
Compiling Relational Bayesian Networks for

Exact Inference

Mark Chavira, Adnan Darwiche

Computer Science Department, UCLA, Los Angeles, CA 90095

Manfred Jaeger

Institut for Datalogi, Aalborg Universitet, Fredrik Bajers Vej 7 E,
DK-9220 Aalborg Ø

Abstract

We describe in this paper a system for exact inference with relational Bayesian
networks as defined in the publicly available Primula tool. The system is based
on compiling propositional instances of relational Bayesian networks into arithmetic
circuits and then performing online inference by evaluating and differentiating these
circuits in time linear in their size. We report on experimental results showing
successful compilation and efficient inference on relational Bayesian networks, whose
Primula–generated propositional instances have thousands of variables, and whose
jointrees have clusters with hundreds of variables.

Key words: Exact Inference, Relational Models, Bayesian Networks

1 Introduction

Relational probabilistic models extend Bayesian network models by repre-
senting objects, their attributes, and their relations with other objects. The
standard approach for inference with a relational model is based on the gen-
eration of a propositional instance of the model in the form of a classical
Bayesian network, and then applying classical algorithms, such as jointree [1],
to compute answers to queries.

Email addresses: chavira@cs.ucla.edu (Mark Chavira),
darwiche@cs.ucla.edu (Adnan Darwiche), jaeger@cs.aau.dk (Manfred Jaeger).

Preprint submitted to Elsevier Science 20 June 2006

The propositional instance of a relational model includes one Boolean random
variable for each ground relational atom. For example, if we have n domain ob-
jects o1, . . . , on, and a binary relation R(., .), we generate a propositional vari-
able for each instance of the relation: R(o1, o1), R(o1, o2), . . . , R(on, on). The
first task in making Bayesian networks over these random variables tractable
for inference is to ensure that the size of the Bayesian network representation
does not show exponential growth in the number n of domain objects (as can
easily happen due to nodes whose in-degree grows as a function of n). This
can often be achieved by decomposing nodes with high in-degree into suitable,
sparsely connected sub-networks using a number of new, auxiliary nodes. This
approach is systematically employed in the Primula system. Even when a
reasonably compact Bayesian network representation (i.e., polynomial in the
number of objects) has been constructed for a propositional instance, this
model will often be inaccessible to standard algorithms for exact inference,
because its global structure does not lead to tractable jointrees.

Even though the constructed networks may lack the global structure that
would make them accessible to standard inference techniques, they may very
well exhibit abundant local structure in the form of determinism. The objective
of this paper is to describe a system for inference with propositional instances
of relational models which can exploit this local structure, allowing us to reason
very efficiently with some relational models whose propositional instances may
look quite formidable at first. Specifically, we employ the approach proposed
by [2] to compile propositional instances of relational models into arithmetic
circuits, and then perform online inference by evaluating and differentiating
the compiled circuits in time linear in their size. As our experimental results
illustrate, this approach can efficiently handle some relational models whose
Primula–generated propositional instances are quite massive. 1 We note here
that the inference approach of [2] is applicable to any Bayesian network, but
is especially effective on networks with local structure, including determinism.
Hence, one of the main points of this paper is to illustrate the extent of local
structure available in propositional instances of relational models, and the
effectiveness in exploiting this local structure by the approach proposed in [2].

This paper is structured as follows. We start in Section 2 with a review of
relational models in general and the specific formalization used in this paper.
We then discuss in Section 3 the Primula system, which implements this
formalization together with a method for generating propositional instances
in the form of Bayesian networks. Section 4 is then dedicated to our proposed

1 Some may recall the technique of zero–compression which can be used to exploit
determinism in the jointree framework [3]. This technique, however, requires that
one perform inference on the original jointree before it is zero–compressed, mak-
ing almost all of our data sets inaccessible to this method. For a more detailed
relationship to jointree inference, the reader is referred to [4].

2

A B

true true θb|a = 0

true false θb̄|a = 1

false true θb|ā = .7

false false θb̄|ā = .3

A

true θa = .6

false θā = .4

Fig. 1. A Bayesian net with two of its CPTs.

approach for compiling relational models. We provide experimental results in
Section 5, and finally close with some concluding remarks in Section 6.

2 Relational Models

A Bayesian network is a compact representation of a probability distribution
and has two parts: a directed acyclic graph and a set of conditional probability
tables (CPTs). Each node in the graph represents a random variable, which
we assume to be discrete in this paper. Each variable X has associated with
it a CPT, which specifies the conditional probabilities Pr(x | u), where u is a
configuration of the parents U of X in the network.

A Bayesian network over a set of variables specifies a unique probability dis-
tribution over these variables. Probabilistic queries with respect to a Bayesian
network are to be interpreted as queries with respect to the probability table
the network specifies. The main goal of algorithms for Bayesian networks is
to answer such queries without having to construct the table explicitly, since
the table’s size is exponential in the number of network variables. Figure 1
depicts a simple Bayesian network with two of its CPTs.

Relational or first–order probabilistic models extend propositional modeling
supported by Bayesian networks by allowing one to represent objects explic-
itly, and to define relations over these objects. Most of the early work on such
generic models, which has been subsumed under the title knowledge-based
model construction (see e.g. [5]), combines elements of logic–programming
with Bayesian networks. Today one can distinguish several distinct repre-
sentation paradigms for relational and first–order models: (inductive) logic-
programming based approaches [6–8], network fragments [9], frame–based rep-
resentations [10,11], and probabilistic predicate logic formulas [12]. We review
relational models with an example.

3

Fig. 2. (a) A simple alarm scenario, (b) the corresponding Bayesian network, and
(c) a graph depicting the particulars of the situation, as opposed to what is common
to all alarm situations.

