
Artificial Intelligence 157 (2004) 81–113

www.elsevier.com/locate/artint

Compiling propositional weighted bases ✩

Adnan Darwiche a, Pierre Marquis b,∗

a Computer Science Department, University of California, Los Angeles, CA 90095, USA
b CRIL-CNRS/Université d’Artois, rue de l’Université, S.P. 16, 62307 Lens, France

Received 28 December 2002; accepted 14 April 2004

Abstract

In this paper, we investigate the extent to which knowledge compilation can be used to improve
model checking and inference from propositional weighted bases. We first focus on the compilability
issue for both problems, deriving mainly non-compilability results in the case preferences are subject
to change. Then, we present a general notion of C-normal weighted base that is parametrized by a
tractable class C for the clausal entailment problem. We show how every weighted base can be
turned (“compiled”) into a query-equivalent C-normal base whenever C is a complete class for
propositional logic. Both negative and positive results are presented. On the one hand, complexity
results are identified, showing that the inference problem from a C-normal weighted base is as
difficult as in the general case, when the prime implicates, Horn cover or renamable Horn cover
classes are targeted. On the other hand, we show that both the model checking and the (clausal)
inference problem become tractable whenever DNNF-normal bases are considered. Moreover, we
show that the set of all preferred models of a DNNF-normal weighted base can be computed in time
polynomial in the output size, and as a consequence, model checking is also tractable for such bases.
Finally, we sketch how our results can be used in model-based diagnosis in order to compute the
most likely diagnoses of a system.
 2004 Published by Elsevier B.V.

Keywords:Knowledge representation; Belief bases; Penalty logic; Knowledge compilation

✩ This is an extended and revised version of a paper that appeared in the Proceedings of the 9th International
Workshop on Non-Monotonic Reasoning (NMR’02), Toulouse, France, 2002, pp. 6–14.

* Corresponding author.
E-mail addresses:darwiche@cs.ucla.edu (A. Darwiche), marquis@cril.univ-artois.fr (P. Marquis).

0004-3702/$ – see front matter  2004 Published by Elsevier B.V.

doi:10.1016/j.artint.2004.04.005



82 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

1. Introduction
Penalty logicis a logical framework developed by Pinkas [45,46] and by Dupin de St
Cyr, Lang and Schiex [27]. It enables the representation of propositional weighted bases.
A weighted baseis a finite set

W = {〈φ1, k1〉, . . . , 〈φn, kn〉
}
.

Each φi is a propositional sentence, and ki is its corresponding weight, i.e., the price to be
paid if the sentence is violated. In penalty logic, weights are positive integers1 or +∞ and
they are additivelyaggregated.

A weighted base can be considered as a compact, implicit encoding of a total pre-
ordering over a set Ω of propositional worlds. Indeed, given a weighted base W , the weight
of each world ω can be defined as follows:

KW (ω)
def=

∑
〈φi ,ki〉∈W,ω|=¬φi

ki .

That is, the weight of a world is the sum of all weights associated with sentences violated
by the world. One can extend the weight function KW to arbitrary sentences α:

KW (α)
def= min

ω|=α
KW(ω).

Finally, for every set S of worlds, minW(S) denotes the most preferred worlds in S, i.e.,
those having minimal weight:

minW(S)
def= {

ω | ω ∈ S, ∀ω′ ∈ S, KW(ω) � KW (ω′)
}
.

The weight of a base W , denoted K(W), is the weight of the worlds in minW(Ω).
Obviously enough, we have K(W) = KW (true), and ω ∈ minW(Ω) if and only if
KW(ω) = K(W).

Example 1.1. Let W = {〈a ∧ b,2〉, 〈¬b,1〉} be a weighted base. Let us consider the
following four worlds over the variables appearing in W , Var(W):

• ω1 = (a, b);
• ω2 = (a,¬b);
• ω3 = (¬a, b);
• ω4 = (¬a,¬b).

We then have KW(ω1) = 1, KW(ω2) = 2, KW(ω3) = 3, and KW (ω4) = 2. Accordingly,
we have K(W) = 1 and minW(Ω) = {ω1}.

All sentences φi associated with finite weights in a weighted base are called soft
constraints, while those associated with the weight +∞ are called hard constraints.

1 Floating numbers can also be used; what is important is the fact that sum is a total function over the set of
(totally ordered) numbers under consideration, and that it can be computed in polynomial time.



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 83

As it is the case for many logic-based representation formalisms, we are typically inter-

ested in two main decision problems, MODEL CHECKING and (CLAUSAL) INFERENCE,2

defined as follows:

• MODEL CHECKING

– Input: a weighted base W and a world ω.
– Question: is ω a preferred world given W , i.e., is KW (ω) = K(W)?

• (CLAUSAL) INFERENCE

– Input: a weighted base W and a CNF sentence α.
– Question: is α a consequence of W (noted |∼W α), i.e., is every preferred world

from minW(Ω) a model of α?

Penalty logic has some valuable connections with possibilistic logic, as well as with
Dempster–Shafer theory (see [27] for details) and Kappa Calculus. In Kappa Calculus,
one has a function κ which maps every world ω into an ordinal κ(ω) [23,53]. The kappa
function is extended to propositional sentences α using κ(α) = minω|=α κ(ω). One way
to construct kappa functions is by using a belief network, which is a directed acyclic
graph over propositional symbols [17,32]. For every instantiation α of a network variable,
and every instantiation β of its parents, we provide a value κ for the pair (α,β), which
represents a penalty for a world that satisfies α ∧ β . This is why the kappa value is called
a degree of surprisein this case. The kappa value of a world is then the addition of all
degrees of surprise contributed by the network variables. Kappa functions constructed in
this fashion satisfy some very interesting properties, most of which can be revealed by
examining the belief network topology.

Penalty logic is also closely connected to the optimization problem WEIGHTED-MAX-
SAT considered in operations research (see, e.g., [6,33,52]). Indeed, the input of the
(function) problem WEIGHTED-MAX-SAT is a weighted base W in which every weighted
sentence φi is restricted to be a clause, and the output of WEIGHTED-MAX-SAT is any
element of minW(Ω).

Several proposals for the use of weighted bases can be found in the AI literature.
One of them concerns the compact representation of preferences in a decision making
setting. Indeed, in some decision making problems, models (and sentences) can be used to
encode decisions. Hard constraints are used to characterize the set of alternatives (possible
decisions), while the soft ones enable one to encode preferences, and the weight of a model
represents the disutility of a decision, and a weighted base can be viewed as an implicit
representation of the set of all decisions of an agent, totally ordered w.r.t. their (dis)utility.
Lafage and Lang [35] take advantage of such an encoding for group decision making. A key
issue here from a computational point of view is the problem consisting in determining
whether a given world ω (encoding a decision) is undominated, i.e., it is an element of
minW (Ω); as introduced before, this is just the model checking problem for penalty logic.

2 In this paper, inference is to be considered as a short for clausal inference: by default, we assume that queries
are CNF sentences. The literal inference problem is the restriction of (CLAUSAL) INFERENCE, where queries are
conjunctions of literals.



84 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

Of course, the corresponding function and enumeration problems (computing one versus

all most preferred world(s)) are also of major interest in such a setting.

Another suggested use of penalty logic concerns inference from inconsistent belief
bases. Here, hard constraints are used to encode pieces of knowledge (i.e., beliefs that
must be true), while soft constraints are used to represent more or less uncertain pieces of
beliefs. Based on the preference information given by KW , several inference relations from
a weighted base W can be defined. Among them is skeptical inference where α|∼W β if and
only if every world ω that is of minimal weight among the models of α is a model of β . In
this framework, propositional sentences represent pieces of (explicit) belief. The inference
relation |∼W is interesting for at least two reasons. On the one hand, it is a comparative
inference relation, i.e., a rational inference relation satisfying supraclassicality [27]. On
the other hand, weighted bases can be used to encode some well-known forms of inference
from stratified belief bases B = (B1, . . . ,Bk) [2,4,47]. In particular, the so-called skeptical
lexicographic inferenceB |∼lex can be recovered as a specific case of true |∼WB for some
weighted base WB .

Example 1.2. Let B = (B1,B2) be a stratified belief base skeptically interpreted under
the lexicographic policy, where B1 = {a ∨ b ∨ c} (the most reliable stratum) and B2 =
{¬a ∧ c,¬b ∧ c,¬c}. We can associate with B the weighted base

WB = {〈a ∨ b ∨ c,4〉, 〈¬a ∧ c,1〉, 〈¬b ∧ c,1〉, 〈¬c,1〉}.
The unique most preferred world for WB is (¬a,¬b, c) that is also the only lexicographi-
cally-preferred model of B .

Weighted bases enable more flexibility than stratified belief bases. For example,
violating two sentences of weight 5 is worse than violating a single sentence of weight 9,
but this cannot be achieved through a simple stratification.3

Up to now, weighted bases have been investigated from a theoretical point of view
only. Despite their promise, we are not aware of any industrial application of weighted
bases, except the one reported in [43,44] (discussed in Section 7) which illustrates how
interesting such a notion can be from the application point of view. There is a simple (but
partial) explanation of this fact: MODEL CHECKING and INFERENCE from weighted bases
are intractable. On the one hand, it is not hard to prove that the model checking problem is
coNP-complete even if the weighted base contains two weighted sentences, none of them
being a hard constraint. On the other hand, the inference problem is known as �

p

2 -complete
[26], even in the restricted case queries are literals. Furthermore, it is not hard to show that
computing a preferred world from minW (Ω) is F�

p

2 -complete. This implies that any of the
two problems is very likely to require an unbounded polynomial number of calls to an NP
oracle to be solved in polynomial time on a deterministic Turing machine.

In this paper, we investigate the extent to which knowledge compilation[8] can be
used to improve model checking and inference from weighted bases. The key idea of

3 Since lexicographic inference also includes inference from consistent subbases that are maximal w.r.t.
cardinality as a subcase (to achieve it, just put every sentence of the belief base into a single stratum), the latter
can also be recovered as a specific case of inference from a weighted base.



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 85

compilation is pre-processing the fixed part of the decision problem under consideration

(the one that does not change frequently) so as to improve on-line complexity. Existing
work on knowledge compilation can be roughly partitioned into two classes, the one
gathering results on compilability (most of them are from Cadoli and his colleagues) and
the other one gathering compilation functions, typically aiming at improving the (clausal)
inference problem for classical logic from the practical side.

Roughly speaking, a decision problem is said to be compilable to a given complexity
class C if it is in C once the fixed part of any instance has been pre-processed, i.e., turned
off-line into a poly-size data structure. The fact that the pre-processing must be achieved in
polynomial space is crucial. In order to formalize such a notion of compilability, Cadoli and
his colleagues introduced many new classes (compilability classes) and the corresponding
reductions (see mainly [9–12,37]). This enables one to classify many AI problems as
compilable to a class C, or as not compilable to C (usually under standard assumptions
of complexity theory—the fact that the polynomial hierarchy PH does not collapse). Thus,
the (clausal) inference problem for classical logic is known as non-compilable to P unless
PH collapses.

