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Abstract

Optimal planners in the classical setting are built around two
notions: branching and pruning. SAT-based planners for ex-
ample branch by trying the values of a selected variable, and
prune by propagating constraints and checking consistency.
In the conformant setting, a similar branching scheme can be
used if restricted to action variables, but the pruning scheme
must be modified. Indeed, pruning branches that encode in-
consistent partial plans is not sufficient since a partial plan
may be consistent and complete (covering all the action vari-
ables) and still fail to be a conformant plan. This happens
indeed when the plan does not conform to some possible ini-
tial state or transition. A remedy to this problem is to use a
criterion stronger than consistency for pruning. This is actu-
ally what we do in this paper where the consistency-based
pruning criterion used in classical planning is replaced by
a validity-based criterion suitable for conformant planning.
Under the assumption that actions are deterministic, a partial
plan can be defined asvalid when it is logically consistent
with the theory andeachpossible initial state. A valid partial
plan that is complete is guaranteed to encode a conformant
plan, and vice versa. Checking validity, however, while use-
ful for pruning can be very expensive. We show then that
such validity checks can be performed inlinear time pro-
vided that the theory encoding the problem is transformed
into a logically equivalent theory in deterministic decompos-
able negation normal form (d-DNNF). In d-DNNF, plan va-
lidity checks can be reduced to two linear-time operations:
projection (finding the strongest consequence of a formula
over some of its variables) and model counting (finding the
number of satisfying assignments). We then define and eval-
uate a conformant planner that branches on action variables,
and prunes invalid partial plans in linear time. The empiri-
cal results are encouraging, showing the potential benefits of
stronger forms of inference in planning tasks that are not re-
ducible to SAT.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Introduction
Optimal planners in the classical setting are built around two
notions: branching and pruning. In state-based search, clas-
sical planners branch by applying actions (forward or back-
wards) and prune by comparing estimated costs with a given
bound. SAT-based planners, on the other hand, branch by
trying the values of a selected variable, and prune by propa-
gating constraints and checking consistency.

In principle, the same two notions can and have been used
in the conformant setting, where plans must map the initial
situation into a goal situation in the presence of uncertainty
(Goldman & Boddy 1996; Smith & Weld 1998). Still the
results in the conformant setting have not been as strong, in
part due to the higher complexity of the problem (Haslum &
Jonsson 1999; Rintanen 2004a), in part, due to the lack of
sufficiently strong pruning criteria.

In the context ofdirectional branching schemes that
search for plans by applying actions forward or backwards,
the problem of optimal conformant planning becomes a
shortest path problem over a graph in which the nodes are
sets of states orbelief states. This is the formulation pur-
sued in (Bonet & Geffner 2000), where the search for the
goal belief state from a given initial belief state is carried
out by means of the A* algorithm informed by a heuristic
function obtained from a suitable relaxation. This relaxation
retains the uncertainty in the model but assumes full observ-
ability, resulting in a heuristic function that is useful in cer-
tain problems, but not in those problems where reasoning
by cases is not appropriate. For example, if a robot does
not know whether it is at distance one or two from the goal,
reasoning by cases, the robot will conclude that it is best to
move toward the goal; yet since in conformant planning, it
must reach the goal with certainty, a move in a different di-
rection, that would help the robot find its true location may
be necessary. In general, the assumption of full observabil-
ity yields a heuristic that is not well informed for problems



that include an information-gathering component, a feature
that is present in many conformant problems even if they do
not involve explicit observations.

The complexity of the search in belief space grows with
two factors: thesizeand thenumberof belief states. The
first is exponential in the number of variables; the second in
the number of states. The switch to symbolic representations
as in (Cimatti, Roveri, & Bertoli 2004), where sets of states
are represented by OBDDs (Bryant 1992), provides a han-
dle on the first problem but not on the second that demands
more informed admissible heuristic functions. Steps in this
direction have been reported recently in (Cimatti, Roveri, &
Bertoli 2004) and (Rintanen 2004b).

Conformant planning can also be approached from a log-
ical perspective, working on the theory encoding the prob-
lem, and branching on action literals until a valid plan is
found. This approach, however, while so successful in the
classical setting (Kautz & Selman 1996),1 has not appeared
to have worked well in the conformant setting, where prun-
ing inconsistent partial plans is not sufficient. Indeed, a par-
tial plan may be complete (covering all action variables) and
logically consistent with the theory, and still fail to be a con-
formant plan. This happens when the plan does not con-
form to some possible initial state or transition. A remedy
to this problem is the use of a criterion stronger than consis-
tency for pruning. This is actually what we do in this paper
where the consistency-based pruning criterion used in classi-
cal planning is replaced by a validity-based criterion suitable
for conformant planning. Under the assumption that actions
are deterministic, a partial plan can be defined asvalid when
it is logically consistent with the theory andeachpossible
initial state. A valid partial plan that is complete is guaran-
teed to encode a conformant plan, and vice versa. Check-
ing validity, however, while useful for pruning can be very
expensive. We show then that such validity checks can be
performed inlinear timeprovided that the theory encoding
the problem is transformed into a logically equivalent the-
ory in deterministic decomposable negation normal form (d-
DNNF) (Darwiche 2002). In d-DNNF, validity checks can
be reduced to two linear-time operations: projection (find-
ing the strongest consequence of a formula over some of its
variables) and model counting (finding the number of satis-
fying assignments). We then define and evaluate a confor-
mant planner that branches on action variables, and prunes
invalid partial plans in linear time. The empirical results
are encouraging, showing the potential benefits of stronger
forms of inference in planning tasks that are not reducible to
SAT.

