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Abstract

Knowledge compilation is one of the more traditional ap-
proaches to model-based diagnosis, where a compiled sys-
tem model is obtained in an off-line phase, and then used to
efficiently answer diagnostic queries on-line. The choice of
a suitable representation for the compiled model is critical
to the success of this approach, and two of the main propos-
als have been Decomposable Negation Normal Form (DNNF)
and Ordered Binary Decision Diagram (OBDD). The contri-
bution of this paper is twofold. First, we show that in the
current state of the art, DNNF dominates OBDD in efficiency
and scalability for some typical diagnostic tasks. This result
is based on a step-by-step comparison of the complexities of
diagnostic algorithms for DNNF and OBDD, together with a
known succinctness relation between the two representations.
Second, we present a tool for model-based diagnosis, which
is based on a state-of-the-art DNNF compiler and our imple-
mentations of DNNF diagnostic algorithms. We demonstrate
the efficiency of this tool against recent results reported on
diagnosis using OBDD.

Introduction
One of the well established approaches to model-based
diagnosis is based oncompiling a system model into
some tractable propositional language, and then applying
polynomial-time operations on the compiled representation
to efficiently answer diagnostic queries. For the success of
this compilation-based approach, the selection of a suitable
target compilation language is critical. An early example
appeared in (de Kleer 1990), where propositional sentences
that modeled a device were compiled into their prime impli-
cates. It was later observed, however, that prime implicate
representations tended to be impractically large for many
real-world devices (Forbus & de Kleer 1993).

Ordered Binary Decision Diagrams (OBBDs) (Bryant
1986) are a tractable representation for propositional theo-
ries, and have been widely used in the field of formal ver-
ification. (Sztipanovits & Misra 1996) adopted OBDDs
for the diagnosis of discrete-event systems, and there has
since been an interest in using OBDDs also for model-
based diagnosis of static systems (Torasso & Torta 2003;
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Torta & Torasso 2004). To harness the tractable opera-
tions offered by OBDDs, (Torasso & Torta 2003; Torta &
Torasso 2004) proposed a novel algorithm that computes
the minimum-cardinality diagnoses by an iterative proce-
dure that involves a series of “cardinality filters” of tractable
size. An effort has also been made to obtain better OBDD
variable orderings by exploiting the causal structure of the
system to be diagnosed.

In the present paper, we show that one can achieve better
efficiency and scalability in model-based diagnosis by using
a weaker representation known as Decomposable Negation
Normal Form (DNNF) (Darwiche 2001). First of all, it is
known that the DNNF language is a strict superset of, and
strictly more succinct than, the OBDD language (Darwiche
& Marquis 2002). This implies that (1) if a system model
can be compiled successfully into OBDD, then it can also be
compiled successfully into DNNF (since every OBDD is in
DNNF), and (2) some system model may have a polynomial-
size compilation in DNNF, yet not in OBDD.

This succinctness relation alone suggests that one can
be better off with DNNF in terms of the time and space
requirements for obtaining and storing the compiled sys-
tem model. However, it does not say which representa-
tion will be more conducive to answering on-line diagnos-
tic queries. In other words, it might be perfectly possible
to have the system model in the less succinct OBDD, but
then be able to perform on-line diagnosis more efficiently,
because OBDD, being a stronger representation, supports
more tractable queries than DNNF in general.

We show, via a step-by-step comparison, that this is not
the case given the diagnostic algorithms currently available
for both languages. Specifically, we show that the two typ-
ical diagnostic tasks—computing consistency-based diag-
noses and those of minimum cardinality—have lower com-
plexities for DNNF than for OBDD.

In light of these analytical results and recent practical ad-
vances in DNNF compilation, we present a software tool for
diagnosis using DNNF. This tool is based on a state-of-the-
art DNNF compiler (Darwiche 2004) and our implementa-
tions of DNNF diagnostic algorithms. We apply this tool
to a diagnosis benchmark for which results have been re-
cently reported on diagnosis using OBDD. The experiments
indicate that the use of DNNF leads to faster compilation of
the system model, a smaller representation for the system



x1

x2x2

x3

0 1

or

and

or and¬¬¬¬X3

X1 X2

(a) OBDD (b) DNNF

Figure 1: A propositional theory represented in OBDD and
DNNF.

model, faster completion of individual diagnostic cases, and
smaller representations for the sets of diagnoses computed.