Because this negative result concerns the worst case only, it does not necessarily pre-
vent knowledge compilation from being practically useful in order to improve clausal en-
tailment. Accordingly, many knowledge compilation functions dedicated to the clausal en-
tailment problem have been pointed out so far (e.g., [7,16,19,29,30,39,49–51]). In these
approaches, the input sentence is turned into a compiled one during an off-line compila-
tion phase and the compiled form is used to answer the queries on-line. Assuming that the
sentence does not often change and that answering queries from the compiled form is com-
putationally easier than answering them from the input sentence, the compilation time can
be balanced over a sufficient number of queries. Thus, the complexity of classical inference
falls from coNP-complete to P under the restrictions that clausal queries are considered and
the input sentence has been compiled. While none of the techniques listed above can ensure
the objective of enhancing inference to be reached in the worst case (because the size of
the compiled form can be exponentially larger than the size of the original sentence—this
coheres with the fact that the clausal entailment problem is not compilable to P [8,51]),
experiments have shown such approaches valuable in many practical situations [7,22,50].

In the following, we consider both aspects of knowledge compilation for penalty logic:
the compilability issue and the design of compilation functions for both the model checking
and the inference problems.

On the one hand, we show that the complexity of MODEL CHECKING (respectively
INFERENCE) can be reduced to P (respectively coNP) through pre-processing given that
the preferences (weights) are available at the off-line stage, and that such compilability
results do not hold any longer (under the standard assumptions of complexity theory) when
preferences belong to the varying part of the problem. Thus, the unique problem among
those considered here that can be rendered tractable (i.e., in P) through compilation is
MODEL CHECKING assuming that the weights do not change with time.

On the other hand, we show how compilation functions for clausal entailment
from classical sentences can be extended to clausal inference from weighted bases.
Any equivalence-preserving knowledge compilation function can be considered in our
framework. Interestingly, the corresponding notion of compiled base is flexible w.r.t.



86 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

preference handling in the sense that re-compiling a weighted base is useless whenever

the weights associated to soft constraints change with time. Unfortunately, for many target
classes C for such functions, including the prime implicates, Horn cover and renamable
Horn cover classes, we show that the inference problem from a C-normal base remains
�

p

2 -complete, even for very simple queries (literals). Accordingly, in this situation, there is
no guarantee that compiling a weighted base using any of the corresponding compilation
functions may help. Then we focus on DNNF-normal bases, considering the DNNF
class introduced in [19,21]. This case is much more favourable since both the model
checking problem and the clausal inference problem become tractable. More, we show
that the preferred models of a DNNF-normal weighted base can be enumerated in output
polynomial time.

Finally, we sketch how our results can be used in the model-based diagnosis framework
in order to compute the most likely diagnoses of a system.

2. Formal preliminaries

In the following, we consider a propositional language PROPPS defined inductively
from a finite set PSof propositional symbols, the boolean constants true and falseand the
standard connectives in the usual way. LPS is the set of literals built up from PS. If l is a
positive literal x ∈ PS, then its complementary literal ∼ l is ¬x; if l is a negative literal
¬x , then ∼ l is x . For every sentence φ from PROPPS, Var(φ) denotes the symbols of PS
occurring in φ. As mentioned before, if W = {〈φ1, k1〉, . . . , 〈φn, kn〉} is a weighted base,
then Var(W) = ⋃n

i=1 Var(φi). The size |φ| of a sentence φ is the number of occurrences
of propositional symbols and connectives used to write φ. Numbers k are represented in
binary notation and +∞ is a specific symbol, so that the size |k| of any finite number k is
the number of binary digits used to write it, and the size of +∞ is 1. The size |W | of a
weighted base W = {〈φ1, k1〉, . . . , 〈φn, kn〉} is then

∑n
i=1 |φi | + |ki|.

Sentences are interpreted in a classical way. Ω denotes the set of all interpretations
built up from PS. Every interpretation (world) ω ∈ Ω is represented as a tuple of literals.
|= denotes classical entailment and ≡ denotes logical equivalence. Mod(φ) is the set of all
models of φ; that is, worlds in Ω that satisfy φ.

As usual, every finite set of sentences is considered as the conjunctive sentence whose
conjuncts are the elements of the set. A CNF sentence is a (finite) conjunction of clauses,
where a clause is a (finite) disjunction of literals. A tractable class for clausal entailment
is a subset C of propositional sentences4 whose clausal consequences can be decided in
polynomial time. There are many such classes, including the Blakeone, the Horn CNFone,
the renamable Horn CNFone, the DNNF one. A sentence φ is Blakeif and only if it is a
CNF sentence where each prime implicate5 of φ appears as a conjunct (one representative
per equivalence class). A sentence is Horn CNFif and only if it is a CNF sentence s.t. every
clause in it contains at most one positive literal. A sentence φ is renamable Horn CNFif

4 We do not make any distinction here between the “flat” classes and the “nested” ones, as in [25].
5 A prime implicateπ of a sentence φ is one of the logically strongest clauses entailed by φ, i.e., we have

φ |= π and for every clause π ′ s.t. φ |= π ′ and π ′ |= π , we also have π ≡ π ′.



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 87

and only if σ(φ) is a Horn CNF sentence, where σ is a substitution from LPS to LPS s.t.

σ(l) = l for every literal l of LPS except those of a set L, and for every literal l of L,
σ(l) =∼ l and σ(∼ l) = l.

We assume that the reader familiar with the complexity classes P, NP, coNP and �
p

2 of
the polynomial hierarchy. F�

p

2 denotes the class of function problems associated to �
p

2 ;
see [42] for details.

3. Compilability results for model checking and inference from weighted bases

Before considering any specific compilation approach for weighted bases, it is important
to identify the feasibility of improving inference (and model checking) through pre-
processing, i.e., to determine whether or not the decision problem under consideration
is compilable. Indeed, a non-compilability result shows that whatever the compilation
approach, no computational gain is to be expected in the worst case from pre-processing.
Hence, one can either abandon the compilation approach, or develop compilation functions
even though they may lead to compiled forms of weighted bases that are exponentially
larger than the original bases.

In this section, we investigate the compilability of model checking and inference from
weighted bases. We first give a few definitions and then report our results.

3.1. Some definitions

Let us first make precise what “compilable to C” means, recalling some key definitions
proposed by Cadoli and his colleagues (many more definitions and results about
compilability can be found in [11,37]).

First of all, in order to address the compilability of a decision problem, we need to
consider it as a language of pairs 〈x, y〉: the fixed partx will be subject to pre-processing,
while the remaining varying party will not. For instance, considering MODEL CHECKING

(respectively INFERENCE), a standard partition consists in taking W as the fixed part and ω

(respectively α) as the varying one; this just reflects the fact that the base typically changes
less often than the queries. Accordingly, the decision problems under consideration are
represented as languages of pairsof strings 〈x, y〉.

While several families of classes can be considered as candidates to represent what
“compilable to C” means, the most general one gathers the nu-compC classes [11]. Thus,
“compilable to C” is formalized as membership to the compilability class nu-compC:

Definition 3.1 (nu-compC). Let C be a complexity class closed under polynomial many-
one reductions and admitting complete problems for such reductions. A language of pairs
L belongs to nu-compC if and only if there exists a binary poly-size function6 f and a
language of pairs L′ ∈ C such that for all 〈x, y〉, we have:

〈x, y〉 ∈ L if and only if
〈
f

(
x, |y|), y〉 ∈ L′.

6 A function f is poly-sizewhenever there exists a polynomial p s.t. for all strings x it holds |f (x)| � p(|x|).



88 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

Here “nu” stands for “non-uniformly”, which indicates that the compiled form of x may

also depend on the size of the varying part y . As for usual complexity classes, the most
difficult problems w.r.t. a compilability class nu-compC are those to which any problem
from nu-compC can be reduced. The right notion of reduction for such compilability
classes is the �nu-comp-one [11]:

Definition 3.2 (�nu-comp reduction). A �nu-comp reduction from a language of pairs L to a
language of pairs L′ is a triple 〈f1, f2, g〉 where f1 and f2 are binary poly-size functions
and g is a binary polynomial function s.t. for any pair of strings 〈x, y〉, we have:

〈x, y〉 ∈ L if and only if
〈
f1

(
x, |y|), g(

f2
(
x, |y|), y)〉 ∈ L′.

Inclusion of compilability classes similar to those holding in the polynomial hierarchy
exist (see [11]). It is also strongly believed that the compilability hierarchy is proper: if it
collapses, then the polynomial hierarchy collapses at well (cf. Theorem 2.12 from [11]).
For instance, if the clausal entailment problem (that is nu-compcoNP-complete) is in nu-
compP, then the polynomial hierarchy collapses at the third level.

3.2. Compilability results

Let us first consider the case W is the fixed part of the compilation problem, while ω

(respectively α) is the varying part. We have identified the following compilability results:

Proposition 3.1.

• MODEL CHECKING with fixedW and varyingω is in nu-compP.
• INFERENCE with fixedW and varyingα is nu-compcoNP-complete.

Proof.

• MODEL CHECKING. It is sufficient to compute off-line K(W) and to store it (formally,
we define f (W, |ω|) as K(W)—which is independent of |ω|); at the on-line stage,
given a world ω ∈ Ω , we compute KW(ω) in (deterministic) polynomial time and
we compare it to the stored number K(W): ω is a preferred world if and only if
KW (ω) = K(W).

• INFERENCE

– Membership: in order to show that INFERENCE is in nu-compcoNP, it is sufficient
to exhibit a propositional sentence f (W, |α|) = Σ of size polynomial in |W | that
is query equivalent to W . Such a sentence Σ can be computed (off-line) from
W = {〈φ1, k1〉, . . . , 〈φn, kn〉} as follows:
(1) check whether Ŵ = ∧

〈φi ,+∞〉∈W φi is inconsistent;
if it is the case, we have K(W) = +∞, hence every world is preferred: set Σ to
true, and goto (4);
otherwise, remove each pair 〈φi,+∞〉 from W to obtain a new base W ′;



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 89

(2) compute K(W ′) for W ′ = {〈φ1, k1〉, . . . , 〈φm, km〉};

(3) generate the sentence

Σ = Ŵ ∧
m∧

i=1

(holdsi ⇒ φi) ∧ PREF(holds1, . . . ,holdsm);

(4) return Σ .
At step (1), it is obvious that every world is preferred when Ŵ is inconsistent; in the
remaining case, every preferred world is a model of Ŵ and it must be preferred
given the weighted base obtained by removing each pair 〈φi,+∞〉 from W .
Accordingly, the value K(W ′) computed at step (2) coincides with K(W) whenever
Ŵ is consistent. At step (3), PREF(holds1, . . . ,holdsm) is a sentence encoding
a boolean function depending on holds1, . . . ,holdsm that evaluates to true if and
only if

∑
i=1,...,m|holdsi=falseki = K(W ′). Indeed, the assignments of truth values to

holds1, . . . , holdsm that make PREF(holds1, . . . ,holdsm) true characterize exactly
the preferred subbases of W ′, i.e., those subsets of W ′ whose constraints are satisfied
by a preferred world (see Corollary 7.1 from [27]). The last point is that a polyspace
sentence PREF(holds1, . . . ,holdsm) can be generated by combining adders and a
comparator (see [9] for a similar proof).