The proposed contributions of the paper are of three types.
From a practical viewpoint, a novel and promising technique
for optimal conformant planning; from a theoretical point of
view, a framework that matches the polynomial operations
offered by d-DNNF representations with those required in
conformant planning applications, and from a conceptual
point of view, a perspective on conformant planning based
on compiled representations that we expect may lead to fur-

1See (Giunchiglia, Massarotto, & Sebastiani 1998) for a similar
approach that only branches on action literals.

ther exchanges between the two areas.
The paper is organized as follows: we define first the con-

formant planning task, the propositional encoding of plan-
ning problems, and the validity of partial conformant plans
in terms of projection and model counting operations. We
then review the target language d-DNNF and the process of
compiling formulas in CNF into d-DNNF. We finally present
the planner, empirical results, and a closing discussion.

Conformant Planning

We consider conformant planning problemsP given by tu-
ples of the formP = 〈F,O, I, G〉 whereF stands for the
fluent symbolsf in the problem,O stands for a set of de-
terministic actionsa, andI andG are sets of clauses over
the fluents inF encoding the initial and goal situations. In
addition, every actiona has a preconditionpre(a), given
by a set of fluent literals, and a list of conditional effects
ck(a) → ek(a), k = 1, . . . , na, whereck(a) andek(a) are
conjunctions of fluent literals (as mentioned above, we as-
sume that actions are deterministic and hence that all uncer-
tainty lies in the initial situation).2

The semantics of a conformant planningP can be given
in terms of a state modelS(P ) in which the states are the
possible truth assignments to the fluent symbols, and belief
states are collections of states that are deemed possible. The
initial belief statebI in S(P ) is the set of states satisfyingI,
while a final belief statebG is one made up of states satisfy-
ing G. An actiona maps a belief stateb into a belief state
ba if a is applicable in every states in b, andba is the col-
lection of statessa obtained from applyinga to each states
in b. Finally,a is applicable ins if pre(a) is true ins, anda
maps states into sa if sa satisfies all the conditional effects
ek(a) of a whose conditionsck(a) are true ins, and all other
literals ins that are not affected bya in s.

We will take a conformant plan for the problem
P = 〈F,O, I, G〉 to be a sequence ofsets of actions
A0, A1, . . . , An−1 that maps the initial belief stateb0 = bI

into a final belief statebn = bG. Every pair of actions in
each setAi must becompatible.In the sequential setting, no
pair of distinct actions is compatible, while in the parallel
setting, two actions are deemed compatible when the sets of
boolean variables in their effects are disjoint. A conformant
plan isoptimalif the lengthn of the sequence is minimal. In
the sequential setting, optimal plans thus minimize the num-
ber of actions, while in the parallel setting, the duration or
makespan of the plan.

We assume throughout that the planning problem is con-
sistent, and hence that the initial belief statebI and all the
belief states that are reachable from it are non-empty.

2As mentioned in (Smith & Weld 1998), uncertainty in action
effects can actually be translated into uncertainty in the initial state
by introducing a polynomial number of extra fluents in the prob-
lem; e.g. if actions have at most two effects, then it is sufficient to
add a ‘hidden’ fluent for each action and time point, making the ac-
tion effects deterministic but conditional on the status of the hidden
fluent.



Propositional Encodings
The propositional encodings for conformant planning prob-
lems that we use is a slight variation of the propositional
encodings used in the SAT approach to classical planning
(Kautz & Selman 1996) where boolean variablesxi are cre-
ated for fluents and actionsx in the problem, andi is a
temporal index that ranges fromi = 0 up to the planning
horizoni = N (actually no action variablesxi are created
for the last time slicei = N ). For a formulaB, we use
the notationBi to stand for the formula obtained by replac-
ing each variablex in B by its time-stamped counterpart
xi. The encodingT (P ) of a conformant planning problem
P = 〈F, I, O, G〉 with horizonN can then be described as
follows:

1. Init: a clauseC0 for each init clauseC ∈ I

2. Goal: a clauseCN for each goal clauseC ∈ G.
3. Actions: For i = 0, 1, . . . , N − 1 anda ∈ O:

ai ⊃ pre(a)i (preconditions)

ck(a)i ∧ ai ⊃ ek(a)i+1, k = 1, . . . , ka (effects)

4. Frame: for i = 0, 1, . . . , N − 1, each fluent literall ∈ F

li ∧
∧

ck(a) ¬[ck(a)i ∧ ai] ⊃ li+1

where the conjunction ranges over the conditionsck(a)
associated with effectsek(a) that ‘delete’l.

5. Exclusion: ¬ai ∨ ¬a′i for i = 0, . . . , N − 1 if a anda′

are incompatible.

In classical planning the relation between the encoding
T (P ) and the planning problemP is such that the models
of T (P ) are in one-to-one correspondence with the plans
that solveP . The situation in conformant planning has to
be different as conformant planning cannot be reduced to
checking the consistency of propositional encodings. We
thus make use of these encodings in a different way.

Validity
Given the encodingT (P ), we will refer to collections ofac-
tion literals aspartial plans, and denote them asTA. We
assume that no partial plan contains complementary or in-
compatible literals, and say that a partial plan iscomplete
when it mentions all action variables in the theory. We will
refer to a partial plan that is complete, as acomplete plan.
Clearly, a complete planTA may be logically consistent with
the theoryT (P ) and fail to represent a conformant plan for
P if it fails to conform to some possible initial state (we are
assuming that actions are all deterministic).

Let T0(P ) refer to the slice of the theoryT (P ) that rep-
resents the initial situation, lets0 represent a state satisfying
T0(P ), and letLits(s0) refer to the set of literals true ins0.
Then we define the notion ofvalidity of partial plans in the
conformant setting as follows:

Definition 1 (Validity) A partial plan TA is valid in the
context of a domain theoryT (P ), if and only if for every
possible states0 satisfyingT0(P ), the set of formulas given
byTA, T (P ) andLits(s0) is logically consistent.

