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Abstract

We define the notion of compiling a Bayesian
network with evidence and provide a spe-
cific approach for evidence–based compila-
tion, which makes use of logical processing.
The approach is practical and advantageous
in a number of application areas—including
maximum likelihood estimation, sensitivity
analysis, and MAP computations—and we
provide specific empirical results in the do-
main of genetic linkage analysis. We also
show that the approach is applicable for net-
works that do not contain determinism, and
show that it empirically subsumes the per-
formance of the quickscore algorithm when
applied to noisy–or networks.

1 INTRODUCTION

It is well–known that exploiting evidence can make in-
ference in a Bayesian network more tractable. Two of
the most common techniques are removing leaf nodes
that are not part of the evidence or query (Shachter,
1986) and removing edges outgoing from observed
nodes (Shachter, 1990). These preprocessing steps,
which we call classical pruning, can significantly re-
duce the connectivity of the network, making accessi-
ble many queries that would be inaccessible otherwise.
Although classical pruning can be very effective, one
can identify situations where it does not exploit the
full power of evidence, especially when the network
contains local structure. The investigation in this pa-
per serves to spotlight the power of evidence by dis-
cussing the extent to which it can be exploited compu-
tationally, and by introducing the notion of compiling
a Bayesian network with evidence.

Traditionally, one incurs a compilation cost to prepare
for answering a large number of queries over different
evidence, amortizing the cost over the queries. But

when evidence is fixed, this benefit may seem illusory
at first. We will show, however, that compiling with
evidence is often more tractable than compiling with-
out evidence and that it can be very practical. First,
the evidence may be fixed on only a subset of the vari-
ables, leaving room for posing queries with respect to
other variables (this happens in MAP computations).
Second, one may be interested in estimating the value
of network parameters which will maximize the proba-
bility of given evidence (this happens, for example, in
genetic linkage analysis). In this case, one may want
to use iterative algorithms such as EM or gradient as-
cent (Dempster et al. , 1977), which pose many net-
work queries with respect to the given evidence but
different network parameter values. A similar applica-
tion appears in sensitivity analysis, where the goal is
to search for some network parameters that satisfy a
given constraint.

Our approach to compiling with evidence is based on
an approach to compiling a network without evidence
into an arithmetic circuit (Darwiche, 2002; Darwiche,
2003); see Figure 1. The inputs to the circuit corre-
spond to evidence indicators (for recording evidence)
and network parameters and the output to the prob-
ability of recorded evidence under the given values of
parameters. Given evidence, we will then compile an
arithmetic circuit that is hardwired for that evidence
and, hence, will only be good for computing queries
with respect to that evidence. The particular compi-
lation approach we adopt reduces the problem to one
of logical inference, which we argue is a natural set-
ting for exploiting the interaction between evidence
and network local structure.

We apply the compilation approach to genetic linkage
analysis, where we provide experimental results show-
ing order of magnitude improvement over state of the
art systems for certain benchmarks. We also show
that the proposed approach subsumes empirically the
quickscore algorithm (Heckerman, 1989).

This paper is organized as follows. Section 2 defines
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Figure 1: A Bayesian network and a corresponding AC.

a semantics for compiling with evidence and describes
areas where it applies. Section 3 describes our specific
approach to compiling with evidence. We illustrate
some of the reasons the approach works and apply it
to genetic linkage analysis in Section 4. In Section 5,
we show that the approach empirically subsumes the
quickscore algorithm and applies to networks without
determinism. Finally, Section 6 presents some con-
cluding remarks.

2 COMPILING WITH EVIDENCE

This section defines a semantics for compiling a
Bayesian network with evidence and explains some ar-
eas where such compilation can provide significant ad-
vantage.