The remaining sections of the paper are organized as fol-
lows: We review the definitions and theoretical relations of
the OBDD and DNNF languages; formulate the diagnosis
problem and discuss the compilation of the system model
into DNNF in the off-line phase; compare the complexi-
ties of on-line diagnostic algorithms for DNNF and OBDD
to demonstrate the better efficiency and scalability of the
DNNF-based method; describe our software tool for DNNF-
based diagnosis; present results of an empirical study; and
finally conclude with a short summary of contributions.

OBDD and DNNF
We briefly review in this section the definitions and theoret-
ical relations of the OBDD and DNNF languages.

Introduced in (Bryant 1986), OBDDs are graph represen-
tations of propositional theories (or, equivalently, Boolean
functions). An OBDD is a directed acyclic graph (DAG)
with one root and at most two sinks. The sinks are labeled
with 0 and 1, respectively; every internal node is labeled
with a variable and has two children. In the example of Fig-
ure 1a, we have distinguished between the two children of
a node, commonly referred to aslow andhigh, by using a
dotted line for the former and a solid line for the latter. It is
required that variables appear in the same order on all root-
to-sink paths. An OBDD represents a propositional theory
by the following semantics: Given an instantiationI of the
variables, one picks a path from the root to a sink while al-
ways choosing the low (high) child of a node if the variable
labeling that node is set to 0 (1) byI; if the path ends with
the 0-sink (1-sink), the theory evaluates to 0 (1) for this vari-
able instantiation.

A propositional sentence in DNNF is also a rooted DAG,
but with a different labeling scheme: Each leaf is labeled
with a literal (i.e., variable or its negation) or a constant (i.e.,
0 or 1), and each internal node is labeled with either “and” or
“or.” It is required that the DAG satisfydecomposability: No
variable is shared between children of any and-node.1 The

1When generalized to multi-valued variables, one can observe
that DNNF is a superset of the AND/OR graphs recently studied
in the context of belief and constraint networks (Dechter & Ma-
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Figure 2: A circuit and its CNF encoding.

semantics of DNNF is defined in the straightforward way:
Each and-node (or-node) is the conjunction (disjunction) of
its children. See Figure 1b for a DNNF example.

It has been observed in (Darwiche 2001) that any OBDD
is also a DNNF sentence via the following identity: OBDD

node

X

αααα ββββ is equivalent to DNNF node

or

andand

¬¬¬¬X Xαααα ββββ.
This implies that any OBDD of tractable size immediately
gives a DNNF sentence of tractable size. The reverse, how-
ever, is not true. There are known propositional theories that
have polynomial-size representations in DNNF, but not in
OBDD (Darwiche 2001).2 As we mentioned earlier, this
relative succinctness of DNNF, by itself, does not guarantee
better performance in on-line diagnosis, but it will be the ba-
sis for our ability to achieve better efficiency and scalability
in the off-line compilation phase, as we discuss next.

Compiling the System Model
In this section, we formulate the problem of consistency-
based diagnosis, describe the encoding of system models
and their compilation into DNNF using a state-of-the-art
compiler (Darwiche 2004), and discuss the advantages of
using DNNF over OBDD for compilation.

A system descriptionis a triple(∆,A,O) where∆, the
system model, is a propositional sentence describing the be-
havior of the system to be diagnosed, andA andO are dis-
joint subsets of the variables of∆, known respectively as
assumablesandobservables. Intuitively, assumables repre-
sent the health of system components, and observables cor-
respond to the appearance of the system that can be mea-
sured. Variables of∆ that are not inA or O will be referred
to asnonobservables.

Given a system description(∆,A,O) and observa-
tion α, which is an instantiation of the observablesO, a
consistency-based diagnosisis defined as an instantiation of
the assumablesA that is logically consistent with∆ ∧ α.

teescu 2004b; 2004a): In an AND/OR graph, the and-nodes satisfy
decomposability and or-nodes represent an additional requirement
that disjuncts of any disjunction be mutually inconsistent.