– As to hardness, in order to show that INFERENCE is nu-compcoNP-hard, it is
sufficient to observe that clausal entailment from a propositional sentence Σ is a
specific case of inference from a weighted base {〈Σ,1〉}, and to take advantage
of known results showing that clausal entailment is nu-compcoNP-complete (see
Theorem 2.10 from [11]). �

It can be observed that our proofs actually show MODEL CHECKING belonging to
compP and INFERENCE belonging to compcoNP. Note also that compP (respectively
compcoNP) is a subset of nu-compP (respectively nu-compcoNP); see [11] for details.

These results show that compilation can prove helpful when preferences are fixed since
the on-line complexities of MODEL CHECKING and of INFERENCE are reduced (from coNP
to P for MODEL CHECKING, and from �

p
2 to coNP for INFERENCE). However, it is very

unlikely that INFERENCE can be rendered tractable through poly-size pre-processing.
In some situations, the constraints encoded by sentences from weighted bases are shared

by a number of agents, while each agent has her own preferences; hence constraints (at least
the soft ones) may have different weights, depending on the agent. May pre-processing
help in such a situation? In order to address this issue in formal terms, we need to keep
the constraints apart from the corresponding penalties, i.e., to identify every weighted base
W = {〈φ1, k1〉, . . . , 〈φn, kn〉} with the pair 〈C,P 〉, where C is the n-vector of sentences
(constraints) 〈φ1, . . . , φn〉 and P is the n-vector of penalties (positive integers or +∞
represented as a specific symbol) 〈k1, . . . , kn〉. Obviously, every W can be associated to
such a pair 〈C,P 〉 in polynomial time, and the converse also holds.

This time, the compilability of MODEL CHECKING (respectively INFERENCE) is
considered for the language of pairs 〈C, 〈P,ω〉〉 (respectively 〈C, 〈P,α〉〉). We have
identified the following results:



90 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

Proposition 3.2.
• MODEL CHECKING with fixedC and varying〈P,ω〉 is nu-compcoNP-complete.
• INFERENCE with fixedC and varying〈P,α〉 is nu-comp�

p

2 -complete.

Proof.

• MODEL CHECKING

– Membership is a direct consequence of the fact that the original model checking
problem (where the whole input is variable) is in coNP, and that coNP ⊂
nu-compcoNP (see Theorem 2.13 from [11]).

– As to hardness, we reduce the �3UNSATproblem to MODEL CHECKING. �3UNSAT
is defined as

⋃
n�0 �3UNSATn, and the language of �3UNSATn contains all pairs

〈�,πn〉 where πn belongs to 3UNSATn, i.e., it is an inconsistent 3-CNF sentence
generated from the variables x1, . . . , xn (a 3-CNF sentence is a finite conjunction
of 3-clauses, where a 3-clause contains at most 3 literals). � stands here for any
string. It is known that �3UNSATis nu-compcoNP-hard (a direct consequence of
Theorem 2.13 from [37]).
Let Γn be the CNF sentence containing all the clauses of the form ¬holdsi ∨ γi

where γi is a clause with at most 3 literals built up from variables x1, . . . , xn and
each holdsi is a new symbol (one for each clause γi ). Let p be the number of clauses
in Γn; we have p ∈ O(n3), hence the size of Γn is polynomial in n.
To each pair 〈�,πn〉 we associate the p + 2-vector of constraints

Cn = 〈holds1, . . . ,holdsp,Γn ∨ ¬dom,dom〉,
where dom is a new variable (intuitively, dom means “dominated”, i.e., non-
preferred). Clearly enough, Cn depends only on n.
Let πn be any instance of 3UNSATn. Each πn corresponds to an assignment
holds∗1, . . . ,holds∗p of truth values to holds1, . . . ,holdsp s.t. holdsi is evaluated to
true (i.e., holds∗i = true) if and only if γi belongs to πn. Obviously, Γn and πn are
equivalent under the (partial) assignment holds∗1, . . . ,holds∗p .
Now, each πn can be associated to a pair 〈Pπn,ωπn〉 s.t.

For every i ∈ 1, . . . , p, Pπn [i] = 3p + 3 if γi belongs to πn, and Pπn [i] = 1
otherwise, and Pπn [p + 1] = Pπn [p + 2] = p + 1.
For every i ∈ 1, . . . , n, ωπn(xi) = false, ωπn(dom) = false, and for every i ∈
1, . . . , p, ωπn(holdsi ) = true if and only if γi belongs to πn.

The weights are set in such a way every constraint holdsi is among the most
prioritary ones whenever γi belongs to πn, and among the less prioritary ones in
the remaining case. The two other constraints Γn ∨ ¬domand domare put in an
intermediate stratum (no compensation between strata can be achieved here).
By construction, every preferred model ω of 〈Cn,Pπn〉 is such that for every
i ∈ 1, . . . , p, ω(holdsi ) = true if and only if γi belongs to πn. Now, if πn is
inconsistent, then Γn ∨ ¬dom is equivalent to ¬domunder the partial assignment
holds∗1, . . . ,holds∗p of truth values associated to πn, and since Γn ∨ ¬dom and
dom are associated to the same weight, ωπn is undominated (the world that



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 91

coincides with ωπn except for variable domhas the same weight as ωπn ). Otherwise,

πn is consistent, so it has a model ω over x1, . . . , xn. Let us consider the
extension of ω over x1, . . . , xn,holds1, . . . ,holdsp,doms.t. for every i ∈ 1, . . . , p,
ω(holdsi ) = true if and only if γi belongs to πn, and ω(dom) = true. It is clear
that K〈Cn,Pπn 〉(ω) < K〈Cn,Pπn 〉(ωπn), hence ωπn is dominated. Thus, 〈�,πn〉 is a
positive instance of �3UNSATn if and only if 〈Cn, 〈Pπn ,ωπn〉〉 is a positive instance
of MODEL CHECKING (with fixed C and varying 〈P,α〉), and this completes the
proof.

• INFERENCE

– Membership is a direct consequence of the fact that the original inference problem
(where the whole input is variable) is in �

p

2 , and that �
p

2 ⊂ nu-comp�
p

2 (see
Theorem 2.13 from [11]).

– As to hardness, we reduce the �MAX-SAT-ASGodd problem to INFERENCE.
We start from the MAX-SAT-ASGodd problem as defined in [54]. The set of positive
instances of this decision problem consists of all propositional sentences Σ where Σ

is a consistent 3-CNF sentence generated from the variables x1, . . . , xn s.t. the model
ωmaxof Σ that is maximal w.r.t the lexicographic ordering induced by x1 < . . . < xn

satisfies ωmax(xn) = true. We first show that the restriction of MAX-SAT-ASGodd

where Σ is a 3-CNF formula remains �
p

2 -complete. Here is a reduction close to the
one typically used to show that 3SATis NP-hard, starting from the general problem
(i.e., the satisfiability problem for unconstrained propositional formulas). Given a
propositional formula Σ containing m occurrences of a connective, we introduce
a new variable y per occurrence and we generate in polynomial time a 3-CNF
formula Σ ′ encoding the corresponding equivalences. For instance, to Σ = ((x1 ⇒1
x2) ∨2 ¬3x3) ⇒ x4, we first associate the following conjunction of equivalences:
(y1 ⇔ (x1 ⇒ x2)) ∧ (y3 ⇔ (¬x3)) ∧ (y2 ⇔ (y1 ∨ y3)) ∧ (y4 ⇔ (y2 ⇒ x4)). The
subscripts associated to each occurrence i of a connective are just used to indicate
the corresponding variable yi . Then, we turn such a conjunction of equivalences
into a 3-CNF formula Σ ′ = (¬y1 ∨ ¬x1 ∨ x2) ∧ (x1 ∨ y1) ∧ (¬x2 ∨ y1) ∧ (¬y3 ∨
¬x3) ∧ (y3 ∨ x3) ∧ (¬y2 ∨ y1 ∨ y3) ∧ (¬y1 ∨ y2) ∧ (¬y3 ∨ y2) ∧ (¬y4 ∨ ¬y2 ∨
x4) ∧ (y2 ∨ y4) ∧ (¬x4 ∨ y4). Σ ′ can be computed in time polynomial in the
size of Σ . It is easy to show that every model ω of Σ over Var(Σ) is extended
by a uniquemodel ω′ of Σ ′ over Var(Σ) ∪ {y1, . . . , ym}: every new variable yi

(i ∈ 1, . . . ,m) is defined in Σ ′ from Var(Σ) = {x1, . . . , xn} [36]. Now, to every
instance 〈Σ,x1 < · · · < xn〉 of MAX-SAT-ASGodd, we associate in polynomial time
the instance 〈Σ ′ ∧ (¬xn ∨ ym+1)∧ (xn ∨¬ym+1), x1 < · · · < xn < y1 < · · · < ym <

ym+1〉 of its restriction to the case the formula is a 3-CNF one. By construction,
the model ωmax of Σ over Var(Σ) that is maximal w.r.t. the lexicographic ordering
induced by x1 < · · · < xn is s.t. ωmax(xn) = true if and only if the model ω′

max
of Σ ′ over Var(Σ ′) that is maximal w.r.t. the lexicographic ordering induced by
x1 < · · · < xn < y1 < · · · < ym < ym+1 is s.t. ω′

max(ym+1) = true.
We now define �MAX-SAT-ASGodd = ⋃

n�0 �MAX-SAT-ASGoddn , where the lan-
guage of �MAX-SAT-ASGoddn contains all pairs 〈�,πn〉 where πn belongs to
MAX-SAT-ASGoddn , i.e., it is a consistent 3-CNF sentence generated from the vari-
ables x1, . . . , xn s.t. the model ωmax of πn that is maximal w.r.t. the lexicographic



92 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

ordering induced by x1 < · · · < xn satisfies ωmax(xn) = true. It is known that

�MAX-SAT-ASGodd is nu-comp�

p

2 -hard (a direct consequence of Theorem 2.13
from [37] since the corresponding MAX-SAT-ASGodd problem is hard for �

p

2 , as
we just proved).
We use the same notation Γn as in the proof above.
Let πn be any instance of MAX-SAT-ASGoddn . Each πn corresponds to an assignment
holds∗1, . . . ,holds∗p of truth values to holds1, . . . ,holdsp s.t. holdsi is evaluated to
true (i.e., holds∗i = true) if and only if γi belongs to πn. Obviously, Γn and πn are
equivalent under the (partial) assignment holds∗1, . . . ,holds∗p .
To each pair 〈�,πn〉 we associate the p + n + 1-vector of constraints

Cn = 〈holds1, . . . ,holdsp,Γn ∧ con, x1, . . . , xn〉,
where con is a new variable (which means “consistent”). Cn depends only on n.
We observe that each πn can be associated to a pair 〈Pπn,απn〉 s.t.

For every i ∈ 1, . . . , p, Pπn [i] = 2n+1(p + 1) if γi belongs to πn, and Pπn[i] = 1
otherwise, Pπn [p + 1] = 2n(p + 1), and for every i ∈ 1, . . . , n, Pπn[p + 1 + i] =
2n−i (p + 1).
απn = xn ∧ con.