2.1 Semantics

We begin by reviewing compilation without evidence
as described in (Darwiche, 2003) and (Darwiche,
2002). We view each network as a multi–linear func-
tion (MLF), which contains two types of variables: an
evidence indicator λx for each value x of each vari-
able X and a parameter variable θx|u for each network
parameter. The MLF contains a term for each in-
stantiation of the network variables, and the term is
the product of all indicators and parameters that are
consistent with the instantiation. For example, con-
sider the network in Figure 1, where A and B have
two values, and C has three values. The correspond-
ing MLF involves twenty–three variables and contains
twelve terms as follows,

λa1λb1λc1θa1θb1θc1|a1,b1 + λa1λb1λc2θa1θb1θc2|a1,b1+
λa1λb1λc3θa1θb1θc3|a1,b1 + λa1λb2λc1θa1θb2θc1|a1,b2+
λa1λb2λc2θa1θb2θc2|a1,b2 + λa1λb2λc3θa1θb2θc3|a1,b2+
λa2λb1λc1θa2θb1θc1|a2,b1 + λa2λb1λc2θa2θb1θc2|a2,b1+
λa2λb1λc3θa2θb1θc3|a2,b1 + λa2λb2λc1θa2θb2θc1|a2,b2+
λa2λb2λc2θa2θb2θc2|a2,b2 + λa2λb2λc3θa2θb2θc3|a2,b2

(1)

To compute the probability of evidence e, we evaluate
the MLF after setting indicators that contradict e to
0 and other indicators to 1. For example, to compute
Pr(a2, b1), we evaluate the above MLF after setting
λa1 , λb2 to 0 and λa2 , λb1 , λc1 , λc2 , λc3 to 1. Set-
ting indicators has the effect of excluding those terms
that are incompatible with the evidence. Computing
answers to other probabilistic queries, such as poste-
rior marginals on network variables or families, can be
obtained from the partial derivatives of the MLF; see
(Darwiche, 2003) for details.

As is clear from the above description, the MLF has an
exponential size. Yet, one may be able to factor this
function and represent it more compactly. An arith-
metic circuit (AC) is a rooted DAG, where each leaf
represents a real–valued variable or constant and each
internal node represents the product or sum of its chil-
dren. Figure 1 depicts an AC. If we can factor the net-
work MLF efficiently using an arithmetic circuit, then
inference can be done in time linear in the size of the
circuit, since the value and (first) partial derivatives
of an arithmetic circuit can all be computed simulta-
neously in time linear in the circuit size (Darwiche,
2003). In an AC representing a network MLF, each
leaf represents an indicator or parameter. An effective
method of producing an AC is given in (Darwiche,
2002), and (Park & Darwiche, 2003b) shows that the
AC is a generalization of the jointree.1

The MLF above and its corresponding AC are capa-
ble of answering queries with respect to any evidence.
However, if we are willing to commit to specific evi-
dence e, then we can instead work with a much sim-
pler MLF. For evidence e = {a2, b1}, the above MLF
can be reduced as follows,

λc1θa2θb1θc1|a2,b1 + λc2θa2θb1θc2|a2,b1+
λc3θa2θb1θc3|a2,b1

(2)

1The AC is a generalization of Jointree in the sense that
a Jointree embeds an AC with extra syntactic restrictions.
Moreover, the two passes in jointree inference correspond
to circuit evaluation and differentiation.
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Figure 2: An AC that incorporates evidence.

In general, one obtains the instantiated MLF for a
given network and evidence by removing each term
from the MLF that contradicts the evidence. An in-
stantiated MLF, and hence its corresponding AC, is
therefore capable of answering only queries where e
is given, such as Pr(e), Pr(X|e) for network variable
X, and Pr(e,m) for additional evidence m. Figure 2
depicts the instantiated AC, which contrasts with the
AC in Figure 1.

Although we have lost the ability to apply arbitrary
evidence, compiling with evidence can be much more
efficient than compiling without. Moreover, the in-
stantiated AC still captures information that is critical
to many inference tasks and does so in a way that pro-
vides significant advantage to an approach not based
on compilation. We provide some examples next.