This definition has two desirable properties that we will
exploit in the branching scheme used to search for confor-
mant plans. The first is that a complete plan that is valid
represents a conformant plan and vice versa: a conformant
plan represents a valid complete plan. The second, and not
least important, is that an incomplete partial plan that is not
valid cannot lead to a conformant plan. We state these prop-
erties as follows:

Theorem 1 1) A complete planTA that is valid in the con-
text ofT (P ) encodes a candidate planA0, . . . , AN−1 that is
conformant with respect toP wherea ∈ Ai iff ai ∈ TA. 2) A
conformant planA0, . . . , AN−1 for P implies that the com-
plete planTA is valid with respect toT (P ), whereai ∈ TA

iff a ∈ Ai, and¬ai ∈ TA iff a 6∈ Ai. 3) A partial planTA

that is not valid in the context ofT (P ) cannot be extended
into a valid complete plan, and hence cannot lead to a con-
formant plan.

These properties ensure the soundness and completeness
of a simple branch and prune algorithm that branches on ac-
tion literals, prunes partial plans that are not valid, and termi-
nates when a non-pruned complete plan is found. Of course,
this simple algorithm would not be necessarily efficient as
it involves an expensive validity check in every node of the
search tree, which if done naively, would involve a number
of satisfiability tests linear in the number of possible initial
states.

A main goal of the paper is to provide a formulation in
which this branch and prune algorithm can be run efficiently.
The key idea will involve the compilation of the planning
theoryT (P ) into a suitable target language in which some
normally intractable operations on boolean formulae be-
come tractable and fast. The two main boolean operations
that we will need areprojectionandmodel counting:

• theprojectionof a formula∆ over a subsetV of its vari-
ables, denoted asProject(∆, V ), stands for the strongest
formula over theV variables implied by∆. Such formula
is unique up to logical equivalence (the projection opera-
tion is dual to ‘forgetting’ (Lin & Reiter 1994)).

• the model countof a formula∆, denoted asMC(∆),
stands for the number of truth assignments that satisfy the
formula.

With these two operations, and if we letF0 refer to the set of
fluent variablesf0 at timei = 0 andT0(P ) refer to the slice
of T (P ) encoding the initial situation, the validity check
from Definition 1 can be rephrased as follows:

Theorem 2 (Validity by Projection and MC) A (partial)
plan TA is valid in the context of a domain theoryT (P )
iff

MC(T0(P )) = MC(Project(T (P ) + TA, F0)) . (1)

The theorem reduces the validity check of a partial plan
TA to the comparison of two numbers: the number of possi-
ble initial states, and the number of initial states compatible
with the domain theory and the commitments made inTA.
Clearly, the second number cannot be greater than the first,
asT (P ) alone entailsT0(P ) (T0(P ) is part ofT (P )). Yet



the second number can be smaller: this would happen pre-
cisely when some possible initial states0 is not compatible
with T (P ) andTA, which according to Definition 1, is ex-
actly the situation in whichTA is not a valid partial plan.

Having discussed a branch and bound algorithm for con-
formant planning based on validity checks which can be
computed by means of projection and model count opera-
tions, we turn to a target representation language that renders
these two operations tractable and efficient.

Deterministic DNNF
Knowledge compilation is the area in AI concerned with
the problem of mapping logical theories into suitable tar-
get languages that make certain desired operations tractable
(Selman & Kautz 1996; Cadoli & Donini 1997). For ex-
ample, propositional theories can be mapped into their set
of Prime Implicates making the entailment test of clauses
tractable (Reiter & de Kleer 1987). Similarly, the compila-
tion into Ordered Binary Decision Diagrams (OBDDs) ren-
ders a large number of operations tractable including model
counting (Bryant 1992). While in all these cases, the com-
pilation itself is intractable, its expense may be justified if
these operations are to be used a sufficiently large number
of times in the target application. Moreover, while the com-
pilation will run in exponential time and space in the worst
case, it will not necessarily do so on average. Indeed, the
compilation of theories into OBDDs has been found useful
in formal verification (Clarke, Grumberg, & Peled 1999) and
more recently in planning (Giunchiglia & Traverso 1999). A
more recent compilation language is Decomposable Nega-
tion Normal Form (DNNF) (Darwiche 2001). DNNFs sup-
port a rich set of polynomial–time operations, some of which
are particularly suited to our application, likeprojectionon
an arbitrary set of variables, which can be performed simply
and efficiently. A subset of DNNF, known as deterministic
DNNF, also supportsmodel counting,which is critical to our
application as shown later.

Decomposability and determinism of NNF
A propositional sentence is in negation normal form (NNF)
if it is constructed from literals using only conjunctions and
disjunctions (Barwise 1977). A practical representation of
NNF sentences is in terms of rooted directed acyclic graphs
(DAGs), where each leaf node in the DAG is labeled with
a literal, true or false; and each non-leaf (internal) node is
labeled with a conjunction∧ or a disjunction∨; see Figure 1.
Decomposable NNFs are defined as follows:

Definition 2 (Darwiche 2001) Adecomposable negation
normal form (DNNF)is a negation normal form satisfying
the decomposability property:for any conjunction∧iαi in
the form, no variable appears in more than one conjunctαi.

The NNF in Figure 1 is decomposable. It has ten conjunc-
tions and the conjuncts of each share no variables. Decom-
posability is the property which makes DNNF tractable: a
decomposable NNF formula∧iαi is indeed satisfiable iff
every conjunctαi is satisfiable, while∨iαi is satisfiable (al-
ways) iff some disjunctαi is. The satisfiability of a DNNF

or

or or or or

and and

and and and and and and and and

~A ~BB C ~D D ~CA

Figure 1: A negation normal form (NNF) represented as a
rooted DAG.

can thus be tested in linear time by means of a single bottom
up pass over its DAG.