2.1 An Example

Consider the well–known example depicted in Figure 2(a), in which Holmes
becomes alarmed if he receives a call from his neighbor Watson. Watson will
likely call if an alarm has sounded at Holmes’ residence, which is more likely
if a burglary occurs. However, Watson is a prankster, so Holmes may receive
a call even if the alarm does not sound. We can model this example with a
Bayesian network as shown in Figure 2(b). A query might be the probability
that there is a burglary given that Holmes is alarmed. We could also consider
similar scenarios. Holmes might have multiple neighbors (only some of whom
are pranksters) and become alarmed if any of them calls. There might be
multiple individuals who can receive calls, each with distinct neighbors. Or it
might be that individuals share neighbors and individuals who receive calls
can also make them. For each of these scenarios, we can construct a distinct
Bayesian network. Moreover, we can imagine needing to deal with many of
these situations, and hence needing to construct many different networks.

Each of the situations described represents a combination of various themes,
such as the theme of an alarm compelling a neighbor to call or an individual
becoming alarmed when some neighbor calls. Relational models address do-
mains involving themes by separating the model construction process into two
phases. We first describe a set of general rules that apply to all situations. For
example, in the alarm domain described, we need four rules:

(1) At a given residence, the probability of burglary is 0.005.
(2) A particular alarm sounds with probability 0.95 if a burglary occurs at

the corresponding residence, and with probability 0.01 otherwise.
(3) If an alarm sounds at an individual’s residence, then each of the individ-

ual’s neighbors will call with probability 0.9; otherwise, if the neighbor is
a prankster, then the neighbor will call with probability 0.05; otherwise,

4

the neighbor will not call.
(4) An individual is alarmed if one or more neighbors call.

We highlight here that whether an individual is alarmed depends on the num-
ber of the individual’s neighbors, which makes this domain difficult represent
with a template–based language.

Once we have specified what is common to all situations, in order to specify a
particular situation, we only need specify a small amount of additional infor-
mation. In the alarm example, that information consists of which individuals
are involved (other than burglars), who are neighbors of whom, and who are
pranksters. We specify a graph where nodes represent individuals, edges cap-
ture the neighbor relationship, and each node is marked if the corresponding
individual is a pranktser. Figure 2(c) depicts the graph corresponding to the
situation in Figure 2(a).

One of the main advantages of using a relational model is that a relational
model describes a situation involving themes succinctly. This advantage often
makes constructing a relational model much easier and less error–prone than
constructing a Bayesian network. For example, it is not uncommon for a re-
lational model with a dozen or so general rules to correspond to a Bayesian
network that involves hundreds of thousands of CPT parameters. Another ad-
vantage is that much of the work performed in constructing a relational model
can be directly re-used in describing variations of the model, whereas creating
another Bayesian network can involve much more work.

2.2 Relational Bayesian Networks

We use in this paper the language of relational Bayesian networks [12] to
represent relational models, as implemented in the Primula system available
at http://www.cs.aau.dk/∼jaeger/Primula. The formal semantics of the lan-
guage is based on Random Relational Structure Models (rrsms), which we
define next.

Definition 1 Given (1) a set of relational symbols S, called predefined re-
lations; (2) a set of relational symbols R, called probabilistic relations; and
(3) a finite set D, called the domain; we define an SD-structure to be an
interpretation of relations S over domain D, that is, a function which maps
every ground atom s(d) (s ∈ S, d ⊆ D) to either true or false. We also define a
Random Relational Structure Model (rrsm) as a partial function which takes
an SD-structure as input, and returns a probability distribution over all RD-
structures as output.

5

Intuitively, members of domain D represent objects, and members of S and
R represent relations that can hold on these objects. These relations can be
unary in which case they are called attributes. A user would typically define
the relations in S (by providing an SD–structure), and then use an rrsm to
induce a probability distribution over the possible definitions of relations in
R (RD–structures). We note here that SD–structures correspond to skeleton
structures in [11]. For the alarm example above, the set D of objects is
the set of individuals. The set of predefined relations S contains a unary
relation, prankster, in addition to a binary relation neighbor. There are four
probabilistic relations in R for this domain. The first is calls(v, w): whether
v calls w in order to warn w that his alarm went off. We also have another
probabilistic relation alarmed(v): whether v has been alarmed (called by at
least one neighbor). A third is the relation alarm(v): whether v’s alarm went
off. The last probabilistic relation is burglary(v): whether v’s home has been
burglarized. The rrsm is the set of four generic rules described previously.

We now describe four rrsms used in our experiments. These models have been
implemented in Primula, which provides a syntax for specifying rrsm.

Random Blocks. This model describes the random placement of blocks (ob-
stacles) on the locations of a map. The input structures consist of a particular
gridmap and a set of blocks. This is represented using a set of predefined rela-
tions S = {location,block,leftof,belowof} where location and block are attributes
that partition the domain into the two types of objects, and leftof and belowof
are binary relations that determine the spatial relationship among locations.
Figure 3 shows an input SD–structure. One of the probabilistic relations in R
for this model is the binary relation blocks(b, l) which represents the random
placement of a block b on some location l. Another is connected(l1, l2) between
pairs of locations which describes whether, after placement of the blocks, there
is an unblocked path between l1 and l2. A probabilistic query might be the
probability that there is an unblocked path between two locations l1 and l2,
given the observed locations of some blocks (but uncertainty about the place-
ment of the remaining ones). We experiment with different versions of this
relational model, blockmap–l–b, where l is the number of locations and b the
number of blocks.

B1 B2

Blocks

Locations

1 2 3

54
leftof

belowof

Fig. 3. Input SD–structure.