2.2 Applications

Genetic linkage analysis can model genetic infor-
mation for a population of related individuals (a pedi-
gree) using a Bayesian network (Fishelson & Geiger,
2002). Some network parameters θ1, . . . , θn represent
recombination factors, and the goal is to search for the
recombination factors which maximize the probabil-
ity of given evidence e: argmax θ1,...,θn

Pr(e|θ1, . . . , θn).
The procedure amounts to ordering genes on a
chromosome and determining the distance between
them. Typically, one solves this problem by posing
Pr(e|θ1, . . . , θn) using particular values of recombina-
tion factors (parameters), and then repeating multiple
times for different values. Our results demonstrate
that, on some benchmarks, compilation can signifi-
cantly improve on superlink 1.4,2 which is a state–
of–the–art system for the task.

Sensitivity analysis involves searching for parame-
ter changes that satisfy certain constraints. For exam-
ple, an expert may decide that Pr(A = a1|e) must be
greater than Pr(A = a2|e) for some specific evidence e.
Our goal is to identify minimal parameter changes that
satisfy this constraint. The problem can be solved rela-
tively efficiently for a single parameter change, or mul-
tiple parameter changes within the same CPT (Chan
& Darwiche, 2004). For multiple parameters spread
over multiple CPTs, the solution involves numerical

2http://bioinfo.cs.technion.ac.il/superlink/

methods that pose multiple probabilistic queries un-
der evidence e, but with different values for network
parameters. In this case, compiling the network with
given evidence is quite practical, as the work done dur-
ing compilation can be amortized over the many dif-
ferent queries.

MAP is the problem of computing the most likely
instantiation of a set of variables M given evidence
e. Computing MAP can utilize compilation with evi-
dence in a way that is similar to that of genetic link-
age and sensitivity analysis, but instead of adjusting
parameters, we adjust indicators. Both exact and ap-
proximate algorithms for computing MAP involve ob-
taining initial evidence e and then repeatedly comput-
ing Pr(e,m) for different instantiations m of a subset
of the MAP variables (Park & Darwiche, 2003a). We
can therefore compile an AC with evidence e and then
evaluate it for different values associated with indica-
tors of variables M.

3 IMPLEMENTATION

We now describe the technique used in the experimen-
tal results to compile a network with evidence into an
AC. The approach for compiling a network without
evidence into an AC has been described in (Darwiche,
2002), and is based on encoding the network MLF into
a set of logical clauses (CNF), factoring the CNF, and
then extracting an AC from the factored CNF. The de-
tails of factoring the CNF and extracting the AC are
not critical here, so we will refer the reader to (Dar-
wiche, 2002) for details. We will however review how
a real–valued MLF can be encoded semantically into a
propositional theory, and show how the network MLF
can be encoded using a CNF. This is needed for ex-
plaining how evidence is exploited during compilation.

To illustrate the encoding scheme, consider the MLF
f = a + ad + abd + abcd over real–valued variables
a, b, c, d. The basic idea is to specify this MLF using
a propositional theory that has exactly four models,
one for each term in f . Specifically, the propositional
theory ∆f = Va ∧ (Vb ⇒ Vd)∧ (Vc ⇒ Vb) over Boolean
variables Va, Vb, Vc, Vd has exactly four models and en-
codes f as follows,

Model Va Vb Vc Vd encoded term
σ1 true false false false a
σ2 true false false true ad
σ3 true true false true abd
σ4 true true true true abcd

That is, model σ encodes term t since σ(Vj) = true iff
term t contains the real–valued variable j.