The NNF(A∨B)∧ (¬A∨C) is not decomposable since
variableA is shared by the two conjuncts. Any such form,
however, can be converted into DNNF. The main technique
to use here is that of performingcase analysisover the vari-
ables that violate the decomposition property, in this case
A. Assuming thatA is true, the NNF reduces toC, while
if A is false, the NNF reduces toB. The result is the NNF
(A ∧ C) ∨ (¬A ∧ B) which is decomposable, and hence, a
DNNF.3

The above principle can be formulated more precisely
using the notion ofconditioning, which reduces an NNF
∆ given a literalα. Specifically, the conditioning of∆
on literal α, written ∆|α, is obtained by simply replacing
each leafα in the NNF DAG by true and each leaf∼ α
by false—from now on,∼ α denotes the complement of
literal α. If ∆ = (A ∨ B) ∧ (¬A ∨ C), then ∆|A is
(true ∨ B) ∧ (false ∨ C) which simplifies toC. Similarly,
∆|¬A is (false ∨ B) ∧ (true ∨ C) which simplifies toB.
The case analysis principle can now be phrased formally as
follows:4

∆ ≡ (∆|A ∧A) ∨ (∆|¬A ∧ ¬A) (2)

This will actually be the pattern for decomposing proposi-
tional theories as we shall see later. For now though, we
point out that the split exhibited by (2) above, leads to a sec-
ond useful property calleddeterminism,giving rise to the
special class ofDeterministic DNNFs:

Definition 3 (Darwiche 2002) Adeterministic DNNF (d-
DNNF) is a DNNF satisfying thedeterminism property:for
any disjunction∨iαi in the form, every pair of disjunctsαi

is mutually exclusive.

Determinism is the property which makesmodel counting
over DNNFs tractable: the number of models of a DNNF

3Disjunctive Normal Form (DNF), with no literal sharing in
terms, is a subset of DNNF. The DNF language, however, isflat as
the height of corresponding NNF DAG is no greater than2. This
restriction is significant as it reduces the succinctness of DNF as
compared to DNNF. For example, it is known that the DNF lan-
guage is incomparable to the OBDD language from a succinctness
viewpoint, even though DNF and OBDD are both strictly less suc-
cinct than DNNF (Darwiche & Marquis 2002).

4This principle is also known as Boole’s expansion and Shan-
non’s expansion.



∧iαi is theproductof the number of models of each con-
junct αi, while the number of models of a DNNF∨iαi that
satisfies determinism is thesumof the number of models of
each disjunct.5

The final key operation on DNNFs that we need isprojec-
tion. The projection of a theory∆ on a set of variablesV
is the strongest sentence implied by∆ over those variables.
This sentences is unique up to logical equivalence and we
will denote it byProject(∆, V ). Projection is dual toelim-
ination or forgetting(Lin & Reiter 1994): that is, projecting
∆ on V is equivalent to eliminating (existentially quantify-
ing) all variables that arenot in V from ∆. Like satisfiability
on DNNFs, and model counting on d-DNNFs, projection on
DNNFs can be done in linear time (Darwiche 2001). Specif-
ically, to project a DNNF on a set of variablesV , all we have
to do is replace every literal in∆ by true if that literal men-
tions a variable outsideV . For example, the projection of
DNNF (A ∧ ¬B) ∨ C on variablesB andC is the DNNF
(true∧¬B)∨C, which simplifies to¬B∨C. Moreover, the
projection on variableC only is the DNNF(true∧true)∨C,
which simplifies totrue.

Testing plan validity using d-DNNF

The use of d-DNNFs has been motivated by the desire to
make the validity test for partial plans tractable and effi-
cient. The test, captured by (1), involves computing the
model count of a projection. We have seen that we can
count the models of d-DNNF and take the projection of a
DNNF in linear time. This may suggest that we can ren-
der the validity test for partial plans linear in the size of the
d-DNNF representation. This however is not true in gen-
eral; the problem is that the linear–time projection opera-
tion given above is guaranteed to preserve decomposability
but not necessarily determinism. This means that while we
can model count and project a deterministic DNNF in linear
time, we cannot always model count the projection of a de-
terministic DNNF in linear time, which is precisely what we
want. There are however two conditions under which the
projectionProject(∆, V ) of a deterministic DNNF∆ on
variablesV can be guaranteed to remain deterministic and
allow for model counting in linear time. The first condition
is that variablesV which are projected away aredetermined
in ∆ by variablesV that are kept (i.e., the values of variables
V in any model of∆ are determined by the values of vari-
ablesV ). This condition holds in our setting for the fluent
variablesfi for i > 0 which are determined by the initial flu-
ent variablesf0 and the action variablesai, i = 1, . . . , N−1.
We actually use this result to project the compiled d-DNNF
on the initial state variables and on action variables, leaving
out all other variables at the outset. The second condition
relates to an ordering restriction that we can impose on the
splits given by (2) above; we discuss this restriction in the
following section.

5Actually, in order to get a normalized count it must be made
sure that the same set of variables appear in the different disjuncts
of the d-DNNF. However, this property called ‘smoothness’ is eas-
ily enforced (Darwiche 2002).

u, z
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Figure 2: A decomposition tree for a CNF.

Compiling planning theories into d-DNNF
A propositional theory∆ can be compiled into d-DNNF
by simply ordering the variables appearing in∆ in a se-
quencex1, . . . , xn, and then splitting∆ first onx1 leading to
(∆|x1∧x1)∨(∆|¬x1∧¬x1), and then compiling recursively
each of the conditioned theories∆|x1 and∆|¬x1 using the
suborderx2, . . . , xn. Coupled with a caching scheme to
avoid compiling the same theory multiple times, the above
technique will lead to d-DNNFs that are isomorphic to OB-
DDs. In fact, this particular method for compiling OBDDs,
which deviates from the vast tradition on this subject, was
explored recently in (Huang & Darwiche 2004). Determin-
istic DNNFs, however, are known to be strictly more space
efficient than OBDDs (Darwiche & Marquis 2002), and in-
deed a more efficient compilation scheme is possible (Dar-
wiche 2004). In particular, if during this top–down compi-
lation process one gets to an instantiated theory∆′ of the
form ∆′

1 ∧∆′
2 such that∆′

1 and∆′
2 share no variables, then

the compilation of∆′ can bedecomposedinto the conjunc-
tion of the compilation of∆′

1 and the compilation of∆′
2.