2For example, consider 32-bit integersXi, 0 ≤ i < n, each
represented by 32 Boolean variablesXik, 0 ≤ k < 32. It is
well-known that the OBDD encoding the proposition “not all in-
tegersXi are distinct” has an exponential size for any variable
ordering. There is, however, a quadratic-size DNNF encoding:∨

i

∨
j>i

∧
k
[(Xik ∧Xjk) ∨ (¬Xik ∧ ¬Xjk)]. These are a class

of propositional theories that are encountered in real-world appli-
cations where, for example, one wishes to verify that “no resource
is allocated to two different users (McMillan 2002).”



Consider for example the small circuit shown in Figure 2.
This circuit consists of an inverterX and an and-gateY , and
can be modeled by the following propositional sentence:

∆ ≡ (okX ⇒ (A ⇔ ¬C))∧(okY ⇒ (B∧C ⇔ D)). (1)

Note that we have introducedokX andokY to represent
the health of the respective components of the circuit—these
two variables are therefore the assumables. The inputsA and
B and outputD of the circuit are the observables and the
internal wireC is a nonobservable. An example observation
may be¬A∧B∧¬D, for which¬okX∧okY , okX∧¬okY ,
and¬okX ∧ ¬okY are all the possible diagnoses.

With the compilation-based approach, the diagnostic task
is divided into an off-line and an on-line phase. In this sec-
tion we discuss the off-line phase, where one focuses on ef-
ficiently compiling the system model∆ into a compact rep-
resentation in some target compilation language. In the next
section we will discuss algorithms that answer on-line diag-
nostic queries using the compiled representation.

Compact Encoding of Multi-valued Variables
Since the behavior of a system can often be naturally de-
scribed as a combination of the behaviors of its components,
from here on we assume that the system model∆ is given
in Conjunctive Normal Form (CNF). A CNF formula is de-
fined as a conjunction of clauses, where each clause is a dis-
junction of literals; a literal is a variable or its negation. For
example, the circuit in Figure 2, modeled by Equation 1, can
also be specified by the CNF formula shown to its right.

In view of the fact that many systems of interest come
with multi-valued variables, we have implemented an ex-
tension to the DNNF compiler of (Darwiche 2004), which
allows a special type of clauses, callede-clauses, to be de-
clared as part of the input CNF. Instead of regular disjunc-
tion, an e-clause⊕(l1, . . . , lk) represents the exclusive-or
of its literals. A variablex on a discrete multi-valued do-
main {v1, . . . , vk} then translates intok Boolean variables
x1, . . . , xk constrained by a single e-clause⊕(x1, . . . , xk):
Eachxi encodes the propositionx = vi and the e-clause en-
codes that variablex must assume exactly one of its values.

We note that the use of e-clauses is in contrast to
the commonly adopted method, used in (Darwiche 1998;
Torta & Torasso 2004) for example, where a regulark-
literal clause:x1 ∨ . . . ∨ xk, plus k(k−1)

2 binary clauses:
¬xi∨¬xi+1, . . . ,¬xi∨¬xk for i = 1 tok−1, are required to
specify the same constraint. In a search-based compiler such
as that of (Darwiche 2004), allowing the compact e-clauses
prevents the sheer volume of clauses from bogging down the
compilation when the system comes with a large number of
multi-valued variables. (For readers familiar with SAT algo-
rithms, the compiler of (Darwiche 2004) runs a DPLL-style
search on the CNF, and an e-clause is specially marked so
that when any of its literals becomes 1 all others are immedi-
ately set to 0; not explicitly having thek(k−1)

2 binary clauses
shortens thewatchedlists of all the literals involved.)

Compiling the System Model into DNNF
Now that the system model is available in CNF (extended
to allow e-clauses), we will invoke the CNF-to-DNNF com-

Table 1: Compiling ISCAS89 circuits into OBDD & DNNF.

Circuit CNF OBDD DNNF
Name Vars Clauses Size Time Size Time
s820 312 1046 1372536 72.99 23347 0.07
s832 310 1056 1147272 76.55 21395 0.05

s838.1 512 1233 87552 0.24 12148 0.02
s953 440 1138 2629464 38.81 85218 0.26
s1196 561 1538 4330656 78.26 206830 0.44
s1238 540 1549 3181302 158.84 293457 0.94
s1488 667 2040 6188427 50.35 51883 0.19
s1494 661 2040 3974256 31.67 55655 0.18

piler of (Darwiche 2004) to obtain a compiled representation
for the system model in DNNF.