The encoding described above is semantic; that is, it
describes the theory ∆f which encodes a multi–linear



function by describing its models. We specify these
theories using a CNF that has one Boolean variable
Vλ for each indicator variable λ, and one Boolean vari-
able Vθ for each parameter variable θ. For brevity
though, we will abuse notation and simply write λ and
θ instead of Vλ and Vθ. CNF clauses fall into three
sets. First, for each network variable X with domain
x1, x2, . . . , xn, we have,

Indicator clauses : λx1 ∨ λx2 ∨ . . . ∨ λxn

¬λxi
∨ ¬λxj

, for i < j

These clauses ensure that exactly one of X’s indicator
variables appears in each term of the MLF. The second
two sets of clauses correspond to network parameters.
In particular, for each parameter θxn|x1,x2,...,xn−1 , we
have,

IP clause : λx1 ∧ λx2 ∧ . . . ∧ λxn ⇒ θxn|x1,x2,...,xn−1

PI clauses : θxn|x1,x2,...,xn−1 ⇒ λxi , for each i

The models of this CNF are in one–to–one correspon-
dence with the terms of the MLF. In particular, each
model of the CNF will correspond to a unique network
variable instantiation, and will set to true only those
indicator and parameter variables which are compat-
ible with that instantiation. The encoding we use in
our experiments is a bit more sophisticated than de-
scribed above (Chavira & Darwiche, 2005), but the
above encoding will suffice to make our points below.

The encoding as discussed does not include informa-
tion about evidence. Recall that to incorporate evi-
dence e, we need to exclude MLF terms that contradict
e. It is quite easy to do so in the current framework.
Consider the network in Figure 1, its MLF (1), and the
evidence {a2, b1}. Assume that we have generated the
CNF ∆ for this network. Our goal becomes excluding
from ∆ models corresponding to terms that contra-
dict the evidence. We can easily do so by adding the
following unit clauses to the CNF: λa2 and λb1 . In gen-
eral, to incorporate evidence x1, x2, . . ., xn, we add
unit clauses λx1 , λx2 , . . ., λxn

. Moreover, it is easy
to incorporate more general types of evidence. For ex-
ample, we can incorporate the assertion “c1 or (a1 and
b2)” by including the clauses λc1 ∨ λa1 and λc1 ∨ λb2 .

In our implementation, we simplify the constructed
CNF together with evidence by running unit resolu-
tion and then removing subsumed clauses. We then
invoke our compiler which factors the CNF using a
version of the recursive conditioning algorithm (Dar-
wiche, 2004). This algorithm makes repeated use of
conditioning to decompose the CNF into disconnected
CNFs that are compiled independently. Moreover, the
algorithm runs unit resolution after each conditioning
to simplify the CNF further. This process of decom-
position becomes much more effective given the initial

evidence injected into the CNF, which helps to simplify
the CNF considerably. Some of the benefit is obtained
immediately from the initial preprocessing of the CNF.
Other benefits, however, are obtained during the com-
pilation process itself since conditioning sets the value
of variables, which together with the injected evidence
can lead to even more simplification of the CNFs and,
hence, better decomposition. We will see examples of
this behavior in the following section.

4 THE POWER OF EVIDENCE

Consider the “Original Evidence” portion of Table 1,
which contains a set of Bayesian networks correspond-
ing to pedigrees in the domain of genetic linkage anal-
ysis. Each network has been classically pruned for
specific evidence, yet they still have very connected
topologies, as shown by the cluster sizes obtained us-
ing a minfill variable ordering heuristic.3 None of these
networks could be compiled without evidence, yet the
table lists data on successful compilations for most of
these networks once evidence is introduced, despite the
large cluster sizes.4 In particular, the table shows the
offline time (which includes preprocessing and compil-
ing), size of AC, and online inference time for comput-
ing Pr(e). Note that online inference may be repeated
for new recombination values, without re–incurring the
offline cost.

Our current implementation uses only unit resolution
and removal of subsumed clauses during its simplifica-
tion of the CNF before compiling. However, based on
the amount of determinism in these networks, more ad-
vanced logical techniques can be utilized. We therefore
augmented the given evidence with some additional ev-
idence learned by the domain specific Lange and Gora-
dia algorithm (Lange & Goradia, 1987). It should be
noted that this additional evidence can be inferred by
standard logical techniques applied to the initial evi-
dence and network determinism, and could therefore
be made domain independent. By using this addi-
tional (inferred) evidence, we can see in the “Learned
Evidence” portion of Table 1 that all these networks
compile in a reasonable amount of time, and that on-
line inference is faster. Since the additional learned
evidence may apply to internal (non-leaf) nodes, one
may use this evidence to empower classical pruning.
Indeed the table lists the adjusted cluster sizes for
these networks after having applied classical pruning
using the additional evidence. The learned evidence
makes many of these networks accessible to classical

3We are reporting here normalized cluster sizes (log 2
of the number of instantiations of a given cluster).