Remind here that numbers are represented in binary notation and that the size of πn

is at least n.
The weights are set in such a way every constraint holdsi is among the most
prioritary ones whenever γi belongs to πn, and among the less prioritary ones in
the remaining case. The remaining constraints Γn ∧ conand x1, . . . , xn are put into
n + 1 strata in a decreasing order of priority (no compensation between strata can
be achieved).
By construction, every preferred model ω of 〈Cn,Pπn〉 is such that for every
i ∈ 1, . . . , p, ω(holdsi ) = true if and only if γi belongs to πn. Now, if πn is
inconsistent, then Γn ∧ con is inconsistent as well under the partial assignment
holds∗1, . . . ,holds∗p of truth values associated to πn. Therefore, under this partial
assignment, Cn is independent from con when πn is inconsistent, hence xn ∧ con
cannot be a consequence of 〈Cn,Pπn〉 (if a preferred model ω of 〈Cn,Pπn〉 satisfies
ω(con) = true, then the model that coincides with ω except for variable conalso is
a preferred model of 〈Cn,Pπn〉). Otherwise, πn is consistent and the constraint Γn ∧
con imposes that every preferred model ω of 〈Cn,Pπn〉 satisfies ω(con) = true. The
remaining strata w.r.t. the priority order induced by the weights concern x1, . . . , xn

and they lead to select as a unique preferred model of 〈Cn,Pπn〉 the maximal
model ωmax of πn w.r.t the lexicographic ordering induced by x1 < · · · < xn. Thus,
〈�,πn〉 is a positive instance of �MAX-SAT-ASGoddn if and only if 〈Cn, 〈Pπn,απn〉〉
is a positive instance of INFERENCE (with fixed C and varying 〈P,α〉), and this
completes the proof. �

It must be noted that the compilability results above still hold whenever the hard
constraints are known at the off-line stage (especially, when there is no hard constraint),
and, as to INFERENCE, when the queries α are restricted to literals (while INFERENCE is



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 93

obviously in nu-compP when queries are limited to literals and preferences are in the fixed

part since there is only a polynomial number of literals—see Theorem 2.1 from [11]).

These results simply show that neither the on-line complexity of MODEL CHECKING nor
the on-line complexity of INFERENCE can be lowered by a poly-size pre-processing; this
just reflects in formal terms the basic intuition according to which no useful computation
can be done off-line when preferences are not available (provided that the size of the
compiled form remains polynomial in the input size).

To sum up, the compilability results we derived are mainly negative ones; in particular,
they show that improving inference or model checking in the worst case through pre-
processing is very unlikely when preferences are not fixed (it would lead the polynomial
hierarchy to collapse). Accordingly, rendering on-line inference tractable cannot be
achieved in the worst case, unless the poly-size requirement on the compiled form is
relaxed (or the standard complexity assumptions do not hold). Nevertheless, since non-
compilability results concern the worst case only, they do not prevent a compilation
approach from giving some computational benefits in practice, at least for some weighted
bases.

4. Compiling weighted bases

In this section, we first show how knowledge compilation techniques for improving
clausal entailment can be used in order to compile weighted bases. Then, we present some
complexity results showing that compiling a weighted base is not always a good idea,
since the complexity of inference from a compiled base does not necessarily decrease. We
specifically focus on prime implicates [49], and Horn covers, and renamable Horn covers
compilations [7].

4.1. A framework for weighted bases compilation

Let W = {〈φ1, k1〉, . . . , 〈φn, kn〉} be a weighted base. In the case
∧n

i=1 φi is consistent,
then K(W) = 0 and minW (Ω) is the set of all models of

∧n
i=1 φi . Accordingly,

in this situation, inference |∼W is classical entailment, so it is possible to directly
use any knowledge compilation function and compiling W comes down to compile∧n

i=1 φi . However, this situation is very specific and out of the ordinary when weighted
bases are considered (otherwise, weights would be useless). A difficulty is that, in the
situation

∧n
i=1 φi is inconsistent, we cannot compile directly this sentence using any

equivalence-preserving knowledge compilation function (otherwise, trivialization would
not be avoided). Indeed, in this situation, |∼W is not classical entailment any longer, so a
more sophisticated approach is needed.

In order to compile weighted bases, it is helpful to consider weighted bases in normal
form.

Definition 4.1 (Weighted bases in normal form). A belief base W = {〈φ1, k1〉, . . . , 〈φn, kn〉}
is in normal formif and only if for every i ∈ 1, . . . , n, either ki = +∞ or φi is a literal.



94 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

Every weighted base can be turned into a query-equivalent base in normal form.
Definition 4.2 (V -equivalence of weighted bases). Let W1 and W2 be two weighted bases
and let V ⊆ PS. W1 and W2 are V -equivalentif and only if for every pair of sentences α

and β in PROPV , we have α|∼W1 β precisely when α|∼W2 β .

Accordingly, two V -equivalent weighted bases must agree on queries built up from the
symbols in V . Note that a stronger notion of equivalence can be defined by requiring that
both bases induce the same weight function, i.e., KW1 = KW2 [27]. Finally, note that if
KW1 and KW2 agree on the sentences in PROPV , then W1 and W2 must be V -equival-
ent.

Definition 4.3 (Normalization of a weighted base). Let W = {〈φ1, k1〉, . . . , 〈φn, kn〉} be a

weighted base. The normalizationof W is the weighted base W↓ def= H ∪ S defined as
follows:

H
def= {〈φi,+∞〉 | 〈φi,+∞〉 ∈ W

}
,

S
def= {〈holdsi ⇒ φi,+∞〉, 〈holdsi , ki〉 | 〈φi, ki〉 ∈ W and ki �= +∞}

,

where {holds1, . . . ,holdsn} ⊆ PS\ Var(W).

Obviously, the normalization of a weighted base is in normal form. Intuitively, the
variable holdsi is guaranteed to be false in any world that violates the sentence φi and,
hence, that world is guaranteed to incur the penalty ki . We now have the following
equivalence result between a weighted base and its normalization.

Proposition 4.1. Let W be a weighted base and letW↓ be its normalization. ThenKW

and KW↓ agree on all weights of sentences in PROPVar(W) and, hence,W↓ is Var(W)-
equivalent toW .

Proof. It is immediate to show that if KW and KW↓ agree on all weights of sentences in
PROPVar(W), then W↓ is Var(W)-equivalent to W . Hence, it remains to show that KW and
KW↓ agree on all weights of sentences in PROPVar(W), or, equivalently, to show that for
every world ω ∈ 2Var(W), we have KW (ω) = KW↓(ω). Let ω be any world from 2Var(W).
By definition, we have

KW↓(ω) = min
ω′|=ω

KW↓(ω′),

where ω′ is a world from 2Var(W↓). It is sufficient then to show that:

• KW(ω′) � KW↓(ω′) for all ω′ |= ω, and
• KW(ω′) = KW↓(ω′) for some ω′ |= ω,

which is quite easy. Given the above two conditions, we get

KW↓(ω) = min
ω′|=ω

KW↓(ω′) = min
ω′|=ω

KW(ω′) = KW (ω). �



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 95

Table 1

The weight function KW ↓ for Example 1.1

World KW ↓
a,b,holds1,holds2 +∞
a,b,holds1,¬holds2 1
a,b,¬holds1,holds2 +∞
a,b,¬holds1,¬holds2 3

a,¬b,holds1,holds2 +∞
a,¬b,holds1,¬holds2 +∞
a,¬b,¬holds1,holds2 2
a,¬b,¬holds1,¬holds2 3

¬a,b,holds1,holds2 +∞
¬a,b,holds1,¬holds2 +∞
¬a,b,¬holds1,holds2 +∞
¬a,b,¬holds1,¬holds2 3

¬a,¬b,holds1,holds2 +∞
¬a,¬b,holds1,¬holds2 +∞
¬a,¬b,¬holds1,holds2 2
¬a,¬b,¬holds1,¬holds2 3

Example 1.1 (Continued). The weighted base W of Example 1.1 can be normalized as
follows:

W↓ = {〈
holds1 ⇒ (a ∧ b),+∞〉

,

〈holds2 ⇒ ¬b,+∞〉, 〈holds1,2〉, 〈holds2,1〉}.
The normalized weighted base W↓ induces the weight function given in extension in
Table 1. We have K(W↓) = 1 and

minW↓(Ω) = {
(a, b,holds1,¬holds2)

}
.

Moreover, KW and KW ↓ agree on all sentences constructed from variables in {a, b}.

Let us now focus on some specific weighted bases in normal form:

Definition 4.4 (C-normal weighted base). Let C be any subset of PROPPS. A belief base
W is said to be C-normalif and only if it is in normal form and the unique hard constraint
φ s.t. 〈φ,+∞〉 satisfies φ ∈ C.

It is obvious that every weighted base in normal form can be turned into an equivalent
C-normal one, whenever C is any complete propositional fragment, i.e., for every sentence
φ ∈ PROPPS, there exists a sentence φC ∈ C s.t. φ ≡ φC holds. Indeed, the weight
functions of W↓ = H ∪ S and {〈∧〈φi ,+∞〉∈H φi,+∞〉} ∪ S coincide.7

7 Together with Proposition 4.1, this simple property also shows any weighted base W can be turned into a
weighted base WCNF in which every weighted sentence is a clause and KW and KWCNF agree on every sentence
of PROPVar(W). Computing such a WCNF can be achieved in time linear in |W | as soon as every weighted



96 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

We now have all the ingredients required to present our compilation approach. Given a

ny
weighted base W , the basic idea is to compute a C-normal base that is query-equivalent
to W (i.e., V -equivalent to it, where V = Var(W)), where C is the target class of
an equivalence-preserving compilation function COMP for clausal entailment. Slightly
abusing word, we identify the propositional fragment C with any equivalence-preserving
compilation function COMPhaving C as a target class.

From here on, we will use Ŵ to denote the conjunction of all hard constraints of W ,
i.e., sentences in the weighted base W that have +∞ weights:

Ŵ
def=

∧
〈φi ,+∞〉∈W

φi.

Definition 4.5 (Compilation of a weighted base). Let W = {〈φ1, k1〉, . . . , 〈φn, kn〉} be a
weighted base. Let COMPbe any equivalence-preserving knowledge compilation function.
The COMP-compilation of W is the COMP-normal weighted base

W↓COMP
def= {〈COMP(Ŵ↓),+∞〉}

∪ {〈holdsi , ki〉 | 〈holdsi , ki〉 ∈ W↓ and ki �= +∞}
.

That is, to compile a weighted base W , we perform three steps. First, we compute
a normal form W↓ according to Proposition 4.1, which is guaranteed to be Var(W)-
equivalent to W . Next, we combine all of the hard constraints of W↓ into a single hard
constraint Ŵ↓. Finally, we compile Ŵ↓ using the function COMP.

Example 1.1 (Continued). We have

Ŵ↓ = (¬holds1 ∨ (a ∧ b)
) ∧ (¬holds2 ∨ ¬b).

Accordingly, the Blake-compilation8 of W is{〈
(¬holds1 ∨ a) ∧ (¬holds1 ∨ b) ∧ (¬holds2 ∨ ¬b) ∧ (¬holds1 ∨ ¬holds2),+∞〉

,

〈holds1,2〉, 〈holds2,1〉}.
Note that if Ŵ is consistent, then Ŵ↓ is consistent as well (any model ω of Ŵ over

Var(W) can be extended to a model ω↓ of Ŵ↓ by setting ω↓ |= ¬holdsi for i ∈ 1, . . . , n).
Accordingly, if K(W) �= +∞, then K(W↓) �= +∞.