We would like to emphasize here that this compiler de-
rives its efficiency and scalability, in large part, from exploit-
ing the structure of the system in a fairly systematic way.
Specifically, the compilation is driven by adecomposition
tree (dtree) for the CNF formula, which is constructed in
a preprocessing stage based on efficient heuristics that at-
tempt to minimize itswidth. This results in generally ef-
ficient compilation for structured systems that admit low-
width dtrees as the compilation is known to have a complex-
ity that is polynomial in the number of variables and expo-
nential only in the width of the dtree in the worst case.

On the other hand, we note that although the DNNF com-
pilers of (Darwiche 2004) and (Darwiche 1998) both have
the same worse-case complexity, exponential in the width
of the dtree used, the new compiler can achieve much better
performance in the average case, thanks to several additional
techniques that improve search efficiency, such as conflict-
directed backtracking, clause learning, and more effective
caching (Darwiche 2004). In particular, systems with a high
width, for which the earlier compiler would be hopeless as it
used a strictly structure-based algorithm, are no longer nec-
essarily difficult to compile.

In the previous section we discussed the theoretical suc-
cinctness relation between the languages of DNNF and
OBDD. On the empirical side, we would like to refer the
reader to (Darwiche 2004) for results on a set of ISCAS85
and ISCAS89 circuits,3 which were successfully compiled
into DNNF in between a few seconds and a few minutes,
yet some of which could not be compiled into OBDD us-
ing either the CUDD package (Somenzi Release 240) or the
OBDD compilation algorithm of (Huang & Darwiche 2004).

To obtain a more concrete picture of this comparison, we
experimented with a subset of these benchmark circuits, not
covered in (Darwiche 2004), where compilation is possible
for both DNNF and OBDD. For DNNF compilation we used
the compiler of (Darwiche 2004); for OBDD compilation

3These circuits are represented in CNF by introducing one vari-
able for each internal wire and writing several clauses to model the
behavior of each logic gate. The resulting CNF formula hence in-
cludes the input, output, as well as all internal wires of the circuit,
but no assumables (i.e., variables modeling the health of the gates).
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we used the compiler of (Huang & Darwiche 2004), with
MINCE variable orders (Aloul, Markov, & Sakallah 2001),
as it has been reported to outperform CUDD-based compi-
lation on these circuits (Huang & Darwiche 2004). The re-
sults are shown in Table 1. The second column of the table
gives the size of the CNF formula encoding the circuit in
terms of the number of variables and the number of clauses;
the timings are given in seconds based on a 2.4GHz CPU.
For a more meaningful comparison, the size of the compi-
lation, for both languages, has been given in terms of the
number of edges in the DNNF DAG (each internal OBDD
node contributes 6 edges to the DNNF DAG as we illus-
trated earlier). We observe that for these circuits the DNNF
compilation was orders-of-magnitude faster than the OBDD
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Figure 3: Diagnosis using DNNF.

compilation, and the compiled results are between one and
two orders of magnitude smaller in DNNF than in OBDD.

In summary, both theoretical and empirical results suggest
that the choice of DNNF over OBDD as the target language
for compiling the system model will help improve the effi-
ciency and scalability of the off-line phase of the diagnosis.

The Complexities of Diagnostic Queries
The job is but half done after successful compilation of the
system model. It remains to be seen whether the diagnostic
task can be carried out efficiently on this compiled knowl-
edge base. We consider first the problem of computing the
complete set of diagnoses, then that of computing the set
of minimum-cardinality diagnoses only. As we shall see,
although DNNF allows fewer tractable queries, its weaker
representational requirement leads to lower complexities for
computing and representing the diagnoses than if the OBDD
representation is used.

Computing All Diagnoses
Given a system description(∆,A,O), a compilation∆′ for
the system model∆, and a system observationα, the com-
plete set of diagnoses∆d can be characterized as follows:

∆d = Project(Restrict(∆′, α),A). (2)

That is, we restrict the compiled system model∆′ by in-
corporating the observationα, and then project the result on
the assumablesA. We will define these two operations more



formally later, but let us first illustrate them with a concrete
example.