Mastermind. In the game of Mastermind, Player 1 arranges a hidden se-
quence of colored pegs. Player 2 guesses the exact sequence of colors by ar-

6

ranging guessed sequences of colored pegs. To each guessed sequence, Player
1 responds by stating how many pegs in the guess match pegs in his hidden
sequence both in color and position (white feedback), and how many pegs in
the guess match pegs in the hidden sequence only in color (black feedback).
Player 2 wins if he guesses the hidden sequence within a certain number of
rounds. The game can be represented as an rrsm where the domain D con-
sists of objects of types peg, color, and round specified by corresponding unary
relations in S, as well as binary relations peg-ord and round-ord in S that
impose orders on the peg and round objects, respectively. The probabilistic
relations R in the model represent the game configurations after a number of
rounds: true-color(p, c) represents that c is the color of the hidden peg p;
guessed-color(p, c, r) represents that in round r color c was placed in posi-
tion p in the guess. Similarly, the arrangement of the feedback pegs can be
encoded. A query might be the most probable color configuration of the hid-
den pegs, given the observed query and feedback pegs. We experiment with
different versions of this model, mastermind–c–g–p, where c is the number of
colors, g is the number of guesses, and p is the number of pegs.

Students and Professors. This domain was used by [13] to investigate meth-
ods for approximate inference for relational models. We have two types of ob-
jects in this model: students and professors and two corresponding attributes
in the set S. Professors have two probabilistic attributes in R: fame (yes/no)
and funding level (high/low). Students have one probabilistic attribute in
R: success (yes/no). Students and professors are related via the binary prob-
abilistic relation advisor(s, p) in R. According to the model, students use
the softmax rule, and choose advisor i with funding level yi with probability
eyi/

∑
k eyk . With the funding level discretized into two categories high and

low, this reduces to choosing any given rich (poor) professor with probability
zh/(Kzh + Lzl) (zl/(Kzh + Lzl)), where K is the number of rich professors,
L is the number of poor professors, and zh, zl are the (exponentials of) the
funding levels of rich, respectively poor, professors. The probability of success
of a student is defined conditional on the funding level. A query for this model
can be the probabilities for a professor’s funding level, given the success of his
students. Inference in this model becomes hard very quickly with increasing
numbers of professors and students in the domain [13]. We will experiment
with different versions of this relational model, students–p–s, where p is the
number of professors and s is the number of students.

Friends and Smokers. This domain was introduced in [14]. It involves a
number of individuals, with relations in R, such as smokes(v), which indicates
whether a person smokes, cancer(v), which indicates whether a person has
cancer, and friends(u, v), which indicates who are friends of whom. There are
no relations in S for this model. The probabilistic model over R is defined by
assigning weights to logical constraints, such as friends(u, v)∧smokes(u) →
smokes(v). A query for this model might be the probability that a person has

7

cancer given information about others who have cancer. The Primula encod-
ing of this model utilizes auxiliary probabilistic relations corresponding to the
logical constraints. In ground instances of the model these auxiliary variables
manifest themselves as variables in the Bayesian network, on which evidence
should be asserted to indicate that they are always true. We experiment with
different versions of this relational model, fr&sm–n, where n is the number of
people in the domain.

3 The Primula System

The rrsm is an abstract semantics of probabilistic relational models. For a
practical system, one needs a specific syntax for specifying an rrsm. Prim-
ula allows users to encode rrsms using the language of relational Bayesian
networks [12], and outputs the distribution on RD–structures in the form of a
standard Bayesian network.

3.1 Specifying rrsms using Primula

We now provide an example of specifying an rrsm using Primula. Con-
sider again the alarm example from Section 2.1 and recall that for this ex-
ample, the domain is the set of individuals, the set of predefined relations is
S = {prankster(v), neighbor(v, w)}, and the set of probabilistic relations
is R = {calls(v, w), alarm(v), alarmed(v), burglary(v)}. The probability of
calls(v, w) is defined conditional on the predefined neighbor and prankster re-
lations (it is 0 if v and w are not neighbors), and on the probabilistic alarm(v)
relation: whether the alarm of v went off.

This rrsm is specified in Primula as given in Figure 4, which provides the
probability distribution on probabilistic relations using probability formulas.
These formulas can be seen either as probabilistic analogues of predicate logic
formulas, or as expressions in a functional programming language. A probabil-
ity formula defines both the dependency structure between ground probabilis-
tic atoms (which depends on the predefined relations in the input structure),
and the exact conditional probabilities, given the truth values of parent atoms.

The specification of the rrsm provides some intuition for why a logic–based
approach might work well when applied to Primula generated networks. In
addition to certain numbers, we also see in this specification a number of logical
constructs. For example, each of the occurrences of (x : y, z) is essentially an
application of an if–then–else, and the noisy-or construct is essentially an
existential quantification, which can be converted into a disjunction over a

8

burglary(v) = 0.005;
alarm(v) = (burglary(v):0.95,0.01);
calls(v,w) = (neighbor(v,w):

(prankster(v)):
(alarm(w):0.9,0.05),
(alarm(w):0.9,0)),0);

alarmed(v)=n-or{ calls(w,v)|w:neighbor(w,v)}

Fig. 4. Specifying an rrsm using Primula.

DOMAIN: Holmes, Watson, Gibbon;

RELATION: prankster/1 {2};
RELATION: neighbor/2 {(0,1) (0,2) (1,0) (2,0)};

Fig. 5. Specifying an SD structure using Primula.

set of auxiliary variables. The utilization of these logical constructs is quite
common in relational models.