4Experiments in this paper ran on a 1.6GHz Pentium
M processor with 2GB of memory.



Table 1: EA results.
Original Evidence Learned Evidence Full Preprocessing

MAX OFFLINE AC Pr(e) MAX OFFLINE AC Pr(e) MAX OFFLINE AC Pr(e)
NET CLUST SEC EDGES SEC CLUST SEC EDGES SEC CLUST SEC EDGES SEC
ea1 31.6 2.67 98,613 0.01 13.0 1.57 24,055 0.00 11.3 1.30 20,230 0.01
ea2 38.6 3.65 144,181 0.01 13.0 1.57 28,390 0.01 11.3 1.35 21,218 0.01
ea3 40.6 10.45 272,503 0.01 13.0 1.68 31,575 0.01 11.3 1.34 20,489 0.01
ea4 46.0 8.02 322,063 0.03 13.0 1.89 34,126 0.01 11.3 1.42 19,455 0.01
ea5 60.9 38.48 992,917 0.03 13.0 2.79 54,703 0.01 11.3 1.64 22,963 0.01
ea6 70.9 125.62 3,557,015 0.11 14.9 7.75 120,700 0.01 12.3 1.96 31,146 0.01
ea7 82.9 4,591.65 26,934,471 3.35 15.6 73.20 997,652 0.03 12.3 2.34 39,957 0.02
ea8 106.9 1,732.10 24,375,244 6.05 16.0 9.35 180,100 0.01 12.3 3.24 41,249 0.01
ea9 200.5 n/a n/a n/a 28.3 1,226.43 3,597,965 1.81 12.3 7.50 82,297 0.03

ea10 204.1 n/a n/a n/a 31.6 1,665.57 13,758,985 1.42 12.3 8.61 95,417 0.03
ea11 235.1 n/a n/a n/a 30.6 2,586.64 12,298,513 5.81 12.3 10.04 92,274 0.03

Table 2: EE results with full preprocessing.
MAX OFFLINE AC Pr(e) superlink

NET CLUST SEC EDGES SEC SEC
ee33 20.2 25.33 2,070,707 0.59 1046.72
ee37 29.6 61.29 1,855,410 0.39 1381.61
ee30 35.9 376.78 27,997,686 8.37 815.33
ee23 38.0 89.47 3,986,816 1.08 502.02
ee18 41.5 283.96 23,632,200 6.63 248.11

inference algorithms, but three of the networks still
pose problems for classical techniques.

It is worth putting the results in perspective by com-
paring to state-of-the-art results in genetic linkage
analysis obtained with superlink. This system uses
a combination of variable elimination and condition-
ing, along with many domain specific preprocessing
rules and a sophisticated search for a variable order-
ing. All superlink timings we report include prepro-
cessing and computing answers to two Pr(e) queries,
where on difficult networks, the majority of the time
is spent doing inference. Until the latest release, the
networks in Table 1 were considered very challenging,
with EA11 taking over 10 hours. The newest version
of superlink, 1.4, includes enhancements that pre-
process and perform the two Pr(e) queries in 7 sec-
onds on even the most difficult of these networks. If
we allow ourselves to use further simplification tech-
niques, which include some simplifications from su-
perlink 1.4 and also some rules to detect variable
equivalence, we obtain the results shown in the “Full
Preprocessing” portion of Table 1. Here, offline time
takes about 10 seconds on the hardest network and
online inference is very fast.