Let us consider again the diagnosis of the circuit in Fig-
ure 2 under the observationα ≡ ¬A∧B∧¬D. Figure 3a de-
picts the compiled system model in DNNF. For theRestrict
operation, all one need do is visit the leaves of Figure 3a and
replaceA with 0,¬A with 1, B with 1,¬B with 0, D with
0, and¬D with 1. For theProject operation, again one vis-
its the leaves of the DNNF but, this time, replaces bothC
and¬C with 1. The result of this process is shown in Fig-
ure 3b. The DNNF is then simplified in the straightforward
way, yielding a smaller DAG representing the set of all di-
agnoses, shown in Figure 3c, which basically says: GateX
is abnormal, or gateY is abnormal (or both). In general, one
would obtain a more complex DNNF DAG, which charac-
terizes the set of all diagnoses. One can also enumerate the
diagnoses easily from the DNNF, but their number could be
large unless filtered further as shown below.

As we have illustrated with this example, restricting a
DNNF sentence, regardless of the number of variables in-
volved in the instantiation, amounts to replacing the relevant
leaves with their given values.Restrict can therefore be per-
formed in time linear in the size of the DNNF. We note that
OBDDs do just as well for this particular operation: Re-
stricting an OBDD, also regardless of the number of vari-
ables instantiated, amounts to a single traversal of its nodes
where pointers to nodes labeled with instantiated variables
are updated (Bryant 1986).

Recall that the projection of a propositional theoryΓ on
a set of variablesA is the result ofexistentially quantify-
ing the complement set of variablesA from Γ. Existential
quantification of a single variable can be defined as:

∃xΓ ≡ Restrict(Γ, x) ∨ Restrict(Γ,¬x). (3)

In a typical OBDD package, existential quantification is
computed exactly according this definition. Since disjunc-
tion, as well as other binary Boolean operations, can poten-
tially take quadratic time and produce a result of quadratic
size, using theApply operator (Bryant 1986), it is well
known that when multiple variables are being quantified one
can encounter an exponential complexity.4

Existential quantification (and, hence, projection) is a
much easier task for DNNF as we have seen in the exam-
ple. To existentially quantify a set of variables, regardless of
their number, one need only traverse the DNNF once, sub-
stituting the constant1 for all leaves (literals) that mention
a quantified variable and eliminating redundant nodes that
result (Darwiche 2001).5

The Compilation Gets Even Smaller
Because of the low complexity of projection on DNNF, after
compiling the system model into DNNF∆′, one can imme-

4(Torta & Torasso 2004) contains a result that if the observables
O and nonobservablesN are logically dependent on the assum-
ablesA and the systemcontext, then Equation 2 can be computed
in O((|O|+ |N|) · |∆′|2) time for OBDDs.

5Since all OBDDs are in DNNF, one can do the same on an
OBDD; the result, however, will not be an OBDD. A similar argu-
ment applies to the minimization operation which we discuss later.

diately project it on the observablesO and assumablesA
(i.e., existentially quantify out the nonobservables) and ob-
tain a simplified representation∆′′:

∆′′ = Project(∆′,O ∪A). (4)

The diagnoses∆d can then be computed simply as:

∆d = Restrict(∆′′, α). (5)

In the example of Figure 3a, applying this early projection
would have removed the two nodes that mention variable
C. Each subsequent diagnostic case would then be solved
on the simpler representation. Since the compiled system
model will generally be used many times to answer diagnos-
tic queries on-line, a smaller size to start with helps further
improve the efficiency of this phase of diagnosis.

The same technique is not always feasible with OBDDs.
Because of the potentially exponential complexity, the pro-
jection of Equation 4 may not be practical, or may result
in an OBDD much larger than the original. Under these cir-
cumstances, one would prefer to postpone the projection un-
til the compiled system model has been restricted to a given
observation (at which point the OBDD will be smaller and
the projection will therefore be more likely to succeed), as
prescribed by Equation 2.

Computing Minimum-Cardinality Diagnoses
In cases where the set of diagnoses is large, one may be in-
terested in only those diagnoses, calledpreferred diagnoses,
that satisfy one or more particular criteria.Minimum cardi-
nality is a typical criterion used for this purpose. A diagno-
sis of minimum cardinality is one that identifies the smallest
possible number of faulty components.