3.2 From relational to propositional networks

To instantiate a generic relational model in Primula, one must provide a
definition of an input SD–structure. For the rrsm defined in Figure 4, one
must define the set of individuals in domain D, and then one must define
which of these individuals are pranksters (by defining the attribute prankster),
and who are neighbors of whom (by defining the relation neighbor). Prim-
ula provides a GUI for this purpose, but one can also supply a file–based
definition of the domain and corresponding S relations. Figure 5 presents
what one of these files might look like. This file defines the domain to be
D = {Holmes, Watson,Gibbon} and specifies that Gibbon is a prankster, that
Holmes is a neighbor of Watson and Gibbon and that Watson and Gibbon
are neighbors of Holmes.

Given the above inputs, the distribution over probabilistic relations can be
represented, as described in Section 1, using a standard Bayesian network with
a node for each ground probabilistic atom. Our example also illustrates how
the in-degree of a node can grow as a function of the number of domain objects:
the node alarmed(Holmes), for instance, depends on calls(w,Holmes) for all
of Holmes’s neighbors w (of which there might be arbitrarily many).

The Primula system employs the general method described in [15] to decom-
pose the dependency of a node on multiple parents. This method consists of
an iterative algorithm that takes the probability formula defining the distribu-
tion of a node, decomposes it into its top–level subformulas—by introducing
one new auxiliary node for each of these subformulas—and defines the prob-

9

ability of the original node conditional only on the new auxiliary nodes. This
method can be applied to any relational Bayesian network that only contains
multi-linear combination functions (including noisy-or and mean), and yields
a Bayesian network where the number of parents is bounded by three for all
nodes.

Even when one succeeds in constructing a standard Bayesian network of a
manageable representation size, inference in this network may be computation-
ally very hard. It is a long-standing open problem in first-order and relational
modeling whether one might not design inference techniques that avoid these
complexities of inference in the ground propositional instances by performing
inference directly on the level of the relational representation, perhaps em-
ploying techniques of first-order logical inference. Complexity results derived
in [16] show that one cannot hope for a better worst-case performance with
such inference techniques. This still leaves the possibility that they could often
lead to substantial gains in practice.

Recent work has described high-level inference techniques that aim at achiev-
ing such gains in average-case performance [17,18]. The potential advantage
of this and similar techniques seems to be restricted, however, to relational
models where individual model instances are given by relatively unstructured
input structures, i.e., input structures containing large numbers of indistin-
guishable objects. The potential of high-level inference techniques lies in their
ability to deal with such sets of objects without explicitly naming each ob-
ject individually. However, in the type of relational models we are consider-
ing here, the input structures consist of mostly unique objects (in Random
Blocks, for instance, the block objects are indistinguishable, but all location
objects have unique properties defined by the belowof and leftof relations).
We can identify an input structure with the complete ground propositional
theory that defines it (for the structure of Figure 3 this would be the theory
block(B1)∧¬location(B1)∧ . . .∧leftof(2, 3)∧ . . .∧¬belowof(5, 5)), and,
informally, characterize highly structured input structures as those for which
this propositional theory admits no simple first-order abstraction. When a re-
lational model instance, now, is given by an input structure that cannot be
succinctly encoded in an abstract, first-order style representation, chances are
very small that probabilistic inference for this model instance can gain much
efficiency by operating on a non-propositional level.

It thus appears that at least for a fairly large class of interesting models more
advantages might be gained by optimizing inference techniques for ground
propositional models, than by non-propositional inference techniques.

Table 1 depicts the relational models with which we experimented, together
with the size of corresponding propositional Bayesian networks generated by
Primula. The table also reports the size of the largest cluster for the jointree

10

we constructed for these networks. Obviously, most of these networks are in-
accessible to mainstream, structure–based algorithms for exact inference. Yet,
we will show later that all of these particular models can be handled efficiently
using the compilation approach we propose in this paper.

4 Compiling Relational Models

We describe in this section the approach we use to perform exact inference
on propositional instances of relational models, which is based on compiling
Bayesian networks into arithmetic circuits [2]. Inference can then be performed
using a simple two–pass procedure in which the circuit is evaluated and dif-
ferentiated given evidence.

4.1 Bayesian networks as polynomials

The compilation approach we adopt is based on viewing each Bayesian net-
work as a very large polynomial (multi–linear function in particular), which
may be compactly represented using an arithmetic circuit. The function itself
contains two types of variables. For each value x of each variable X in the
network, we have a variable λx called an evidence indicator. For each instan-
tiation x,u of each variable X and its parents U in the network, we have a
variable θx|u called a network parameter. The multi–linear function has a term
for each instantiation of the network variables, which is constructed by mul-
tiplying all evidence indicators and network parameters that are consistent
with that instantiation. For example, the multi–linear function of the network
in Figure 1 has 8 terms corresponding to the 8 instantiations of variables
A, B, C: f = λaλbλcθaθb|aθc|a+ λaλbλc̄θaθb|aθc̄|a+ . . . + λāλb̄λc̄θāθb̄|āθc̄|ā. Given
this multi–linear function f , we can answer standard queries with respect to
its corresponding Bayesian network by simply evaluating and differentiating
this function; see [2] for details.

The ability to compute answers to probabilistic queries directly from the
derivatives of f is interesting semantically, but one must realize that the size
of function f is exponential in the number of network variables. Yet, one
may be able to factor this function and represent it more compactly using
an arithmetic circuit. An arithmetic circuit is a rooted DAG, in which each
leaf represents a variable or constant and each internal node represents the
product or sum of its children; see Figure 6. If we can represent the network
polynomial efficiently using an arithmetic circuit, then inference can be done
in time linear in the size of such circuits, since the (first) partial derivatives
of an arithmetic circuit can all be computed simultaneously in time linear in

11

Fig. 6. Factoring multi–linear functions into arithmetic circuits.

the circuit size [2].