Moreover, one does not need to use a fixed variable order as
required by OBDDs, but can choose variables dynamically
to split on, typically, to try to maximize the opportunities for
decomposition.

Although dynamic variable ordering and decomposition
appear to be the reasonable strategy to adopt in this con-
text, experience has shown that it may incur an unjustifiable
overhead. The d-DNNF compiler we use is instead based on
semi–dynamic variable orderings, which are obtained by a
pre–processing step to reduce the overhead during compila-
tion (Darwiche 2004). In particular, before the compilation
process starts, one constructs adecomposition tree (dtree)
as shown in Figure 2 (Darwiche 2001). This is simply a
binary tree whose leaves are tagged with the clauses appear-
ing in the CNF to be compiled. Each internal node in the
dtree corresponds to a subset of the original CNF and is also
tagged with acutset: a set of variables whose instantiation
is guaranteed to decompose the CNF corresponding to that
node. The compiler will then start by picking up variables
from the root cutset to split on until the CNF corresponding
to the root is decomposed. It will then recurse on the left
and right children of the root, repeating the same process
again. Within each cutset (which can be large), the compiler
chooses variable order dynamically. Note also that the dtree



imposes only a partial order on cutsets, not a total order.
A number of further features are incorporated into the

d-DNNF compiler we use (Darwiche 2004). Examples in-
clude the use of caching to avoid compiling identical theo-
ries twice; unit propagation for simplifying theories; depen-
dency directed backtracking; and clause learning.

The key benefit of d-DNNF compilers in relation to
OBDD compilers is that the former make use ofdecomposi-
tion. Hence, for example, the complexity of d-DNNF com-
pilations are known to be exponential only in the treewidth
of the theory, while OBDD compilations are exponen-
tial in the pathwidth, which is no less than the treewidth
and usually much bigger (McMillan 1994; Darwiche 2004;
Dechter 2004). Another advantage of using d-DNNFs over
OBDDs is that d-DNNFs employ a more general form of
determinism allowing us to use the linear–time projection
operation discussed earlier, while still preserving both de-
composability and determinism in some cases. This feature
allowed us to project compiled planning theories on the ini-
tial state fluents and the actions in linear time. OBDDs do
not support a linear–time operation for projection under the
same conditions (Darwiche & Marquis 2002).

Finally, we note that we had to use specific decomposi-
tion trees to allow us to generate d-DNNFs which can be
projected on the initial state fluentsonly while preserving
determinism—this is needed to implement the plan validity
test in (1) which is critical for pruning during search. In par-
ticular, we had to construct dtrees in which initial state flu-
ents are split on before any other variables are split on during
case analysis. This guarantees that determinism would be
preserved when projecting the d-DNNF on initial state flu-
ents as it guarantees that every remaining disjunctions will
be of the form(f0 ∧ α) ∨ (¬f0 ∧ β) wheref0 is an initial
state fluent.6

The Conformant Planner
We have implemented a validity-based optimal conformant
planner calledvplan that accepts the descriptionP of a con-
formant planning problem and a planning horizonN , and
then produces a valid conformant plan withN time steps at
most if one exists, else reports failure. If the horizon is in-
cremented by1 starting fromN = 0, the first plan found
is guaranteed to be optimal. The planner can be run in se-
quential or parallel mode according to the sets of concurrent
actions allowed.vplan translatesP into a domain theoryT
in d-DNNF and then performs a backtrack search for a valid
conformant plan by performing operations on the theory:
branching on action literals, pruning invalid sets of action
literals (partial plans), and terminating when a non-pruned
complete plan is found. More precisely, the planner can be
characterized by the following aspects:

• Preprocessing: the problemP with a given horizonN
is translated into a CNF theoryT (P ), which is compiled
into a d-DNNF theoryT which is associated with the root
nodenr of the search tree; i.e.T (nr) = T .7

6A similar technique can be used if one compiles into OBDDs,
by having initial state fluents first in the OBDD order.

7A subtlety in the translation fromP to the CNF theoryT (P )

• Branching: at a noden in the search tree, the planner
branches by selecting an undetermined action variable
ai and trying each of its possible values; namely, two
d-DNNF theoriesTn1 and Tn2 are created for the chil-
dren nodesn1 andn2 of n that correspond toTn|ai and
Tn|¬ai. This process continues depth-first until a node is
pruned, resulting in a backtrack, or all action variables are
determined, resulting in a valid conformant plan.

• Pruning: a noden is pruned when the d-DNNF theory
Tn associated withn fails thevalidity test:

MC(T0) = MC(Project(Tn, F0)) (3)

whereT0 stands for the slice of the theoryT encoding
the initial situation,MC stands for the model count op-
erator, andF0 stands for the fluent variables in the initial
situation. The model count and the projection are done
in linear time by means of a single bottom-up pass over
the DAG representation. The model count overT0 is done
once, and measures the number of possible initial states.