Given Proposition 4.1, and since COMP is equivalence-preserving, we have:

Corollary 4.1. Let W = {〈φ1, k1〉, . . . , 〈φn, kn〉} be a weighted base. Let COMP be a
equivalence-preserving knowledge compilation function.KW↓COMP andKW agree on the
sentences in PROPVar(W). Hence,W andW↓COMP are Var(W)-equivalent.

sentence in W is in conjunctive normal form; this transformation enables one to take advantage of algorithms for
WEIGHTED-MAX-SAT for computing elements from minW (Ω) for any W .

8 That is, the COMPBlake-compilation of W where COMPBlake is any algorithm for computing prime
implicates.



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 97

It is important to observe here that COMP(Ŵ ) is independentfrom the weights

,
.

associated to the soft constraints. This gives a lot of flexibility to our approach since it
renders possible to change the weights without requiring a re-compilation (as long as soft
constraints do not become hard ones, of course). Thus, assuming that a COMP-compilation
of a weighted base W has been computed and that INFERENCE is tractable from such
a compilation (COMP = DNNF works for it as we will see), Proposition 4.1 shows
that clausal inference from any COMP-normal weighted base obtained by modifying the
weights of some soft constraints (keeping them finite) is still feasible in polynomial time.

4.2. Some complexity results

We next consider a number of tractable classes of sentences, which are target classes
for some existing equivalence-preserving compilation functions COMP:

• The Blakeclass is the set of sentences given in prime implicates normal form;
• The Horn coverclass is the set of disjunctions of Horn CNF sentences;
• The renamable Horn coverclass (r. Horn coverfor short) is the set of the disjunctions

of renamable Horn CNFsentences.

The Blake class is the target class of the compilation function COMPBlake described
in [49]. The Horn cover class and the renamable Horn coverclass are target classes
for the tractable covers compilation functions given in [7]. We shall note respectively
COMPHorn cover and COMPr. Horn cover the corresponding compilation functions.

Accordingly, a Blake (respectively Horn cover, r. Horn cover)-normal weighted base
W is defined as a weighted base in normal form whose unique hard constraint belongs to
the Blake(respectively Horn cover, r. Horn cover) class.

In the next section, we will also focus on the DNNF class. We consider it separately
because—unlike the other classes—it makes clausal inference from the corresponding
normal bases tractable.

Of course, all these compilation functions COMPare subject to the limitation mentioned
above: in the worst case, the size of the compiled form COMP(Σ) is exponential in the
size of Σ . Nevertheless, there is some empirical evidence that some of these approaches
can prove computationally valuable for many instances of the clausal entailment problem
(see e.g., the experimental results given in [7,22,50]).

As indicated previously, knowledge compilation can prove helpful only if inference
from the compiled form is computationally easier than direct inference. Accordingly, it is
important to identify the complexity of inference from a compiled weighted base if we want
to draw some conclusions about the usefulness of knowledge compilation in this context.

When no restriction is put on W , INFERENCE is known as �
p
2 -complete [26], even in

the restricted case queries α are literals. Now, what if W is a C-normal weighted base? We
have identified the following results:

Proposition 4.2. The complexity ofINFERENCE and of its restrictions to literal inference
is �

p

2 -complete whenW is a Blake, Horn cover, orr. Horn cover-normal weighted base



98 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

Proof.
• Membership: all results come directly from the membership to �
p

2 of the more general
problem INFERENCE [26].

• Hardness: all results come from the �
p

2 -hardness of literal (skeptical) inference |∼lex

from a compiled stratified belief base [15] interpreted under the lexicographic policy.
Indeed, if m is the maximum number of sentences belonging to any stratum Bi of
B = (B1, . . . ,Bk), then let WB = {〈φ, (m + 1)k−i〉 | φ ∈ Bi} (see Example 1.2 for an
illustration). Clearly enough, WB can be computed in time polynomial in |B|. We have
B |∼lex α if and only if true |∼WB α. �

According to the complexity results in Proposition 4.2, there is no guarantee that com-
piling a belief base using the Blake(or the Horn coveror the r. Horn cover) compilation
function leads to improve inference since its complexity from the corresponding compiled
bases is just as hard as the complexity of INFERENCE in the general case.

Fortunately, it is not the case that such negative results hold for every compilation
function. As we will see in the next section, DNNF-normal weighted bases exhibit a much
better behaviour.

5. Compiling weighted bases using DNNF

In this section, we focus on DNNF-compilations of weighted bases. After a brief
review of what DNNF sentences are, we show that DNNF-compilations support several
computational tasks in polynomial time: preferred model enumeration (hence model
checking) and (clausal) inference.

5.1. A glimpse at the DNNF LANGUAGE

The DNNF language is a subset of the (DAG)-NNF one:

Definition 5.1 (NNF). Let PS be a finite set of propositional variables. A sentence in
(DAG)-NNF is a rooted, directed acyclic graph (DAG) where each leaf node is labeled
with true, false, x or ¬x , x ∈ PS; each internal node is labeled with ∧ or ∨ and can have
arbitrarily many children.

The DNNF language contains exactly the NNF sentences satisfying the decomposability
property [19,20]:

Definition 5.2 (DNNF). A sentence in DNNF (for “Decomposable NNF”) is a NNF
sentence satisfying the decomposabilityproperty: for each conjunction C in the sentence,
the conjuncts of C do not share variables.

Fig. 1 depicts a DNNF of the hard constraint Ŵ↓, where W is the weighted base given
in Example 1.1. Note here that W↓ is the normal form constructed from W according to
Proposition 4.1, and Ŵ↓ is the conjunction of all hard constraints in W↓.



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 99
Fig. 1. A sentence in DNNF.

Fig. 2. A sentence in smooth DNNF.

Algorithms for translating CNF sentences into equivalent DNNF sentences can be found
in [20,22].

An interesting subset of DNNF is the set of smooth DNNFsentences [20,21]:

Definition 5.3 (Smooth DNNF). A DNNF sentence satisfies the smoothnessproperty if
and only if for each disjunction C in the sentence, each disjunct of C mentions the same
variables.

Interestingly, every DNNF sentence can be turned into an equivalent, smooth one in
polynomial time [21].

For instance, Fig. 2 depicts a smooth DNNF which is equivalent to the DNNF in Fig. 1.
Note that for readability reasons some leaf nodes are duplicated in the figure.

Among the various tasks that can be achieved in a tractable way from a smooth DNNF
sentence are conditioning, clausal entailment, forgettingand model enumeration[20,24,
25].

5.2. Tractable queries

Given a weighted base W , and given a DNNF-compilation of W , we now show how the
compilation can be used to represent the preferred models of W as a DNNF in polynomial
time.

Definition 5.4 (Minimization of a weighted base). A minimizationof a weighted base W is
a propositional sentence ∆ where the models of ∆ are minW(Ω).



100 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

Note that this notion generalizes the notion of minimization of a propositional sentence

φ reported in [19], for which the preferred models are those containing a maximal number
of variables assigned to true. Such a minimization can be easily achieved in a weighted
base setting by considering the base

W = {〈φ,+∞〉} ∪
⋃

x∈Var(φ)

{〈x,1〉}.
Given a partition {P,Q,Z} of PS, our notion of minimization is also sufficient to capture
the cardinality-based circumscription NCIRC(〈P,Q,Z〉)(φ) of a propositional sentence
φ in the restricted case there is no fixed variables (Q = ∅) [38] [40]. Indeed, we have
NCIRC(〈P,∅,Z〉)(φ) ≡ minW (Ω), with

W = {〈φ + ∞〉} ∪
⋃
p∈P

{〈p,1〉}.
Let us now explain how to compute recursively the weight and a minimization of a given
DNNF-normal weighted base; we first need the two following definitions:

Definition 5.5 (Weight of DNNF-normal weighted base). Let W be a DNNF-normal
weighted base. Let 〈α,+∞〉 be the single hard constraint in W , where α is a smooth
DNNF sentence. We define k(α) inductively as follows:

• k(true)
def= 0 and k(false)

def= +∞.
• If α is a literal:

– If 〈α, k〉 ∈ W with k �= +∞, then k(α)
def= k.

– Otherwise, k(α)
def= 0.

• k(α = ∨
i αi)

def= minik(αi).

• k(α = ∧
i αi)

def= ∑
i k(αi).

Definition 5.6 (Minimization of DNNF-normal weighted base). Let W be a DNNF-normal
weighted base. Let 〈α,+∞〉 be the single hard constraint in W , where α is a smooth DNNF
sentence. We define min(α) inductively as follows:

• If α is a literal or a boolean constant, then min(α)
def= α.

• min(α = ∨
i αi)

def= ∨
k(αi)=k(α) min(αi).

• min(α = ∧
i αi)

def= ∧
i min(αi).

We have the following result:

Proposition 5.1. LetW be a DNNF-normal weighted base. Let〈α,+∞〉 be the single hard
constraint inW , whereα is a consistent, smooth DNNF sentence. Then min(α) is a smooth
DNNF and is a minimization ofW .



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 101

Proof. The fact that min(α) is a smooth DNNF is easy to be proved by induction. The

fact that it is a minimization of W is a direct generalization of Theorems 10 and 11
from [20].

The proof is as follows. Let W∗ be the weighted base W \ {〈α,+∞〉}. We first prove
two lemmata about the subsentences α′ of α. For every subsentence α′ of α, we have:

Lemma 1. k(α′) = KW∗(α′).

Lemma 2. Mod(min(α′)) is the set of models of the projections on Var(α′) of the models
of minW∗(Mod(α′)).

Those lemmata can be proved by structural induction on α′.

Proof of Lemma 1. By structural induction:

• Base case.
– α′ = true. Let ω be any interpretation s.t. for every soft constraint φi (where φi is a

literal), we have ω |= φi . By construction, ω is a model of every sentence from W∗.
Hence, KW∗(ω) = 0. Since 0 is the least possible penalty and ω is a model of true,
we have KW∗(true) = 0 = k(true).

– α′ = false. KW∗(false) = minω |= falseKW∗(ω). There are no models of false.
Since min is associative and the neutral element for min is +∞, we have
minω |= falseKW∗(ω) = +∞. Hence, KW∗(false) = +∞.

– α′ = ¬φi where φi is a soft constraint. Let ω be any interpretation s.t. ω |= ¬φi

and for every other soft constraint φj (with j �= i), ω |= φj . By construction,
KW∗(ω) = ki . Since 〈φi, ki〉 ∈ W∗, every model ω′ of ¬φi is s.t. KW∗(ω′) � ki .
Hence, KW∗(¬φi) � ki . Since the minimal value ki is reached by the model ω of
¬φi , we have KW∗(¬φi) = ki = k(¬φi).

– α′ is any literal l, not equivalent to the negation any soft constraint φi . Let ω be any
interpretation s.t. ω |= l and for every soft constraint φi , ω |= φi . By construction,
ω is a model of every sentence from W∗. Hence, KW∗(ω) = 0. Since 0 is the least
possible penalty and ω is a model of l, we have KW∗(l) = 0 = k(l).