4.2 Compiling the network polynomial into an arithmetic circuit

We now turn to the approach for compiling/factoring network polynomials
into arithmetic circuits, which is based on reducing the factoring problem
to one of logical reasoning [19]. This approach is based on three conceptual
steps, as shown in Figure 6. First, the network polynomial is encoded using a
propositional theory. Next, the propositional theory is factored by converting
it to a special logical form. Finally, an arithmetic circuit is extracted from the
factored propositional theory. 2

Step 1: Encoding a multi–linear function using a propositional the-
ory. The purpose of this step is to specify the network polynomial using a
propositional theory. To illustrate how a multi–linear function can be specified
using a propositional theory, consider the following function f = ac + abc + c
over real–valued variables a, b, c. The basic idea is to specify this multi–linear
function using a propositional theory that has exactly three models, where
each model encodes one of the terms in the function. Specifically, suppose

2 A similar approach has been recently proposed in [20], which calls for encod-
ing Bayesian networks into CNFs, and reducing probabilistic inference to weighted
model counting on the generated CNFs. The approach is similar in two senses. First,
the weighted model counting algorithm applied in [20] is powerful enough to factor
the CNF as suggested by Step 2 below—see [21]. Second, the factored logical form
we generate from the CNF in Step 2 is tractable enough to allow weighted model
counting in time linear in the form size [22,23].

12

we have the Boolean variables Va, Vb, Vc. Then the propositional theory ∆f =
(Va ∨ ¬Vb) ∧ Vc encodes the multi–linear function f as follows:

Model Va Vb Vc encoded term

σ1 true false true ac

σ2 true true true abc

σ3 false false true c

That is, model σ encodes term t since σ(Vj) = true precisely when term t
contains the real–valued variable j. This method of specifying network poly-
nomials allows one to easily capture local structure; that is, to declare certain
information about values of polynomial variables. For example, if we know that
parameter a = 0, then we can exclude all terms that contain a by conjoining
¬Va with our encoding.

Step 2: Factoring the propositional encoding. If we view the conversion
of a network polynomial into an arithmetic circuit as a factoring process,
then the purpose of this second step is to accomplish a similar task but at
the logical level. Instead of starting with a polynomial (set of terms), we
start with a propositional theory (set of models). And instead of building an
arithmetic circuit, we build a Boolean circuit that satisfies certain properties.
Specifically, the circuit must be in Negation Normal Form (NNF): a rooted
DAG where leaves are labeled with literals, and where internal nodes are
labeled with conjunctions or disjunctions; see Figure 6. The NNF must satisfy
three properties: (1) conjuncts cannot share variables (decomposability), (2)
disjuncts must be logically exclusive (determinism), and (3) disjuncts must
be over the same variables (smoothness). The NNF in Figure 6 satisfies the
above properties, and encodes the multi–linear function shown in the same
figure. In our experimental results, we use a second generation compiler for
converting CNFs to NNFs that are decomposable, deterministic and smooth
(smooth d-DNNF) [24].

Step 3: Extracting an arithmetic circuit. The purpose of this last step
is to extract an arithmetic circuit for the polynomial encoded by an NNF. If
∆f is an NNF that encodes a network polynomial f , and if ∆f is a smooth
d-DNNF, then an arithmetic circuit for the polynomial f can be obtained
easily. First, replace and–nodes in ∆f by multiplications; then replace or–
nodes by additions; and finally, replace each leaf node labeled with Vx by x
and each node labeled with ¬Vx by 1. The resulting arithmetic circuit is then
guaranteed to correspond to polynomial f [19]. Figure 6 depicts an NNF and
its corresponding arithmetic circuit. Note that the generated arithmetic circuit
is no larger than the NNF. Hence, if we attempt to minimize the size of NNF,
we are also attempting to minimize the size of generated arithmetic circuit.

13

4.3 Encoding Primula’s networks

The encoding step described above is semantic; that is, it describes the the-
ory ∆f which encodes a multi–linear function by describing its models. As
mentioned earlier, the Primula system generates propositional instances of
relational models in the form of classical Bayesian networks. We now turn to
the question of how to syntactically represent in CNF the multi–linear func-
tion of a network so generated. We start with the baseline encoding defined
in [19], which applies to any Bayesian network. The CNF has one Boolean
variable Iλ for each indicator variable λ, and one Boolean variable Pθ for each
parameter variable θ. CNF clauses fall into three sets. First, for each network
variable X with domain x1, x2, . . . , xn, we have:

Indicator clauses : Iλx1
∨ Iλx2

∨ . . . ∨ Iλxn

¬Iλxi
∨ ¬Iλxj

, for i < j

For example, variable B from Figure 1 generates the following clauses:

Iλb
∨ Iλb̄

, ¬Iλb
∨ ¬Iλb̄

(1)

These clauses ensure that exactly one indicator variable for B appears in every
term of the multi–linear function. The second two sets of clauses correspond
to network parameters. In particular, for each parameter θxn|x1,x2,...,xn−1 , we
have:

IP clause : Iλx1
∧ Iλx2

∧ . . . ∧ Iλxn
⇒ Pθxn|x1,x2,...,xn−1

PI clauses : Pθxn|x1,x2,...,xn−1
⇒ Iλxi

, for each i

For example, parameter θb|a in Figure 1 generates the following clauses:

Iλa ∧ Iλb
⇒ Pθb|a , Pθb|a ⇒ Iλa , Pθb|a ⇒ Iλb

(2)

These clauses ensure that θb|a appears in a term iff the λa and λb appear. The
encoding as discussed does not capture information about parameter values
(local structure). However, it is quite easy to encode information about de-
terminism within this encoding. Consider again Figure 1 and the parameter
θb|a = 0, which generates the clauses in Equation 2. Given that this parameter
is known to be 0, all multi–linear terms that contain this parameter must van-
ish. Therefore, we can suppress the generation of a Boolean variable for this
parameter, and then replace the above clauses by the single clause: ¬Iλa∨¬Iλb

.

