responsible for the
significant improvements on these networks. Second, inWa-
ter, determinism appears to be the main responsible factor.
However, inPathfinderandMunin4,parameter equality alone
(without determinism) is sufficient to bring about most of the
reported improvements, even though determinism alone can
have a similar effect too. Note that there is some overlap be-
tween determinism and parameter equality since by encoding
determinism (0 parameters), one is effectively collapsing all
0 parameters (applying implicit parameter equality). The re-
sults forPathfinderandMunin4are therefore not surprising,
suggesting possibly that parameter equality is more funda-
mental than determinism for these networks.

5 Conclusion

We considered the problem of compiling Bayesian networks
into ACs. Our aim was to efficiently compile networks having
local structure, yet large CPTs and no excessive determinism.
We proposed a new encoding scheme that facilitates the rep-
resentation of local structure in the form of parameter equal-
ity, and identified some of its properties that improve com-
pile time. Our results demonstrate significant improvements
in both offline/compile and online/inference time, leading to
orders of magnitude improvement in online inference.



Table 4: Comparing the new and prev encodings with the jointree baseline.

Network Offline Compile Time (s) AC Edge Count Online Inference Time (s)
PREV NEW Improv. Jointree NEW Improv. Jointree NEW Improv.

alarm 0.93 0.52 1.8 4,804 2,686 1.8 0.07 0.01 6.4
bm-5-3 2.51 1.11 2.3 86,532,336 18,693 4,629.1 165.15 0.09 1,814.8
diabetes — 2,269.05 — 40,673,307 13,585,023 3.0 37.09 16.27 2.3
hailfinder 2.26 0.86 2.6 36,342 15,687 2.3 0.13 0.06 2.2
mildew — 7,483.80 — 16,171,408 2,123,309 7.6 13.39 3.35 4.0
mm-3-8-3 7.44 1.87 4.0 98,044,208 263,835 371.6 248.15 0.21 1,181.6
munin1 — 1,534.97 — 1,047,211,866 30,620,744 34.21,321.68 44.91 29.4
munin2 3,248.42 225.46 14.4 24,281,678 4,791,974 5.1 28.32 6.59 4.3
munin3 1,553.43 151.72 10.2 14,333,412 2,436,598 5.9 18.69 3.65 5.1
munin4 2,440.30 677.92 3.6 116,136,985 5,762,690 20.2 137.94 7.70 17.9
pathfinder 226.37 20.36 11.1 981,178 43,064 22.8 1.68 0.07 23.7
pigs 110.10 17.84 6.2 2,347,299 1,302,215 1.8 3.45 1.60 2.2
students-3-2 1.53 0.82 1.9 37,799,472 27,292 1,385.0 55.98 0.07 799.7
tcc4f.obfuscated 4.11 1.15 3.6 29,064 22,284 1.3 0.14 0.05 2.8
water 34.82 4.83 7.2 13,777,166 134,142 102.7 22.68 0.21 107.5
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