Suppose that we have already obtained the complete set of
diagnoses∆d using either Equation 2 or Equation 5. Com-
puting the minimum-cardinality diagnoses will then amount
to an operation known asminimization(Darwiche 2001),
which refers to a revision of∆d so that it encodes only
a subset of its original models (i.e., satisfying variable as-
signments) where the number of variables assigned0 is the
smallest possible (without loss of generality, we assume that
an assumable, when set to0, represents the abnormality of
the corresponding system component).

Minimization can be carried out efficiently on DNNF by
traversing the DAG exactly three times (Darwiche 2001). In
the first traversal, the DNNF issmoothedso that disjuncts of
any disjunction mention the same set of variables; see Fig-
ure 3d. Smoothing takesO(|∆d| · |A|) time and results in a
new DAG of sizeO(|∆d| · |A|).6 The second traversal com-
putes themc (minimum cardinality) for each node of the
DAG: Themc of a positive (negative) literal is 0 (1); themc
of an or-node (and-node) is the minimum (sum) of themc’s
of its children; see Figure 3d. This computation takes time

6One can omit this smoothing step; the final DNNF for
minimum-cardinality diagnoses should then be interpreted differ-
ently: When enumerating the models (diagnoses) of the DNNF,
assume that variables with unspecified values are assigned 1. This
alternative method can be slightly more efficient in practice, and
was used for the experiments reported later.



Table 2: Complexity of diagnosis: A comparison.
Operation OBDD DNNF

Restrict(∆′, α) O(|∆′|) O(|∆′|)
Project(Γ,A) exponential O(|Γ|)
Minimize(∆d) O(mc · |∆d| · |A|2) O(|∆d| · |A|)

linear in the size of the smoothed DNNF. The final traver-
sal visits every or-node and cuts off all its children whose
mc is greater than that of their parent. This simplification
produces a DAG that encodes exactly the diagnoses of min-
imum cardinality, again taking time linear in the size of the
smoothed DNNF. The overall complexity of minimization is
thereforeO(|∆d| · |A|).

Figure 3e depicts the result of applying minimization to
Figure 3c. The number of diagnoses is now down to 2—the
diagnosis with two abnormal gates has been wiped out.

Minimization of OBDDs is not as trivial. The most re-
cent algorithm for this purpose appeared in (Torta & Torasso
2004); it works by constructing a series of OBDDsFilter[k]
so that whenFilter[k] is conjoined with the OBDD∆d en-
coding the complete set of diagnoses, the resulting OBDD

Apply(∧, ∆d, F ilter[k]) (6)

will characterize exactly all diagnoses of cardinalityk. The
algorithm then iteratively runs Equation 6 for increasing val-
ues ofk, starting from0, until the resulting OBDD charac-
terizes a nonempty set of diagnoses (i.e., is not the 0-sink).

According to (Torta & Torasso 2004), all the OBDD filters
Filter[k] have sizeO(|A|2) regardless ofk. Hence comput-
ing Equation 6 takesO(|∆d| · |A|2) time and the overall al-
gorithm, having to runmc (minimum cardinality) iterations,
takesO(mc · |∆d| · |A|2) time, which is clearly greater than
theO(|∆d| · |A|) complexity for DNNF minimization.

We close this section by summarizing in Table 2 the main
complexity results that we have compared for diagnosis-
related operations on OBDD and DNNF.

A DNNF-based Tool for Diagnosis
We implemented the DNNF diagnostic algorithms,
linked them with the DNNF compiler of (Darwiche
2004) (extended to allow e-clauses), and produced a
tool for efficient model-based diagnosis (available at
http://reasoning.cs.ucla.edu/). Given a system description
(∆,A,O) where∆ is in CNF, and an observation on vari-
ablesO, this tool computes consistency-based diagnoses of
minimum cardinality as described in the previous section.
In addition, it has the following two features:

• For particularly large systems where the compilation of
CNF ∆ may be difficult, an alternative is offered where
∆ is first simplified by setting all theO variables to their
observed values, and then compiled into DNNF. The re-
sult is again projected on the assumablesA to produce the
diagnoses as before. The drawback of this method is that
compilation has to be done for each diagnostic case, even
though the system model remains unchanged. Scalability

Table 3: Using DNNF vs. OBDD on a diagnosis benchmark.
Diagnosis in ∆′ ∆d ∆mcd

3 Steps→ Size Time Size Size Time
OBDD-S2 375500× 6 12.19 2678× 6 79× 6 0.051
OBDD-S3 59000× 6 1.81 3229× 6 77× 6 0.035

DNNF 3750 0.05 85 42 0.011

can be significantly extended, however, because instan-
tiating the observables in∆ can substantially reduce its
size, making compilation more likely to succeed.