• Selection Heuristics and Propagation: The undeter-
mined action variableai for branching in noden is se-
lected as the positive action literalai that occurs in the
greatest number of models ofTn; this ranking being ob-
tained by means of a single model countMC(Tn) im-
plemented so that with just two passes over the DAG-
representation ofTn (one bottom up, another top-down;
see (Darwiche 2002)), it yields model countsMC(Tn∧ l)
for all literals l in the theory. Moreover, when for a yet
undetermined action literall this model count yields a
number which is smaller than the number of initial states
MC(T0), then its complement∼l is set to true by condi-
tioning Tn on∼l. This process is iterated until no more
literals can be so conditioned on inTn. This inference
cannot be captured by performing deductions onTn as
this could only set a literal∼ l to true when the model
countMC(Tn ∧ l) is exactly0. The inference, however,
follows from theQBF formulaassociated withTn encod-
ing not only the planningdomainbut the planningtask
(Rintanen 1999).8

are the frame axioms which may generate an exponential number
of clauses. In order to avoid such explosion, each conjunction
ck(a)i ∧ ai of a conditionck(a)i and the corresponding action
ai, is replaced by a new auxiliary variablezi and the equivalence
zi ≡ ck(a)i∧ai is added to the theory. Such auxiliary variables do
not affect the compilation into d-DNNF as they are ‘implied vari-
ables’ that are safely projected away when the CNF theories are
compiled into d-DNNF.

8The QBF formulation of conformant planning reflects that we
are not looking for models ofTn but for interpretations over the ac-
tion variables that can be extended into models ofTn for any choice
of the initial fluent variables compatible withT0. The QBF for-
mula encoding the planning task over the theoryT (P ) will imply
that an action literalai that does not participate in any conformant
plan that solvesP needs to be false. This, however, does not mean
that¬ai is a deductive consequence of the planning theoryT (P );
it is rather a deductive consequence of the QBF formula encoding
the planningtask.This distinction does not appear in the classical
setting, where the same formula encodes the planning theory and
the planning task; it is however important in the conformant setting
where this is no longer true.



CNF theory d-DNNF theory
problem N∗ vars clauses nodes edges time/acc
blocks-2 2 34 105 61 97 0.03/0.06
blocks-3 9 444 2913 4672 20010 0.25/1.13
blocks-4 26 3036 40732 225396 913621 77.5/752.65

sq-center-2 8 200 674 1000 2216 0.1/0.39
sq-center-3 20 976 3642 9170 19555 0.7/6.7
sq-center-4 44 4256 16586 79039 164191 31.17/512.54

ring-3 8 209 669 2753 6161 0.11/0.48
ring-4 11 364 1196 13239 29295 0.62/2.52
ring-5 14 561 1874 60338 132045 3.68/16.4
ring-6 17 800 2703 254379 551641 23.77/120.58
ring-7 20 1081 3683 1018454 2195393 221.58/1096.7
ring-8 23 1404 4814 3928396 8406323 2018.32/12463.3

sortnet-3 3 51 122 133 230 0.03/0.09
sortnet-4 5 150 409 1048 2325 0.04/0.19
sortnet-5 9 420 1343 7395 17823 0.51/1.4
sortnet-6 12 813 3077 30522 77015 1.28/7.12
sortnet-7 16 1484 6679 116138 294840 8.29/56.61
sortnet-8 19 2316 12364 369375 931097 56.73/427.58
sortnet-9 25 3870 24414 1264508 3075923 780.77/6316.53

Table 1: Compilation data for sequential planning.N∗ is the optimal planning horizon. Nodes and edges refer to the DAG-
representation of the generated d-DNNF. Time refers to the compilation time for the theory with horizonN∗, and ‘acc’ to the
sum of all compilation times for horizonsN = 0, . . . , N∗. All times are in seconds.

As mentioned above, in order to perform the pruning
test (3) efficiently in every noden, we must ensure that the
projection operation preserves determinism. This is ensured
by compiling the CNF theoryT (P ) using a decomposition
tree in which the splits on the variables belonging toF0 (the
fluent variablesf0 for the initial situation) are done before
any other splits. Also, for having an equivalent but smaller
d-DNNF we project away all fluent variablesfi from the
theory fori > 0 at compilation time. Such fluents are not
needed, and their elimination satisfies the other condition
above: they are determined by the initial fluent and action
variables that are kept.

Experimental Results
We performed the experiments on a Intel/Linux machine
running at 2.80GHz with 2Gb of memory. Times for the ex-
periments were limited to 2 hours and memory to 1.Gb. We
used the same suite of problems as (Rintanen 2004b). These
are challenging problems that emphasize some of the critical
aspects that distinguish conformant from classical planning;
some of the problems are from (Cimatti, Roveri, & Bertoli
2004):

• Ring: There aren rooms arranged in a circle and a robot
that can move clockwise or counter-clockwise, one step a
a time. The room features windows that can be closed and
locked. Initially, the position of the robot and the status
of the windows are not known. The goal is to have all
windows closed and locked. The number of initial states
is n × 3n and the optimal plan has3n − 1 steps. The
parametern used ranges from3 to 8.

• Sorting Networks: The task is to build a circuit made
of compare-and-swap gates that maps an input vector of
n boolean variables into the corresponding sorted vector.
The compare-and-swap action compares two entries in the

input vector and swaps their contents if not ordered. The
optimal sequential plans minimize the number of gates,
while the optimal parallel plans minimize the ‘time delay’
of the circuit. Only optimal plans for smalln are known
(Knuth 1973). The number of initial states is2n. The
parametern used ranges from2 to 7.

• Square-center:A robot without sensors moves in a room
to north, south, east, and west, and its goal is to get to
the middle of the room. The optimal sequential plan for
a grid of size2n with an unknown initial location is to
do 2n − 1 moves in one direction,2n − 1 moves in an
orthogonal direction, and then from the resulting corner,
2n − 2 moves to the center for a total of3× 2n − 4 steps.
In the parallel setting, pairs of actions that move the robot
in orthogonal directions are allowed. There are22n initial
states. The parametern used ranges from2 to 4.

• Blocks: Refers to blocksworld domain with move-3 ac-
tions but in which the initial state is completely unknown.
Actions are always applicable but have an effect only if
their normal ‘preconditions’ are true. The goal is get a
fixed ordered stack withn blocks. The parametern used
ranges from2 to 4, and the number of initial states is 3,
13 and 73 respectively.