More dramatic are the results reported in Table 2 on
five networks from the challenging superlink 1.4 data
sets. On these networks, the compilation approach
was able to improve on superlink’s performance as
reported in (Fishelson et al. , 2004). On four of these
networks, offline time is shorter than the superlink
time. Once compiled, the generated ACs can repeat-
edly compute Pr(e) extremely efficiently compared to
superlink. Because one of the main tasks of genetic
linkage analysis is to do maximum likelihood estima-

tion over many iterations, the ability to perform online
inference quickly is critical.

Note that we can differentiate these circuits and,
hence, obtain marginals over families in about 2 − 3
times as long as it takes to evaluate Pr(e). This allows
us to run the EM algorithm, which requires marginals
over families to perform each iteration. When com-
paring these timings with the time it would take to
re-run superlink for the same purpose, one sees the
significant benefit of compiling with evidence. Sup-
pose for example that we have 10 parameters we want
to estimate and that EM or gradient ascent takes 20
iterations to converge. For network ee33, we would
perform 200 queries in about 350 seconds using AC,
whereas running superlink to compute those values
would require days.

4.1 Examples

We now demonstrate how combining evidence with lo-
cal structure can make the inference process more ef-
ficient. These gains cannot be obtained using classical
pruning, although some can be obtained using more so-
phisticated schemes (e.g., (Larkin & Dechter, 2003)).

The first example uses the network in Figure 1, where
A and B have two states and C has three states. Let
the CPT for the variable C contain all zeros except for
the four lines below.

A B C Pr(C|A, B)
a1 b1 c1 1.0
a1 b2 c2 1.0
a2 b1 c2 1.0
a2 b2 c3 1.0

Suppose we know that C = c1. From this information,
we can logically infer A = a1 and B = b1. In fact,
this information can be obtained by preprocessing the
CNF encoding of the network using unit resolution.
The learned evidence can be added to the CNF, or it
could be used to empower classical pruning.

Now assume that we have evidence {c2}. Because A
and B are binary, there would normally be four pos-
sible configurations of A and B. However, given the



CPT parameterization, we can rule out both {a1, b1}
and {a2, b2}, leaving only two configurations. This
conclusion can again be obtained by applying unit res-
olution to our CNF encoding. However, in this case,
the inferred information cannot be expressed in terms
of classical pruning. Furthermore, it cannot be ex-
pressed using a more advanced form of simplification,
where variable states known to never occur are re-
moved form the variable’s domain, since every state
of A and B is valid. The learned “multi-variable”
evidence is, however, easily written in the language
of CNF, and can be utilized in further simplifications
during the compilation process.

One question is how often situations like the above
occur in real networks. The examples actually derive
from real networks in the domain of genetic linkage
analysis, where variables A and B represent a person’s
genotype (for example a person’s blood type) and C
represents the phenotype (the observed portion of the
genotype). The example then shows one way the geno-
type can be mapped to the phenotype. Take the sim-
plified case where there are only two blood types, 1
and 2. Then the four possible genotype combinations
are 1/1, 1/2, 2/1, 2/2, although frequently 1/2 and 2/1
cannot be differentiated, so there are only three pheno-
types. The example models this situation by mapping
two configurations of A and B to the same value for
C. Furthermore, in this domain, evidence is typically
on phenotype variables, which translates to evidence
on C in our model.

The third example from genetic linkage analysis in-
volves four variables: child C with parents A,B, and
S. The variable C in this case is not the phenotype,
but the genotype in a child which is inherited from one
of the parent’s genes, A/B, based on the value of S.
We assume that all four variables are binary and that
the portion of the table with S = s1 is as follows,5

S A B C Pr(C|A, B)
s1 a1 b1 c1 1.0
s1 a1 b2 c1 1.0
s1 a2 b1 c2 1.0
s1 a2 b2 c2 1.0

The point of this example is to illustrate how compila-
tion can utilize evidence even when preprocessing can-
not. This type of gain is one of the factors that allows
us to successfully compile a network whose treewidth
remains high after preprocessing. Compiling repeat-
edly conditions to decompose the CNF. Let us consider
the case where we are given evidence {c1}, and dur-
ing compilation, we condition on S = s1. Assuming a
proper encoding of the network into CNF, combining
the evidence with the value for S allows us to infer a1,

5In general, the variables are multi–valued, and this dis-
cussion also applies in this case.