• An efficient verification component is built into the tool,
which invokes an independent SAT solver (zChaff-04) to
verify the correctness of the diagnoses computed: A di-
agnosisd is proved correct for a system model∆ and ob-
servationα if ∆ ∧ α ∧ d is found satisfiable by the SAT
solver. The minimum-cardinality diagnoses we report in
the next section have all been verified in this manner. (We
have also verified that they are indeed of minimum cardi-
nality by using the SAT solver to prove that no diagnosis
of lower cardinality exists. Unlike the verification of diag-
noses, this process turned out to be inefficient, which also
confirms, interestingly, the poor performance of diagnosis
by brute-force search.)

An Empirical Study
Our goal in this section is to empirically compare the
DNNF-based and OBDD-based approaches on a real-world
diagnostic problem. Since (Torta & Torasso 2004) contains
an empirical evaluation of the OBDD-based approach, we
took the benchmark that was used there, and applied the tool
that we described above to solve the same diagnostic tasks—
computing the diagnoses as well as minimum-cardinality di-
agnoses. The experiments were run on a 2.4GHz processor
and allocated 512MB of memory.

The said benchmark consists of a model of an industrial
plant and 3000 diagnostic cases each “containing between 1
and 3 faults.” After translating the system model, originally
given in XML, into CNF, we obtained a formula with 279
Boolean variables and 386 clauses, of which 36 are e-clauses
(i.e., 36 of the variables in the original system model are
multi-valued).

Our task was then completed in three steps. First, we
compiled the CNF formula into DNNF. The compilation
took only 0.05 second and the resulting DNNF had 1600
nodes and 3750 edges.7 In the second step, and for each
of the 3000 diagnostic cases (one of these turned out to be
invalid and was not used), we computed the set of all di-
agnoses (of any cardinality) as a DNNF DAG. The average
running time per case was 0.0111 second and the average
DNNF had 65 nodes and 85 edges. Finally, we minimized

7Using Equation 4 would knock it down to 830 nodes and 1605
edges without noticeable increase in the running time. Our subse-
quent computation was based on this simplified compilation; we
report the size of the full compilation here for the later comparison
with its OBDD counterpart.



the DNNF to produce the set of minimum-cardinality diag-
noses. This took an extra 0.0002 second and resulted in a
DNNF DAG with 40 nodes and 42 edges on average.

The same benchmark posed an initial challenge for the
OBDD-based approach (Torta & Torasso 2004): Much ef-
fort was required to obtain a suitable variable ordering and
even the two best orderings found led to relatively large OB-
DDs. See Table 3: The first two rows of data correspond to
the two sets of results reported in (Torta & Torasso 2004)
based on the two best OBDD variable orderings found,8

and the last row summarizes our corresponding results for
DNNF described above. The three columns of data cor-
respond to the three diagnosis steps described above. The
DAG size again reflects the number of DNNF edges (recall
from the second section that an internal OBDD node con-
tributes 6 DNNF edges).

It can be clearly seen that on this benchmark the use of
DNNF has led to faster compilation and diagnosis, as well as
smaller representations for the system model and the sets of
diagnoses. Together with the data in Table 1 and (Darwiche
2004), these results empirically support the role of DNNF
compilation in improving the efficiency and scalability of
model-based diagnosis.

Conclusion
We systematically compared the use of OBDD and DNNF
as target compilation languages in model-based diagno-
sis. In particular, we demonstrated theoretically that us-
ing the less constrained DNNF language can lead to more
efficient and scalable compilation as well as diagnosis.
We presented a DNNF-based diagnosis tool (available at
http://reasoning.cs.ucla.edu/), and empirically compared the
DNNF-based and OBDD-based approaches on a diagnosis
benchmark.
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