• Inductive step.
– α′ is an and-node α′

1 ∧ · · · ∧ α′
p . Since the α′

i do not share any variable, the set
of models of α′ over Var(α′) is the cross-product of the sets of models of the α′i
over their respective sets of variables Var(α′

i ). As an immediate consequence, the
set of preferred (w.r.t. W∗) models of α′ over Var(α′) is the cross-product of the sets
of preferred models of the α′i over their respective sets of variables Var(α′

i ). As a
consequence,

KW∗(α′
1 ∧ · · · ∧ α′

p) =
∑

i=1,...,p

KW∗(α′
i )

=
∑

i=1,...,p

k(α′
i ) (by induction hypothesis)

= k(α′) by construction.



102 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

– α′ is an or-node α′ ∨ · · · ∨ α′
p . By definition,
1

KW∗(α′
1 ∨ · · · ∨ α′

p) = minω |= α′
1∨···∨α′

p

(
KW∗(ω)

)
.

Since Mod(α′
1 ∨ · · · ∨ α′

p) = ⋃p

i=1 Mod(α′
i ), this is also equal to

mini∈1,...,p

(
minω|=α′

i
KW∗(ω)

)
= mini∈1,...,p

(
KW∗(α′

i )
)

= mini∈1,...,p

(
k(α′

i )
)

(by inductive hypothesis)

= k(α′) by construction. �
Proof of Lemma 2. By structural induction:

• Base case.
– α′ = true. Since α′ is consistent, it has some models, hence some preferred models

for W∗. Forgetting all the variables in a consistent sentence gives a sentence
equivalent to true= min(α′) by construction.

– α′ = false. Since α′ has no model, it has no preferred model. Forgetting all the
variables in an inconsistent sentence gives a sentence equivalent to false= min(α′)
by construction.

– α′ is any literal l. Since α′ is consistent, it has some models, hence some preferred
models for W∗. Each of them satisfies l, hence projecting them on Var(l) gives
l = min(α′) by construction.

• Inductive step.
– α′ is an and-node α′

1 ∧ · · · ∧ α′
p . As explained in the proof of Lemma 1 above, the

set of preferred (w.r.t. W∗) models of α′ over Var(α′) is the cross-product of the sets
of preferred models of the α′

i over their respective sets of variables Var(α′
i ). Stated

otherwise, the set of the projections of the preferred models of α′ on Var(α′) is the
cross-product of the sets of the projections of the preferred models of the α′i on the
respective Var(α′

i ). By induction hypothesis, it comes that the set of the projections
of the preferred models of α′ on Var(α′) is the cross-product of the sets of models
of min(α′

i ). Since the α′
i do not share any variables, this cross-product set is equal

to Mod(
∧p

i=1 min(α′
i )), which is also equal to min(α′) by construction.

– α′ is an or-node α′
1 ∨· · ·∨α′

p . Since Mod(α′
1 ∨· · ·∨α′

p) = ⋃p

i=1 Mod(α′
i ), we have

minW∗
(
Mod(α′)

) = minW∗

(
p⋃

i=1

Mod(α′
i )

)
= minW∗

(
p⋃

i=1

minW∗
(
Mod(α′

i )
))

.

Among the models of
⋃p

i=1 minW∗(Mod(α′
i )), the preferred ones (w.r.t. W∗) are

by definition those ω of minimal weight, i.e., those for which KW∗(ω) = KW∗(α′).
Whenever such an ω belongs to minW∗(Mod(α′

i )), then KW∗(α′
i ) = KW∗(α′). Thus,

we have

minW∗
(
Mod(α′)

) =
⋃

i∈1,...,p|KW∗ (α′
i )=KW∗ (α′)

minW∗
(
Mod(α′

i )
)
. (1)



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 103

Let ω[S] be the projection of an interpretation ω on the set S of variables, also

viewed as a term. By construction,

min(α′) =
∨

i∈1,...,p|k(α′
i )=k(α′)

min(α′
i );

equivalently, we have

Mod
(
min(α′)

) =
⋃

i∈1,...,p|k(α′
i)=k(α′)

Mod
(
min(α′

i )
)
.

Lemma 1 shows that k(α′
i ) = KW∗(α′

i ) and k(α′) = KW∗(α′). Hence,

Mod
(
min(α′)

) =
⋃

i∈1,...,p|KW∗(α′
i )=KW∗ (α′)

Mod
(
min(α′

i )
)
.

Now, by induction hypothesis, we have

Mod
(
min(α′

i )
) =

⋃
ω∈minW∗ (Mod(α′

i ))

Mod
(
ω

[
Var(α′

i )
])

.

Since α is a smooth DNNF, we have Var(α′) = Var(α′
1) = · · · = Var(α′

p) for every
subsentence α′ of α. Hence, we have

Mod
(
min(α′

i )
) =

⋃
ω∈minW∗ (Mod(α′

i ))

Mod
(
ω

[
Var(α′)

])
.

We obtain

Mod
(
min(α′)

) =
⋃

i∈1,...,p|KW∗(α′
i )=KW∗ (α′)

⋃
ω∈minW∗ (Mod(α′

i ))

Mod
(
ω

[
Var(α′)

])
.

Taking advantage of Eq. (1), we obtain

Mod
(
min(α′)

) =
⋃

ω∈minW∗ (Mod(α′))
Mod

(
ω

[
Var(α′)

])
,

and this concludes the proof. �
From Lemma 2, we can infer that Mod(min(α)) is the set of the projections on Var(α)

of the models of minW∗(Mod(α)). Since Var(α) = Var(W), the projection step does not
matter here: Mod(min(α)) = minW∗(Mod(α)). Since α is consistent and is the unique
hard constraint of W , we also have minW∗(Mod(α)) = minW(Ω), which concludes the
proof. �

Since every DNNF-compilation of a weighted base W is DNNF-normal, the previous
proposition can be used to derive its minimization represented as a smooth DNNF sentence.

Fig. 3 depicts the weight k(α) of every subsentence α of the smooth DNNF sentence
given in Fig. 2. Fig. 4 (left) depicts the minimization of the DNNF in Fig. 3. Fig. 4 (right)
depicts a simplification of this minimized DNNF which has a single model.



104 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113
Fig. 3. Weights on a smooth DNNF sentence.

Fig. 4. Minimization of a smooth DNNF sentence.

The consistency requirement on α is not very restricting. As mentioned previously, α

is always consistent, except when the original base W is a DNNF-compilation of which
contains an inconsistent hard constraint. In such a pathological situation, the weight of the
base is +∞. Moreover, every world is a preferred model of the weighted base and valid
sentences are its only consequences.

Since min(α) can be computed in time polynomial in the size of DNNF α, and since
clausal entailment can be done in time linear in the size of α [19,20], we have:9

Corollary 5.1. The clausal inference problemINFERENCE for DNNF-normal weighted
bases is inP.

Since model enumeration can be done in output polynomial time from a smooth DNNF,
we also have:

9 The consistency of α can be tested in time linear in the size of α, since α is a DNNF sentence. In the case
α is inconsistent, only valid clauses are its clausal consequences (and they can be tested in polynomial time, of
course), and every world is a preferred model of W , hence, they can be enumerated in output polynomial time.



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 105

Corollary 5.2. The preferred model enumeration problem for DNNF-normal weighted

bases can be solved in output polynomial time.

Especially, this last corollary trivially shows that the model checking problem for
DNNF-normal weighted bases is in P.

6. Application to model-based diagnosis

We now briefly sketch how the previous results can be used to compute the set of most
likely diagnoses of a system in time polynomial in the size of system description and the
output size. The following results generalize those given in [18,21] to the case where the
probability of failure of components is available.

We first need to briefly recall what a consistency-based diagnosis of a system is [48]:

Definition 6.1 (Consistency-based diagnosis).

• A diagnostic systemP = 〈SD,OK〉 is a pair consisting of:
– a sentence SDfrom PROPPS, the system description;
– a finite set OK = {ok1, . . . ,okn} ⊆ PSof propositional symbols. “oki is true” means

that component i of the system to be diagnosed is not faulty.
• A diagnostic problemis a pair 〈P,OBS〉, where P is diagnostic system and OBSis

a diagnostic observation, that is, a term with no variables in OK. It is assumed that
SD∧ OBS is consistent, which means that the observations are considered reliable
(otherwise, it could be the case that the system could not be diagnosed).

• A consistency-baseddiagnosis ∆ for a diagnostic problem 〈P,OBS〉 is a complete
OK-term (i.e., a conjunction of literals built up from OK in which every oki occurs
either positively or negatively) s.t. ∆ ∧ SD∧ OBSis consistent.

Because a system can have a number of diagnoses that is exponential in the number of
its components, preference criteria are usually used to limit the number of candidates. The
most current ones consist in keeping the diagnoses containing as few negative OK-literals
as possible (w.r.t. set inclusion or cardinality).

When the a priori probability of failure of components is available (and such
probabilities are considered independent), the most likely diagnoses for P can also be
preferred. Such a notion of preferred diagnosis generalizes the one based on minimality
w.r.t. cardinality (the latter corresponds to the case the probability of failure of components
is uniform and < 1

2 ).
Interestingly, the most likely diagnoses for P can be enumerated in output polynomial

time as soon as a smooth DNNF-compilation PDNNF corresponding to P has been derived
first.



106 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

Definition 6.2 (Compilation of a diagnostic problem). Let P be a diagnostic system for

for
which the a priori probability of failure pi of any component i is available.

PDNNF
def= {〈DNNF(SD),+∞〉} ∪ {〈oki , log pi〉 | oki ∈ OK

}
is the smooth DNNF-normal weighted base associated with P .

The log transformation performed here enables us to compute the log of the probability
P(∆) = ∏

¬oki∈∆ pi of a diagnosis ∆ as
∑

¬oki∈∆ log pi . Because log is strictly non-
decreasing, the induced preference ordering between diagnoses is preserved.

Proposition 6.1.

• K(PDNNF | OBS) is the log of the probability of any most likely diagnosis
〈P,OBS〉.

• The most likely diagnoses for〈P,OBS〉 are the models of Forget(min(DNNF(SD) |
OBS),PS\ OK).

In this proposition, α | OBSdenotes the conditioning of α on the term OBS, i.e., the
sentence obtained by replacing in � every variable x by true (respectively false) if x

(respectively ¬x) is a positive (respectively negative) literal of OBS. Moreover, for every
sentence φ and every set of variables X, Forget(φ,X) denotes the logically strongest
consequence of φ that is independent from X, i.e., that can be turned into an equivalent
sentence in which no variable from X occurs. Note that forgetting can be applied to
sentence in DNNF in time polynomial in the sentence size [20].

Proof. Since OK ∩ Var(OBS) = ∅ and SD∧ OBS≡ (SD| OBS) ∧ OBS, the consistency-
based diagnoses ∆ for 〈P,OBS〉 are the projections on OK of the models of SD| OBS. The
most likely ones are those in ∆ for which logP(∆) = ∑

¬oki∈∆ logpi is minimal.
On the other hand, by construction, the preferred models of the conditioned weighted

base PDNNF | OBSare the models ω of DNNF(SD) | OBSs.t. Σ¬oki∈ω logpi is minimal.
Now, since DNNF is equivalence-preserving, the preferred models of PDNNF | OBSare the
models ω of SD| OBSs.t.