14

This clause has the effect of eliminating all CNF models which correspond to
vanishing terms, those containing the parameter θb|a.

To this basic encoding we apply some optimizations:

• Primula generated networks contain only binary variables. Therefore, in-
stead of using one propositional variable for each evidence indicator λx,
which would be needed in general, we use one propositional variable IX

for each Bayesian network variable X, where the positive literal IX rep-
resents indicator λx, and the negative literal ¬IX represents indicator λx̄.
Not only does this cut the number of indicator variables by half, but it also
relieves the need for indicator clauses. For example, without the enhance-
ment, variable B in Figure 1 generates Boolean variables Iλb

and Iλb̄
and

the two clauses in Equation 1. With the optimization, B generates only
a single Boolean variable IB and no clauses. This optimization requires a
corresponding modification to the decoding step as indicated below.

• Another enhancement results from the observation that the Boolean indi-
cators and parameters corresponding to the same state of a network root
variable are logically equivalent, making it possible to delete the parame-
ter variables and the corresponding IP and PI clauses, which establish the
equivalence. The Boolean indicator thus represents both an indicator and
a parameter. For example, without the enhancement, parameter θa in Fig-
ure 1 generates one Boolean variable Pθa and two clauses, IA ⇒ Pθa and
Pθa ⇒ IA. With the enhancement, the variable and clauses are omitted.
This optimization requires a corresponding modification to the decoding
step as indicated below.

• Variables and clauses generated by parameters equal to 1 are redundant and
therefore omitted.

Applying these enhancements allows us to create the CNF as follows. For each
network variable X, we create propositional variable IX . If X is not a root,
then we perform three more steps. (1) For each network parameter θx|u not
equal to 0 or 1, create a propositional variable Pθx|u . (2) For each parameter
θx|u1,u2...,un equal to 0, create clause ¬LU1 ∨ ¬LU2 ∨ . . . ∨ ¬LUn ∨ ¬LX , where
LUi

is a literal over variable IUi
whose sign is the the same as ui, and similarly

for LX with respect to x. (3) For each parameter θx|u1,u2,...,un not equal to 0
and not equal to 1, create clauses, LU1 ∧ LU2 ∧ . . . ∧ LUn ∧ Lx ⇒ Pθx|u1,...,un

,
Pθx|u1,...,un

⇒ LU1 , Pθx|u1,...,un
⇒ LU2 , . . ., Pθx|u1,...,un

⇒ LUn , Pθx|u1,...,un
⇒ LX ,

where LUi
and LX are as defined earlier. As an example, the CPT for variable

B in Figure 1 generates the following clauses:

1st CPT row: ¬IA ∨ ¬IB

3nd CPT row: ¬IA ∧ IB ⇒ Pθb|ā , Pθb|ā ⇒ ¬IA, Pθb|ā ⇒ IB

4th CPT row: ¬IA ∧ ¬IB ⇒ Pθb̄|ā
, Pθb̄|ā

⇒ ¬IA, Pθb̄|ā
⇒ ¬IB.

15

Because Primula generates networks with binary variables and nodes with
at most three parents, this encoding leads to a CNF whose size is linear in
the number of network variables. Table 1 depicts the size of CNF encodings
for the relational models with which we experimented.

The special encoding used above calls for a slightly different decoding scheme
for transforming a smooth d-DNNF into an arithmetic circuit. Specifically, if
X is not a root, then literals IX and ¬IX are replaced with evidence indicators
λx and λx̄, respectively. If X is a root, then literals IX and ¬IX are replaced
with λx ∗ θx and λx̄ ∗ θx̄, respectively. Moreover, literals Pθx|u and ¬Pθx|u are
replaced by θx|u and 1, respectively. Finally, conjunctions and disjunctions are
replaced by multiplications and additions.

We close this section by pointing the reader to [25], which discusses more re-
cent and sophisticated encodings to handle Bayesian networks with context–
specific–independence [26], multi–valued variables, large CPTs, and lesser
amounts of determinism.

5 Experimental Results

We ran our experiments on a 1.6GHz Pentium M with 2GB of RAM using a
system available for download at http://reasoning.cs.ucla.edu/ace. Table 1 lists
for each relational model a number of instances, and for each instance a number
of measurements. First is the size and connectivity of the Bayesian network
that Primula generated. Primula generates networks in formats acceptable
by general purpose tools such as Hugin and Netica, but exact inference in these
tools cannot handle most of these networks. Next is the number of variables
and clauses in the CNF encodings. Clauses have at most five literals since the
networks have at most three parents per node.

Table 1 shows additional findings. First, the table shows the size of the com-
piled arithmetic circuit in terms of both number of nodes and edges (count
and log base 2). We also show the time it takes to evaluate and differenti-
ate the circuit, averaged over 31 different randomly generated evidence sets.
By evaluating and differentiating the circuit, one obtains marginals over all
network families, in addition to other probabilities discussed in [2].

The main points to observe are the efficiency of online inference on compiled
circuits and the size of these circuits compared to the size and connectivity of
the Bayesian networks. Table 1 also shows the time for jointree propagation
using the SamIam inference engine (http://reasoning.cs.ucla.edu/samiam) on
instances whose cluster size was manageable. One can see the big difference
between online inference using the compiled AC and corresponding jointrees.