Table 3: Friends and Smokers Results.

DOM MAX OFFLINE AC ONLINE
SIZE CLUST SEC EDGES SEC

1 3 0.02 18 0.00
4 13 0.03 293 0.01
7 36 0.08 1,295 0.01

10 70 0.34 3,512 0.02
13 118 1.07 7,430 0.03
16 172 3.21 13,535 0.04
19 244 9.04 22,313 0.05
22 316 23.56 34,250 0.07
25 412 48.32 49,832 0.09
28 528 105.74 69,545 0.13
29 560 130.00 77,118 0.14

which unit resolution can use to achieve further gains.
Conditioning on S = s2 yields a similar conclusion for
b1. In this case, the full power of evidence on C is
realized only when combined with conditioning, which
takes place during the compilation step.

We close this section by quickly examining one more
set of networks. (Richardson & Domingos, 2004) dis-
cusses a relational probabilistic model involving an
imaginary domain of people and relations on the peo-
ple including which smoke, which have cancer, and
who are friends of whom. There are also logical con-
straints on the model, such as the constraint that if a
person’s friend smokes, then the person also smokes.
We worked with a slight variation on this model, and
each network in Table 3 represents an instance for a
different number of people. For a given network, some
nodes represent ground relations and others represent
logical constraints. The key point is that, in the ab-
sence of evidence, we could only compile the first two
networks listed. However, when we commit to evi-
dence asserting that the logical constraints are true,
the networks become relatively easy, the hardest re-
quiring 130 seconds to compile and 0.14 seconds for
online inference. Online inference involves asserting
evidence e on some of the relations and computing
Pr(e) and marginals on all remaining relations.

5 THE QUICKSCORE
ALGORITHM

We illustrate two points in this section. First, our com-
piling approach empirically subsumes the quickscore
algorithm, a dedicated algorithm for two–level noisy–
or networks. Second, networks which do not contain
determinism, and hence may not look amenable to ex-
ploiting evidence as described earlier, can be trans-
formed to make them amenable to these techniques.

We start by considering two–level noisy–or networks
as given in Figure 3(a). Here, each di represents a dis-
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Figure 3: (a) A disease/feature network; (b) the net-
work with determinism introduced.

ease, which occurs in a patient with probability pi, and
each fj represents a feature (e.g., test result), which we
may observe to be negative or positive in the patient.
We assume a noisy–or relationship between a specific
feature fj and the diseases di that may causes it. That
is, if di is not present, then di will not cause fj . Oth-
erwise, di will cause fj with probability pi,j . We wish
to compute a marginal for each disease given evidence
on features. Standard inference has a worst case time
complexity that is exponential in the number n of dis-
eases. However, (Heckerman, 1989) showed that com-
puting such marginals can be done in time exponential
only in the size m+ of the set F+ of features known to
be positive. The argument makes several appeals to
the independence relationships created by the noisy–or
assumptions and by the network structure. It culmi-
nates with the definition of the quickscore algorithm,
which iterates over the power set of F+ and computes
a marginal on a single disease in time Θ(nm−2m+

),
where m− is the number of negative findings.

It is well–known that the semantics of the noisy–or re-
lationships allows us to transform the network in Fig-
ure 3(a) into the network in Figure 3(b). Here, each
edge from di to fj in the original network is replaced
with two nodes, ci,j and ai,j , and three edges. Each in-
troduced ci,j is a binary root such that Pr(ci,j) = pi,j ;
and each introduced ai,j represents whether disease
di causes feature fj . Therefore, ai,j represents a con-
junction of di and ci,j , and each feature is a disjunc-
tion of its parents. This disjunction can be repre-
sented very compactly in CNF, even when there are
a large number of parents. Although the network in
Figure 3(a) typically does not possess determinism,
the transformed network possesses an abundance in