∑
¬oki∈ω logpi is minimal. Accordingly, K(PDNNF | OBS) is

equal to
∑

¬oki∈ω logpi where ω is any preferred model of SD| OBS. Subsequently, the
most likely consistency-based diagnoses ∆ for 〈P,OBS〉 are the projections on OK of the
preferred models of PDNNF | OBSand logP(∆) = K(PDNNF | OBS). Finally, Proposition
5.1 shows that the models of min(DNNF(SD) | OBS) are the preferred models of PDNNF |
OBS, so the models of Forget(min(DNNF(SD) | OBS),PS\OK) are the projections on OK
of the models of min(DNNF(SD) | OBS), and this completes the proof. �

Since forgetting variables in a DNNF sentence can be done in polynomial time [19,20],
and the models of a smooth DNNF sentence can be generated in time polynomial in the
output size [20], we obtain:



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 107

Corollary 6.1. The most likely diagnoses for a diagnostic problem〈P,OBS〉 can be

enumerated in time polynomial in the size ofPDNNF.

As far as we know, our compilation approach is the first one enabling to derive the most
likely diagnoses of a system in output polynomial time once the system description has
been pre-processed.

7. Other related work

Our work can be related to other previous work, which can be classified into three
categories depending on the main objective: identifying compilability or complexity
results, designing compilation techniques for propositional bases, applying such techniques
to real-world problems, like diagnosis and configuration.

7.1. Compilability and complexity results

Our compilability results are based on the framework of [9–12]. But although the
compilability of circumscription and belief revision have been investigated before [9,13],
we know of no previous treatment for the compilability of model checking and inference
from weighted bases.

Our results complete in some sense some of the complexity results pointed out in [14,
31,41], where the complexity of inference from stratified belief bases, interpreted under
various policies, is identified in the general case and under some restrictions. While [14,41]
focused on the Horn CNF case, we have considered other restrictions, like the one where
the hard constraints are encoded as a DNNF sentence while the other pieces of belief are
literals (this is what we called a DNNF-normal base). Interestingly, we have considered
fragments that are complete for propositional logic: any weighted base can be compiled in
our framework, even if it is not composed of Horn CNF sentences.

7.2. Compilation techniques

Our work is more closely related to approaches focusing on the compilation of
stratified belief bases, mainly [5,14,15]. As shown in the paper, every stratified belief base
skeptically interpreted under the lexicographic policy (or any restriction of it, especially
the cardinality maximisation policy) can be turned in polynomial time into a weighted
base. Once this is done, our compilation approach can be used. There is no obvious
converse poly-time translation, so we do not know how to use compilation approaches
for stratified belief bases whenever some compensations between weights are useful (like
in the application to consistency-based diagnosis).

A very basic approach to implement inference from a weighted base W consists in
computing the set S of all preferred subbases of W , i.e., those containing the constraints
of W satisfied by a preferred model of W . Indeed, a query α is a consequence of W if
and only if it is entailed by every element of S; thus, once S has been computed, inference
is reduced to classical entailment, which is “only” coNP-complete in the general case.



108 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

Clearly enough, this approach amounts to knowledge compilation: the generation of the

set of preferred subbases is the compilation step.

However, the basic approach is generally not interesting for several reasons. First
of all, the compiled form S of a weighted base W may easily be exponentially larger
than W , while one of our compilability results show that it is possible to derive a
polyspace propositional sentence that is query-equivalent to W , when preferences are
fixed. Furthermore, S cannot be computed incrementally from W in the general case since
some removed pieces of belief can reappear later on; starting from S only, it is not always
possible to compute the preferred subbases of W extended with a new sentence (this comes
easily from similar results for stratified bases [3]).

In our approach, a compiled base is query-equivalent to the original one: no information
is lost, and the compilation step can be done in an incremental way (provided that the
compilation function that is used admits sentences from its target class as part of the input).
Incrementality is not always a decisive computational advantage but this may be the case in
some situations, especially when “small changes” are performed (in this case, updating the
compiled form is often less expensive than re-compiling the base from scratch). Besides,
our approach is much more flexible than the basic one. Thus, many knowledge compilation
functions can be used within it (and some of them may achieve the objective of keeping the
size “small enough” for some instances). Especially, when DNNF is used as a target class,
inference from the compiled form is tractable (while it is not the case from S in the general
case); furthermore, in this situation, it is known that the only exponential factor in the (time
and space) complexity of the algorithm dnnf2 (reported in [20]) for generating DNNF(Ŵ )

is the width of the decomposition tree generated from a CNF of Ŵ (see Theorem 16 from
[20]). Even if computing such a tree with optimal width is computationally hard, there are
poly-time algorithms enabling to compute “good” decomposition trees from the practical
side. This permits one to predict an upper bound of the size of DNNF(Ŵ). Our approach
also offers the opportunity to modify the weight of any soft constraint “for free” (i.e.,
without requiring any expensive re-compilation step), as long as it is kept finite, while
this is not the case when the basic approach is considered. The possibility to change
the penalties given to some pieces of belief is important for at least two reasons. First,
when designing a weighted base, some weight adjustments can be necessary, guided by
the discrepancy between the set of expected conclusions and the set of achieved ones.
Secondly, in a multi-agent setting where all agents are subject to the same hard constraints
but may have different preferences (encoded as soft constraints), it is not necessary to
handle (and compile) one base per agent but one for the whole group. This situation occurs,
for instance, when timetables must be designed (the hard constraints are shared by the
agents, but they usually have different preferences).

A more sophisticated compilation-based approach to inference from stratified belief
bases is reported in [5]. It aims at computing a propositional sentence equivalent to a
stratified belief base, skeptically interpreted under the lexicographic policy. While our
compilability results show how to derive a polyspace sentence query-equivalent to the
original base, the size of the compiled base computed following the approach presented
in [5] may be exponential in the size of the original base. Nevertheless, compared with the
basic approach, the approach presented in [5] has the major advantage that no information
is lost during the compilation step, which can be achieved in an incremental way. Unlike



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 109

our approach, it does not offer the possibility to “change the weights”, i.e., to re-partition

the belief base into new strata without requiring a re-compilation of the base; and unlike
our approach when DNNF is used as a target class, it does not ensure that inference from
the resulting base is tractable.

In [15], C-compilations of stratified belief bases have been introduced and the
complexity of skeptical inference from such bases investigated for several tractable
fragments C. In this paper, we have exploited some hardness results given in [15] to obtain
similar hardness results, but in a different setting (penalty logic). We have also considered
other tractable fragments, especially the DNNF one, that have not been taken into account
in [15]. There is also a tractability result in [15] for skeptical inference from stratified
belief bases interpreted under the inclusion-based policy when C is the DNF fragment,
which is strictly less succinct than DNNF [20,24]. We did not obtain a similar result in
the penalty logic framework (since the inclusion-based policy is not directly relevant to
penalty logic) but we conjecture that such a tractability result cannot be extended to the
case C = DNNF.

In [14], an approach to compile stratified belief bases skeptically interpreted under the
lexicographic policy into a OBDD sentence is proposed. From such sentences, inference
is shown tractable. This approach (which inspired our work) will first convert the given
stratified belief base into an equivalent weighted base in normal form. Especially, the
compiled forms that are generated are exactly what we call OBDD-compilations in our
framework. Our approach extends [14] in two directions. On the one hand, other tractable
fragments C can be considered as target classes, especially the DNNF one, and DNNF-
normal bases are as tractable as OBDD-normal bases as to model checking and inference.
Furthermore, since DNNF is strictly more succinct than OBDDas a propositional fragment
(see [20,24]), smaller compiled forms can be expected and this is very important from
the practical side. On the other hand, while Proposition 5.1 still holds when OBDD-
compilations are considered (cf. Theorem 3 from [14]), it cannot be extended to the
larger class of OBDD-normal weighted bases. The reason is that OBDD sentences are
non-smooth in the general case. Indeed, consider the weighted base

W = {〈
OBDD(¬a ∨ ¬b),+∞〉

, 〈a,1〉, 〈b,2〉},
where OBDD(¬a∨¬b) is a (reduced) OBDDsentence equivalent to ¬a∨¬b and obtained
by considering variable a before variable b. W is an OBDD-normal weighted base. Its
minimization, according to the extension of Theorem 3 from [14] to OBDD-normal bases,
would be equivalent to ¬a, while ¬a ∧ b is expected. The restriction imposed by Theorem
3 from [14] to bases subject to normalization is significant from the practical side since (1)
normalizing the base through the introduction of new variables holdsi may easily lead to an
exponential increase in the size of the OBDD compiled form, and (2) for many problems,
the input base is already in normal form so the introduction of additional variables is useless
(that is the case for the bases associated to consistency-based diagnosis problems, as shown
previously in the paper). Contrastingly, our Proposition 5.1 can be directly applied to
DNNF-normal weighted bases.



110 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

7.3. Applications
Now, from the application point of view, it is shown in [18,21] how the minimum-
cardinality consistency-based diagnoses of a system can be enumerated in output
polynomial time once the system description has been compiled into a DNNF sentence.
Our approach extends the proposed technique by accounting for the probability component
failure. This refinement is obtained “for free” from a computational point of view and
it is important from the practical side since the set of most likely diagnoses can be
exponentially smaller than the set of minimum-cardinality diagnoses. In particular, in a
diagnosis approach where the search for diagnoses is interleaved with some additional
measurements for discriminating among them, focusing on the most likely diagnoses may
easily lead to significant time savings.

Finally, it appears that the cluster tree compilation technique described in [43,44] can
be used to improve inference from propositional weighted bases. Such an approach has
been evaluated on a specific (but challenging) application—the vehicle sales configuration
for the automotive industry at Renault (one of the major companies in France)—and
the corresponding configuration engine has exhibited very interesting performances. In
particular, the ability to take weights (penalties) into account appeared as a major feature
and it is not shared by many configuration engines. The cluster tree “compilation”
technique is based on a divide-and-conquer principle: it exploits the fact that instantiating
some variables is sufficient to make some propositional constraints logically independent
from other constraints. Such a divide-and-conquer principle is the key idea of many
propagation algorithms for probabilistic inference (or more generally in valuation algebras,
see, e.g., [34]) and classical inference (see, e.g., [1,28]). It is also at the very core of the
DNNF fragment (the other main idea at work is common subsentences sharing). In [43],
the compiled form that is generated is a tree-structured set of sets of interpretations: the
conjunction ΣV of all input constraints that are built up from a given cluster V of variables
is compiled into a MODS sentence (i.e., the set of models of ΣV over V [25]). Such
a set of MODS sentences is conjunctively interpreted. Interestingly, each ΣV could be
compiled into a DNNF sentence (instead of a MODSone) without questioning in depth the
propagation algorithm. That way, more compact “compiled forms” could be derived (since
DNNF is strictly more succinct than MODS[25]).

8. Conclusion

In this paper, we have studied how knowledge compilation can be used to improve
model checking and inference from propositional weighted bases. We have first presented
compilability results showing that computational benefits are hard to be expected in the
worst case, as soon as preferences are subject to change. Then, we have presented a general
notion of C-normal weighted base that is parametrized by any tractable class C for the
clausal entailment problem. We have shown how every weighted base can be compiled
into a query-equivalent C-normal base whenever C is a complete class for propositional
logic. Both negative and positive results have been put forward. On the one hand, we have
shown that the inference problem from a C-normal weighted base is as difficult as in the



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 111

general case, when prime implicates, Horn cover or renamable Horn cover target classes

are considered. On the other hand, we have shown that this problem becomes tractable
whenever DNNF-normal bases are used. Finally, we have sketched how our results can be
used in model-based diagnosis in order to compute the most likely diagnoses of a system.