None of the problems feature preconditions, and only sort-
ing and square-center admit parallel solutions (recall that we
only allow parallel actions whose effects, ignoring their con-
ditions, affect different variables).

The results that we report are collected in four tables. Ta-
ble 1 reports the data corresponding to the compilation of
the theories for sequential planning. The last column shows
the time taken for compiling each theory with the optimal
horizonN∗, and the accumulated time for compiling each
theory with horizonN = 0, . . . , N∗. All theories compile:
most in a few seconds, some in a few minutes, and only two



search at horizonk search at horizonk − 1
problem N∗ #S0 time backtracks #act time backtracks
blocks-2 2 3 0 1 2 0 1
blocks-3 9 13 0.02 7 9 144.45 248619
blocks-4 26 73 > 2h > 76029 > 2h > 78714

sq-center-2 8 16 0 0 8 0.02 243
sq-center-3 20 64 0.05 0 20 > 2h > 3741672
sq-center-4 44 256 > 2h > 188597 > 2h > 191030

ring-3 8 81 0 0 8 0 5
ring-4 11 324 0.06 1 11 0.02 5
ring-5 14 1215 0.71 2 14 0.16 5
ring-6 17 4374 3.49 4 17 0.69 5
ring-7 20 15309 24.48 5 20 3.35 5
ring-8 23 52488 128.64 7 23 13.08 5

sortnet-3 3 8 0 0 3 0 5
sortnet-4 5 16 0 0 5 0.05 421
sortnet-5 9 32 0.02 0 9 > 2h > 4845305
sortnet-6 12 64 0.2 1 12 > 2h > 458912
sortnet-7 16 128 > 2h > 102300 > 2h > 104674

Table 2: Search data for sequential planning for optimal horizonN∗ (left) and and suboptimal horizonN∗ − 1 (right). The
columns show the optimal horizon, number of possible initial states, search time in seconds, number of backtracks, and number
of actions in the plan. Rows with ’> 2h’ mean the search reached the cutoff time of 2 hours. All times are in seconds.

of them – the largest ring and sort instance – take33 and13
minutes respectively. The accumulated times are also largest
for these two instances, taking a total time of3.4 and1.7
hours. It is quite remarkable that all these theories actually
compile; they are not trivial theories, with many featuring
several thousands of variables and clauses, producing large
d-DNNFs with millions of nodes in some cases (e.g., the
largest sort and two largest ring instances). The largest in-
stances, except for the ring instances, are probably beyond
the reach of most conformant planners, whether optimal or
not, with the planner in (Rintanen 2004b) producing appar-
ently the best results and solving most instances, except for
the 3 most difficult sorting problems. From the point of view
put forward in the paper, this means that the compilation is
not the bottleneck for solving these problems, but the search.
However, in cases in which the d-DNNFs obtained are very
large, the advantage of an informative and linear pruning
criterion decreases, as the operations are linear on a struc-
ture that is very large (of course, there is no escape from
this in the worst case, as checking the validity of a candidate
conformant plan is hard). We also note though that some in-
stances are quite challenging for conformant planning even
if the size of their corresponding d-DNNFs are not that large;
this includes sortnet-6 and sq-center-4.

Table 2 reports the data for the search for plans in the se-
quential setting. On the left we show the results for the opti-
mal horizonN∗, while on the right, for the horizonN∗ − 1
for which there is no solution. In a sense, the first results
shows the difficulty of finding conformant plans; the sec-
ond, the difficulty of proving them optimal. There are actu-
ally several examples in which plans are found for the opti-
mal horizon which cannot be proved optimal in the imme-
diately lower horizon; for example, sq-room-3 and sortnet-
6. The problems that are solved most easily are the ring
problems that actually are the ones that have the largest d-
DNNF representation. The reason is that the pruning cri-

terion enables the solution of such instances with very few
backtracks. On the other hand, the hardest block, sq-center,
and sortnet problems are not solved. By looking at the table,
it appears that problems are solved with a few backtracks or
are not solved at all. In principle it may be thought that this
is because the pruning criterion is too expensive, and node
generation rate is very low. Yet, the number of backtracks
in some of the problems suggest otherwise: e.g., sortnet-5
cannot be proved optimal after almost 5 million backtracks,
and similarly sq-center-3. The complexity of the pruning
operation, that grows linearly with the size of the d-DNNF
representation explains however why the large unsolved in-
stances reach the cutoff time with a smaller number of back-
tracks than the small unsolved instances.

Table 3 reports the data for the search for plans in the par-
allel setting. Given our simple model of parallelism where
the only compatible actions are the ones that involve dis-
joint sets of variables, it turns out that only the sq-center and
sortnet problems admit parallel solutions. In the first, one
can take orthogonal directions at the same time; in the sec-
ond, one can compare disjoint pairs of wires concurrently.
The instances that get solved do not change significantly
with respect to the sequential setting, yet there are two in-
teresting exceptions. One is sq-center-3 which could not
be solved before for the horizonN∗ − 1 now is solved in
less than11 seconds with a relatively large number of back-
tracks:11981 (by solving a problem in the horizonN∗ − 1
we mean proving failure). This breaks the pattern observed
earlier where problems were solved almost backtrack-free
or not solved at all. In the same instance, the solution found
for the optimal horizonN∗ is obtained in a slightly more
time, but with many more backtracks:1517. A possible ex-
planation for this is that parallelism removes some symme-
tries in the problem, leaving an smaller space with fewer
solutions. Thus, the proof for solutions become more diffi-
cult but the proofs for non-solutions become simpler. At the



search at horizonk search at horizonk − 1
problem N∗ #S0 time backtracks #act time backtracks

sq-center-2 4 16 0 54 8 0 9
sq-center-3 10 64 1.26 952 20 39.82 20773
sq-center-4 22 256 > 2h > 235696 > 2h > 240089
sortnet-4 3 16 0.01 38 6 0 29
sortnet-5 5 32 0.03 0 10 53.63 61469
sortnet-6 5 64 380.15 23884 14 > 2h > 634880
sortnet-7 6 128 3.48 0 18 > 2h > 84881

Table 3: Search data for parallel planning for optimal horizonN∗ (left) and and suboptimal horizonN∗ − 1 (right). The
columns show the optimal horizon, number of possible initial states, search time in seconds, number of backtracks, and number
of actions in the plan. Rows with ’> 2h’ mean the search reached the cutoff time of 2 hours. All times are in seconds.

same time though, the parallel formulation makes another
problem solvable in the optimal horizon: sort-7. This is ac-
tually a difficult problem that is not solved by any planner
that we know, including (Rintanen 2004b). We are not solv-
ing it fully either; it is solved for the optimal horizonN∗, but
not for N∗ − 1 (which is always the most difficult horizon
for proving the lack of solutions).