the form of introduced conjunctions and disjunctions,
leading one to wonder whether combining this deter-
minism with evidence in the manner proposed would
duplicate quickscore’s performance. To test this hy-
pothesis, we chose different values for m+, and for
each, we constructed ten experiments, each designed
to be similar to the experiments on the proprietary
network used to demonstrate quickscore. For each ex-
periment, we generated a random network containing
600 diseases and 4100 features. For each feature, we
chose 11 possible causes uniformly from the set of dis-
eases. We then chose each pi and each pi,j uniformly
from the open interval (0, 1). In addition, we gener-
ated evidence by setting to positive m+ features cho-
sen uniformly from the set of features and setting the
remaining features to negative.6 In this way, the ex-
periment utilizes its own randomly generated network
and its own randomly generated evidence. Finally, we
compiled and evaluated the network with the evidence,
yielding a marginal over each disease.

Each of the experiments produced a network for which
minfill computed a maximum cluster size between 586
and 589. Because the set of evidence variables is the
same as the set of leaves in the network, classical prun-
ing would have no effect on this cluster size.

For each value of m+, Table 4 shows results, averaged
over the ten experiments. The most important obser-
vation is that the approach to compiling with evidence
empirically subsumes quickscore. Indeed, quickscore
is exponential in m+ even in the best case, whereas
compiling was sometimes fast, even for large m+. For
example, the minimum compile times for m+ = 28
and m+ = 29 were 41s and 135s, respectively. Fur-
thermore, quickscore computes a marginal only for a
single disease, whereas the described method computes
marginals over all 600 diseases simultaneously.

The transformation to introduce determinism applies
not only to the types of networks on which quickscore
runs, but to any network involving noisy–or relation-
ships. There are similar transformations for other
types of local structure, including noisy–or with leak,
noisy–max (Dı́ez & Galán, 2003), and context–specific
independence (Boutilier et al. , 1996). Consider a final
example involving a family containing binary variable
C with binary parents A and B. Suppose that given
A = a1, C becomes independent of B; yet this is not
true for A = a2. In this case, we introduce auxiliary
variable S with three states between A/B and C. S’s
CPT is deterministic and sets S to s1 when A = a1, to
s2 for parent state {a2, b1}, and to s3 for parent state
{a2, b2}. Moreover, the CPT for C becomes,

6We could have left some features F ′ out of the evi-
dence. In this case, classical pruning would suffice to re-
move nodes F ′ from the network.



Table 4: Averaged diagnosis results.

TRUE OFFLINE AC ONLINE
FEATURES SEC EDGES SEC

0 23.73 48,100 0.05
3 23.86 52,830 0.05
6 23.81 57,638 0.05
9 23.82 62,547 0.05

12 24.19 67,632 0.05
15 23.60 73,321 0.04
18 24.95 81,629 0.05
21 30.95 109,335 0.05
23 42.81 145,333 0.06
25 155.12 434,445 0.08
27 469.70 1,141,674 0.17
28 728.52 1,691,833 0.23
29 1,046.93 2,352,820 0.30

S Pr(c1|S)
s1 Pr(c1|a1, b1) = Pr(c1|a1, b2)
s2 Pr(c1|a2, b1)
s3 Pr(c1|a2, b2)

Given evidence A = a1, our logic–based strategy can
infer both the value of S and the independence of
C from B. This technique allows for more efficient
decomposition during the compilation process, even
though the original network contains no determinism.

6 CONCLUSION

We discussed the exploitation of evidence in proba-
bilistic inference and highlighted the extent to which
it can render inference tractable. We proposed a par-
ticular notion and approach for compiling networks
with evidence, and discussed a number of practical
applications to maximum likelihood estimation, sensi-
tivity analysis and MAP computations. We presented
several empirical results illustrating the power of pro-
posed approach, and showed in particular how it em-
pirically appears to subsume the performance of the
quickscore algorithm.
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