This work calls for several perspectives, both from the theoretical side and from
the practical side. From the theoretical side, one of the issues would be to extend our
compilation approach to other weighted logics, especially those for which the aggregation
function at work is not additive. From the practical side, we plan to experiment our DNNF-
compilation algorithms on the instance X64 of Renault, described in [43] (10813 clauses
on 658 variables).

Acknowledgements

Many thanks to the anonymous reviewers for many interesting comments and sugges-
tions. The first author has been partially supported by NSF grant IIS-9988543 and MURI
grant N00014-00-1-0617.The second author has been partly supported by the IUT de Lens,
the Université d’Artois, the Région Nord/Pas-de-Calais through the IRCICA Consortium,
and by the European Community FEDER Program.

References

[1] E. Amir, S. McIlraith, Partition-based logical reasoning, in: Proc. of the 7th International Conference on
Knowledge Representation and Reasoning (KR-00), Breckenridge, CO, 2000, pp. 389–400.

[2] S. Benferhat, C. Cayrol, D. Dubois, J. Lang, H. Prade, Inconsistency management and prioritized syntax-
based entailment, in: Proc. IJCAI-93, Chambéry, France, 1993, pp. 640–645.

[3] S. Benferhat, D. Dubois, J. Lang, H. Prade, A. Saffiotti, P. Smets, A general approach for inconsistency
handling and merging information in prioritized knowledge bases, in: Proc. of the 6th International
Conference on Knowledge Representation and Reasoning (KR-98), Trento, Italy, 1998, pp. 466–477.

[4] S. Benferhat, D. Dubois, H. Prade, How to infer from inconsistent beliefs without revising, in: Proc.
IJCAI’95, Montreal, Quebec, 1995, pp. 1449–1455.

[5] S. Benferhat, S. Kaci, D. Le Berre, M.-A. Williams, Weakening conflicting information for iterated revision
and knowledge integration, in: Proc. IJCAI’99, Seattle, WA, 2001, pp. 109–115.

[6] B. Borchers, J. Furman, A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems,
J. Combin. Optim. 2 (4) (1999) 299–306.

[7] Y. Boufkhad, E. Grégoire, P. Marquis, B. Mazure, L. Saïs, Tractable cover compilations, in: Proc. IJCAI’97,
Nagoya, Japan, 1997, pp. 122–127.

[8] M. Cadoli, F.M. Donini, A survey on knowledge compilation, AI Comm. 10 (1997) 137–150 (printed in
1998).

[9] M. Cadoli, F.M. Donini, P. Liberatore, M. Schaerf, The size of a revised knowledge base, Artificial
Intelligence 115 (1) (1999) 25–64.

[10] M. Cadoli, F.M. Donini, P. Liberatore, M. Schaerf, Space efficiency of propositional knowledge representa-
tion formalisms, J. Artificial Intelligence Res. 13 (2000) 1–31.

[11] M. Cadoli, F.M. Donini, P. Liberatore, M. Schaerf, Preprocessing of intractable problems, Inform. and
Comput. 176 (2) (2002) 89–120.

[12] M. Cadoli, F.M. Donini, M. Schaerf, Is intractability of non-monotonic reasoning a real drawback?, Artificial
Intelligence 88 (1996) 215–251.

[13] M. Cadoli, F.M. Donini, M. Schaerf, R. Silvestri, On compact representations of propositional circumscrip-
tion, Theoret. Comput. Sci. 182 (1997) 183–202.



112 A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113

[14] C. Cayrol, M.-C. Lagasquie-Schiex, Th. Schiex, Nonmonotonic reasoning: From complexity to algorithms,

Ann. Math. Artificial Intelligence 22 (3–4) (1998) 207–236.

[15] S. Coste-Marquis, P. Marquis, Compiling stratified belief bases, in: Proc. of the 14th European Conference
on Artificial Intelligence (ECAI-00), Berlin, 2000, pp. 23–27.

[16] M. Dalal, Semantics of an anytime family of reasoners, in: Proc. of the 12th European Conference on
Artificial Intelligence (ECAI-96), Budapest, 1996, pp. 360–364.

[17] A. Darwiche, A symbolic generalization of probability theory, Ph.D. Thesis, Stanford University, 1992.
[18] A. Darwiche, Compiling devices: A structure-based approach, in: Proc. of the 6th International Conference

on Knowledge Representation and Reasoning (KR-98), Trento, Italy, 1998, pp. 156–166.
[19] A. Darwiche, Compiling knowledge into decomposable negation normal form, in: Proc. IJCAI-99,

Stockholm, Sweden, 1999, pp. 284–289.
[20] A. Darwiche, Decomposable negation normal form, J. ACM 48 (4) (2001) 608–647.
[21] A. Darwiche, On the tractability of counting theory models and its application to belief revision and truth

maintenance, J. Appl. Non-Classical Logics 11 (1–2) (2001) 11–34.
[22] A. Darwiche, A compiler for deterministic decomposable negation normal form, in: Proc. AAAI-02,

Edmonton, AB, 2002, pp. 627–634.
[23] A. Darwiche, M. Goldszmidt, On the relation between kappa calculus and probabilistic reasoning, in: Proc.

of the 10th Conference on Uncertainty in Artificial Intelligence (UAI-94), San Francisco, CA, 1994, pp. 145–
153.

[24] A. Darwiche, P. Marquis, A perspective on knowledge compilation, in: Proc. IJCAI-99, Seattle, WA, 2001,
pp. 175–182.

[25] A. Darwiche, P. Marquis, A knowledge compilation map, J. Artificial Intelligence Res. 17 (2002) 229–264.
[26] F. Dupin de St Cyr, Gestion de l’évolutif et de l’incertain en logiques pondérées, Ph.D. Thesis, Université

Paul Sabatier, 1996.
[27] F. Dupin de St Cyr, J. Lang, Th. Schiex, Penalty logic ans its link with Dempster–Shafer theory, in: Proc. of

the 10th Conference on Uncertainty in Artificial Intelligence (UAI-94), San Francisco, CA, 1994, pp. 204–
211.

[28] R. Dechter, J. Pearl, Tree clustering for constraint networks, Artificial Intelligence 38 (3) (1989) 353–366.
[29] R. Dechter, I. Rish, Directional resolution: The Davis–Putnam procedure, revisited, in: Proc. of the 4th

International Conference on Knowledge Representation and Reasoning (KR-94), Bonn, Germany, 1994,
pp. 134–145.

[30] A. del Val, Tractable databases: how to make propositional unit resolution complete through compilation,
in: Proc. of the 4th International Conference on Knowledge Representation and Reasoning (KR-94), Bonn,
Germany, 1994, pp. 551–561.

[31] Th. Eiter, Th. Lukasiewicz, Default reasoning from conditional knowledge bases: Complexity and tractable
cases, Artificial Intelligence 124 (2) (2000) 169–241.

[32] M. Goldszmidt, Qualitative probabilities: A normative framework for commonsense reasoning, Technical
Report R-190, University of California at Los Angeles, Ph.D. Thesis, 1992.

[33] P. Hansen, B. Jaumard, Algorithms for the maximum satisfiability problem, Computing 44 (1990) 279–303.
[34] J. Kohlas, P.P. Shenoy, Computation in valuation algebras, in: Algorithms for Uncertain and Defeasible

Reasoning, in: Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5, Kluwer
Academic, Dordrecht, 2000, pp. 5–39.

[35] C. Lafage, J. Lang, Logical representation of preferences for group decision making, in: Proc. of the 7th
International Conference on Knowledge Representation and Reasoning (KR-00), Breckenridge, CO, 2000,
pp. 457–468.

[36] J. Lang, P. Marquis, Complexity results for independence and definability in propositional logic, in: Proc. of
the 6th International Conference on Knowledge Representation and Reasoning (KR-98), Trento, Italy, 1998,
pp. 356–367.

[37] P. Liberatore, Monotonic reductions, representative equivalence, and compilation of intractable problems,
J. ACM 48 (6) (2001) 1091–1125.

[38] P. Liberatore, M. Schaerf, Relating belief revision to circumscription (and vice versa), Artificial Intelli-
gence 93 (1–2) (1997) 261–296.

[39] P. Marquis, Knowledge compilation using theory prime implicates, in: Proc. IJCAI-95, Montreal, Quebec,
1995, pp. 837–843.



A. Darwiche, P. Marquis / Artificial Intelligence 157 (2004) 81–113 113

[40] Y. Moinard, Note about cardinality-based circumscription, Artificial Intelligence 119 (2000) 259–273.

[41] B. Nebel, Belief revision, in: Handbook of Defeasible Reasoning and Uncertainty Management Systems,

vol. 3, Kluwer Academic, Dordrecht, 1998, pp. 77–145, Chapter: How hard is it to revise a belief base?.
[42] Ch. Papadimitriou, Computational complexity, Addison-Wesley, Reading, MA, 1994.
[43] B. Pargamin, Vehicle sales configuration: the cluster tree approach, in: Proc. of the ECAI-02 Workshop on

Configuration, Lyon, 2002.
[44] B. Pargamin, Extending cluster tree compilation with non-boolean variables in product configuration:

A tractable approach to preference-based configuration, in: Proc. of the IJCAI-03 Workshop on Configu-
ration, Acapulco, Mexico, 2003.

[45] G. Pinkas, Propositional nonmonotonic reasoning and inconsistency in symmetric neural networks, in: Proc.
IJCAI-91, Sydney, Australia, 1991, pp. 525–530.

[46] G. Pinkas, Reasoning, nonmonotonicity and learning in connectionnist networks that capture propositional
knowledge, Artificial Intelligence 77 (1995) 203–247.

[47] G. Pinkas, R.P. Loui, Reasoning from inconsistency: a taxonomy of principles for resolving conflict, in: Proc.
of the 3rd International Conference on Knowledge Representation and Reasoning (KR-92), Cambridge, MA,
1992, pp. 709–719.

[48] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57–95.
[49] R. Reiter, J. de Kleer, Foundations of assumption-based truth maintenance systems: Preliminary report, in:

Proc. AAAI-87, Seattle, WA, 1987, pp. 183–188.
[50] R. Schrag, Compilation for critically constrained knowledge bases, in: Proc. AAAI-96, Portland, OR, 1996,

pp. 510–515.
[51] B. Selman, H.A. Kautz, Knowledge compilation and theory approximation, J. ACM 43 (1996) 193–224.
[52] Y. Shang, B.W. Wah, Discrete Lagrangian-based search for solving MAX-SAT problems, in: Proc. IJCAI-97,

Nagoya, Japan, 1997, pp. 377–383.
[53] W. Spohn, Ordinal conditional functions: A dynamic theory of epistemic states, in: W.L. Harper, B. Skyrms

(Eds.), Causation in Decision, Belief Change, and Statistics, vol. 2, 1987, pp. 105–134.
[54] I. Wegener, The Complexity of Boolean Functions, Wiley–Teubner, Stuttgart, 1987.