From the benchmarks considered and reported on in vari-
ous papers, it is not simple to assess the performance of the
proposed planner in relation to existing optimal and non-
optimal ones. It seems that various planners do well for
some type of problems but not for others. In particular,
our own GPT planner (Bonet & Geffner 2000) does well
in problems where thesizeof the belief states that are reach-
able is small, and the heuristicV ∗

dp that relaxes the prob-
lem assuming full observability, remains well informed (this
also requires that the size of the state space not be too large
either). The planner MBP reported in (Cimatti, Roveri, &
Bertoli 2004) extends the scope of heuristic search planners
by representing belief states symbolically as OBDDs; so it
is not affected necessarily by the size of the state space nor
by the size of the belief states. Still, when running in opti-
mal model, MBP depends on the quality of a heuristic func-
tion similar toV ∗

dp, and then it is also somewhat bound to
problems where the assumption of full observability does
not simplify the problem too much (for such problems ac-
tually a better informed admissible heuristic, although not
fully automated is discussed in (Cimatti, Roveri, & Bertoli
2004)). The CFF planner recently introduced in (Brafman
& Hoffmann 2004) seems to perform best in problems that
add a small amount of uncertainty in otherwise large classi-
cal planning problems, where the proposed, novel heuristic
appears to work best. The problems that we have selected,
which correspond to those considered in (Rintanen 2004b),
do not appear to exhibit these features, and gathering from
the reported papers, it does not seem that these planners
would do well on them, or even as well asvplan (with
the exception of the ring problems, that involve large state
spaces and large belief states, but where the heuristicV ∗

dp re-
mains well informed making the symbolic heuristic-search
approach particularly suitable). In particular, we consid-
ered the ‘cube-center’ problem, a problem that extends the
‘square-center’ problem with another dimension. In (Braf-
man & Hoffmann 2004) cubes of sizes up tom = 3 are re-
ported solvable by CFF and cubes of sizes up tom = 5 are

reported solvable by MBP. We ran this benchmark forvplan
and as for square-center, and obtained better results in the
parallel formulation, where some symmetries are broken. In
this way, we were able to solve cube-center form = 7 in
less than a minute for the optimal horizonN∗ = 8, proving
the lack of solutions for the horizonN∗ − 1 in 485 seconds.

The planner reported in (Rintanen 2004b) does particu-
larly well on the suite of problems considered, solving most
of them very fast. The planner is a heuristic-search plan-
ner based on OBDD representations of belief states that
uses a novel heuristic function obtained from relaxations
that do not assume full observability. The relaxations ap-
pear to stand for conformant planning problems that differ
from the original instance in their initial belief state. Rinta-
nen solves the problem for all possible initial belief states
with two states at most, and stores the resulting costs in
memory. Then, the heuristich(b) of a belief stateb is set to
maxb′⊆b h′(b′) whereh′ is the stored cost function, andb′

is a belief state with at most two states inb. Unfortunately,
Rintanen does not report data on the costs of preprocess-
ing, but the results suggest that the heuristic obtained, while
more expensive, is more suited than the simpler heuristicV ∗

dp

for problems that involve some form of epistemic reasoning.

Discussion
We have developed an algorithm for conformant planning
with deterministic actions that operates over logical encod-
ings in which action literals are selected for branching, and
branches that encode invalid partial plans are pruned. The
validity test checks at every node of the search tree whether
the accumulated set of commitments (or partial plan) is con-
sistent with each possible initial state and the planning the-
ory. This ensures that the planner is sound and complete.
Validity tests, however, are expensive. We showed then how
they can be reduced to projection and model count opera-
tions that can be carried out efficiently in the d-DNNF rep-
resentation of the planning theory. The empirical results
are encouraging, although there is still a lot of room for
improvement. Some goals for the future are: better ways
for dealing with symmetries in the search space (there are
plenty), better preprocessing (e.g., inference in the style of
the planning graph capturing that certain actions literals can-
not participate in a conformant plan), better criteria for se-
lecting the action on which to branch (the planner is sensi-
tive to this choice, and we should probably explore the use



of one criterion for finding plans, and another one for prov-
ing optimality as done often in CSPs), and other ways for
using the d-DNNF representation to cut the search for plans
even further. In this sense, we have found that it is actu-
ally possible to compile the planning theory into d-DNNF in
such a way that conformant plans can be extracted withno
searchat all by a single bottom-up pass similar to the one
used to perform the model count of the projected formula.
For this, however, it is necessary to use a dtree with all action
variables on top, which leads to large d-DNNFs that render
the compilation unfeasible except for the smallest problems.
There is thus a search-inference tradeoff that has to do with
the dtree used in the compilation that is worth studying fur-
ther. There are also other uses of the proposed approach; for
example, it is straightforward to adjust the branch-and-prune
scheme for computing plans that conform with a fraction of
possible initial states, or with the highest such fraction for
a given planning horizon. The proposed framework is thus
rich in possibilities and uses, while suggesting possible im-
provements in performance that we are currently exploring.
The code and problems will be available in our Web page.
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