16

Relational Bayesian Network CNF Encoding Arithmetic Circuit AC Time JT

Model Vars CPT Max Vars Clauses Nodes Edges Inf Comp Inf

Params Clst Count Log (sec) (min) (sec)

mastermind

C–R–P

03–08–03 1220 8326 23 1328 4379 26021 339505 18.4 0.029 1 8.25

04–08–03 1418 9802 26 1580 5252 71666 541356 19.0 0.052 1 57.48

05–08–03 1616 11278 32 1832 6125 149982 942167 19.8 0.093 1

06–08–03 1814 12754 37 2084 6998 258228 1523888 20.5 0.152 1

10–08–03 2606 18658 54 3092 10490 1293323 4315566 22.0 0.684 3

03–08–04 2288 16008 31 2432 8292 186351 4859201 22.2 0.300 2

04–08–04 2616 18488 39 2832 9712 932355 19457308 24.2 1.734 5

03–08–05 3692 26186 40 3872 13453 1359391 55417639 25.7 4.325 10

students

P–S

03–02 376 2616 25 618 2131 7927 37281 15.2 0.005 1 6.14

03–06 764 5512 50 1454 5147 110196 595737 19.2 0.056 1

03–12 1346 9856 59 2708 9671 24219 113876 16.8 0.018 1

04–08 1571 11566 72 3099 11099 95649 445410 18.8 0.053 2

04–16 2827 21070 101 5859 21115 181166 815461 19.6 0.093 3

05–10 2774 20688 128 5624 20279 630092 2531230 21.3 0.289 3

05–20 5064 38168 148 10734 38889 1319834 5236257 22.3 1.844 7

06–12 4445 33454 176 9209 33353 4586368 16936504 24.0 3.212 14

06–24 8201 62302 233 17693 64325 9922233 36450231 25.1 12.966 33

blockmap

L–B

05–01 700 4784 18 708 2412 1255 3364 11.7 0.005 1 2.70

05–02 855 5898 21 875 2999 1751 12306 13.6 0.006 1 6.36

05–03 1005 6972 23 1035 3561 2833 20636 14.3 0.007 1 27.39

10–01 5650 40070 52 5670 20083 10147 56998 15.8 0.014 1

10–02 6252 44444 53 6292 22318 11978 309176 18.2 0.026 1

10–03 6848 48758 52 6908 24529 17749 974817 19.9 0.058 2

15–01 16497 116048 68 16525 58094 29347 224826 17.8 0.035 2

15–02 17649 124298 70 17709 62299 33011 1798085 20.8 0.109 3

15–03 18787 132436 68 18877 66443 47475 7643307 22.9 0.380 6

20–01 39297 278138 90 39335 139164 69208 726787 19.5 0.094 6

20–02 41337 292760 90 41413 146570 75299 6989375 22.7 0.376 10

20–03 43356 307220 92 43476 153910 105602 40172434 25.3 2.453 30

22–01 54318 386842 104 54360 193526 96424 1103074 20.1 0.141 10

22–02 56873 405240 103 56957 202830 103980 11707536 23.5 0.823 20

22–03 59404 423452 104 59536 212056 44136 76649302 26.2 4.665 61

fr&sm

N

1 10 46 3 16 44 21 22 4.5 0.001 1 0.00

4 262 1600 13 430 1442 327 380 8.6 0.004 1 0.08

7 1225 7798 36 2023 7007 1,404 1,686 10.7 0.005 1

19 3385 21880 70 5605 19655 3,686 4,211 12.0 0.007 1

13 7228 47086 118 11986 42302 7,689 8,616 13.1 0.013 1

16 13240 86656 172 21976 77864 13,919 15,394 13.9 0.016 1

19 21907 143830 244 36385 129257 22,824 25,214 14.6 0.028 1

22 33715 221848 316 56023 199397 34,877 38,210 15.2 0.040 2

25 49150 323950 412 81700 291200 50,651 55,249 15.8 0.063 3

28 68698 453376 528 114226 407582 70,541 76,273 16.2 0.082 3

29 76212 503150 560 126730 452342 78,203 84,874 16.4 0.107 6

Table 1
Relational Bayesian networks, their corresponding propositional instances, and the
sizes of their CNF encodings.

17

Table 1 finally shows the compile time to generate the arithmetic circuits.
The compile times range from less than a minute to about 60 minutes for the
largest model. Yet the time for online inference ranges from milliseconds to
about 13 seconds for these models. This clearly shows the benefit of offline
compilation in this case, whose time can be amortized over online queries.

Friends and smokers produces networks with particularly high connectivity.
We mentioned previously that logical constraints in this model give rise to
grounded Bayesian networks with evidence that applies to all queries. One
might hope that classical pruning techniques—such as deleting leaf nodes not
part of the query or evidence [27] and deleting edges exiting evidence nodes
[28]—might reduce the connectivity of these networks, making them accessible
to classical inference algorithms. This possibility is not realized though since
all of the evidence occur on leaf nodes. However, we can use the method of [29]
to place this evidence into the CNF encoding and compile with the evidence.
In particular, if we know that network variable A corresponds to a logical
constraint that must be true, then we simply add a unit clause λa to the CNF
encoding. In fact, injecting these unit clauses into the CNF encoding prior
to compilation has a critical effect on both compilation time and AC size, as
most of these networks could not be compiled otherwise.

6 Conclusion

We described in this paper an inference system for relational Bayesian net-
works as defined by Primula. The proposed inference approach is based on
compiling propositional instances of these models into arithmetic circuits. The
approach exploits determinism in relational models, allowing us to reason effi-
ciently with some relational models whose Primula–generated propositional
instances contain thousands of variables, and whose jointrees contain hun-
dreds of variables. The described system appears to significantly expand the
scale of Primula–based relational models that can be handled efficiently by
exact inference algorithms. It is also equally applicable and effective to any
Bayesian network that exhibits similar properties (e.g., determinism), regard-
less of whether it is synthesized from a relational model.

Acknowledgments

This work has been partially supported by NSF grant IIS-9988543 and MURI
grant N00014-00-1-0617.

18

References

[1] F. V. Jensen, S. Lauritzen, K. Olesen, Bayesian updating in recursive graphical
models by local computation, Computational Statistics Quarterly 4 (1990) 269–
282.

[2] A. Darwiche, A differential approach to inference in Bayesian networks, Journal
of the ACM 50 (3) (2003) 280–305.

[3] F. Jensen, S. K. Andersen, Approximations in Bayesian belief universes
for knowledge based systems, in: Proceedings of the Sixth Conference on
Uncertainty in Artificial Intelligence (UAI), Cambridge, MA, 1990, pp. 162–
169.

[4] J. Park, A. Darwiche, A differential semantics for jointree algorithms, Artificial
Intelligence 156 (2004) 197–216.

[5] J. S. Breese, R. P. Goldman, M. P. Wellman, Introduction to the special section
on knowledge-based construction of probabilistic and decision models, IEEE
Transactions on Systems, Man, and Cybernetics 24 (11) (1994) 1577–1579.

[6] T. Sato, A statistical learning method for logic programs with distribution
semantics, in: Proceedings of the 12th International Conference on Logic
Programming (ICLP’95), 1995, pp. 715–729.

[7] S. Muggleton, Stochastic logic programs, in: L. de Raedt (Ed.), Advances in
Inductive Logic Programming, IOS Press, 1996, pp. 254–264.

[8] K. Kersting, L. de Raedt, Towards combining inductive logic programming and
Bayesian networks, in: Proceedings of the Eleventh International Conference on
Inductive Logic Programming (ILP-2001), Springer Lecture Notes in AI 2157,
2001.

[9] K. B. Laskey, S. M. Mahoney, Network fragments: Representing knowledge
for constructing probabilistic models, in: Proceedings of the Thirteenth
Annual Conference on Uncertainty in Artificial Intelligence (UAI–97), Morgan
Kaufmann Publishers, San Francisco, CA, 1997, pp. 334–341.

[10] D. Koller, A. Pfeffer, Probabilistic frame-based systems, in: Proceedings of the
Fifteenth National Conference on Artificial Intelligence (AAAI-98), 1998, pp.
580–587.

[11] N. Friedman, L. Getoor, D. Koller, A. Pfeffer, Learning probabilistic relational
models, in: Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI-99), 1999.

[12] M. Jaeger, Relational Bayesian networks, in: D. Geiger, P. P. Shenoy (Eds.),
Proceedings of the 13th Conference of Uncertainty in Artificial Intelligence
(UAI-13), Morgan Kaufmann, Providence, USA, 1997, pp. 266–273.

19

[13] H. Pasula, S. Russell, Approximate inference for first-order probabilistic
languages, in: Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), 2001, pp. 741–748.

[14] M. Richardson, P. Domingos, Markov logic networks, Tech. rep., Department
of Computer Science and Engineering, University of Washington, Seattle, WA,
to appear in the special issue of the Machine Learning Journal on Statistical
Relational Learning and Multi-Relational Data Mining (in press).

[15] M. Jaeger, Complex probabilistic modeling with recursive relational Bayesian
networks, Annals of Mathematics and Artificial Intelligence 32 (2001) 179–220.

[16] M. Jaeger, On the complexity of inference about probabilistic relational models,
Artificial Intelligence 117 (2000) 297–308.

[17] D. Poole, First-order probabilistic inference, in: Proceedings of IJCAI-2003,
2003.

[18] R. de Salvo Braz, E. Amir, D. Roth, Lifted first-order probabilistic inference, in:
Proceedings of the Nineteenth Int. Joint Conf. on Artificial Intelligence (IJCAI-
05), 2005, pp. 1319–1325.

[19] A. Darwiche, A logical approach to factoring belief networks, in: Proceedings
of KR, 2002, pp. 409–420.

[20] T. Sang, P. Beame, H. Kautz, Solving Bayesian networks by weighted model
counting, in: Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI-05), Vol. 1, AAAI Press, 2005, pp. 475–482.

[21] J. Huang, A. Darwiche, DPLL with a trace: From sat to knowledge compilation,
in: Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI), 2005, pp. 156–162.

[22] A. Darwiche, P. Marquis, A knowlege compilation map, Journal of Artificial
Intelligence Research 17 (2002) 229–264.

[23] A. Darwiche, P. Marquis, Compiling propositional weighted bases, Artificial
Intelligence 157 (1-2) (2004) 81–113.

[24] A. Darwiche, New advances in compiling CNF to decomposable negational
normal form, Tech. Rep. D–141, Computer Science Department, UCLA, Los
Angeles, Ca 90095, to appear in ECAI’04 (2004).

[25] M. Chavira, A. Darwiche, Compiling Bayesian networks with local structure, in:
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI), 2005, pp. 1306–1312.

[26] C. Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Context–specific
independence in Bayesian networks, in: Proceedings of the 12th Conference
on Uncertainty in Artificial Intelligence (UAI), 1996, pp. 115–123.

[27] R. D. Shachter, Evaluating influence diagrams, Operations Research 34 (6)
(1986) 871–882.

20

[28] S. Ross, Evidence absorption and propagation through evidence reversals,
in: Proceedings of the 5th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-90), Elsevier Science Publishing Company, Inc., New York,
NY, 1990.

[29] M. Chavira, D. Allen, A. Darwiche, Exploiting evidence in probabilistic
inference, in: Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI), 2005, pp. 112–119.

21

