
University of California

Los Angeles

Sensitivity Analysis of

Probabilistic Graphical Models

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Hei Chan

2005

c© Copyright by

Hei Chan

2005

The dissertation of Hei Chan is approved.

Phil Kellman

Stefano Soatto

Richard Korf

Adnan Darwiche, Committee Chair

University of California, Los Angeles

2005

ii

To my parents

For their love and continual support

iii

Table of Contents

1 Introduction . 1

1.1 Probabilistic Belief Systems . 3

1.2 Probabilistic Graphical Models 6

1.2.1 Bayesian Networks . 7

1.2.2 Markov Networks . 10

1.3 Local Belief Changes . 13

1.3.1 Soft Evidence . 14

1.3.2 Bayesian Network Parameter Changes 15

1.4 Global Belief Changes . 17

1.5 Sensitivity Analysis of Probabilistic Belief Systems 18

1.5.1 From Local to Global Belief Changes 18

1.5.2 From Global to Local Belief Changes 19

1.5.3 Quantifying Local and Global Belief Changes 20

1.6 Applications . 22

1.7 Overview . 24

2 Tuning Single Bayesian Network Parameters 26

2.1 Procedure and Complexity of Tuning Single Parameters 29

2.1.1 Parameters of Binary Variables 30

2.1.2 Parameters of Multi-Valued Variables 34

2.2 SamIam: A Tool for Tuning Bayesian Network Parameters 36

iv

3 Network-Independent Sensitivity Analysis 39

3.1 Bounding the Derivative of a Query With Respect To a Parameter 41

3.2 Bounding Query Changes Due To Parameter Changes 45

3.3 Parameter Changes That (Don’t) Matter 50

3.3.1 Network-Specific Sensitivity Analysis 51

3.3.2 Assuring Query Robustness 52

4 Quantifying Belief Changes . 60

4.1 A Distance Measure for Bounding Probabilistic Belief Changes . . 61

4.2 Comparison with Existing Measures 65

4.2.1 Worst-Case Bound vs. Average-Case Bound 68

4.2.2 Bounding Bayes Factors 72

4.3 Application to Bayesian Networks 73

5 Tuning Multiple Bayesian Network Parameters 77

5.1 Tuning Parameters in a Single CPT 78

5.1.1 Finding Sufficient Single CPT Changes 79

5.1.2 Approximating Optimal Single CPT Changes 81

5.1.3 Single CPT Changes vs. Single Parameter Changes 85

5.2 Tuning Parameters in Multiple CPTs 88

6 Sensitivity of Decisions Induced by Bayesian Networks 92

6.1 Sensitivity Analysis of Naive Bayes Classifiers 95

6.1.1 Changing the Prior Log-Odds 96

v

6.1.2 Changing the Weights of Evidence of an Attribute 99

6.2 Converting Naive Bayes Classifiers into Logical Representations . 100

6.2.1 Algorithm and Theoretical Results 102

6.2.2 Experimental Results . 106

6.2.3 Applications . 109

7 Sensitivity Analysis of Markov Networks 112

7.1 Tuning Markov Network Parameters 114

7.2 Bounding Belief Changes Between Markov Networks 117

8 Belief Revision . 123

8.1 Probability Kinematics and Jeffrey’s Rule 126

8.2 Virtual Evidence and Pearl’s Method 128

8.3 Comparing the Revision Methods 131

8.3.1 Pearl’s Method and Probability Kinematics 131

8.3.2 Translating from Pearl’s Method to Jeffrey’s Rule 132

8.3.3 Translating from Jeffrey’s Rule to Pearl’s Method 133

8.4 Belief Revision in Bayesian Networks 134

8.5 Interpreting Evidential Statements 137

8.6 Virtual Evidence and Bayes Factors 140

8.6.1 Reasoning About Evidence 142

8.6.2 Commutativity of Iterated Revisions 144

8.7 Bounding Belief Changes Due To Belief Revision 145

vi

9 Conclusion . 147

A Proofs of Theorems . 151

A.1 Proofs of Theorems in Chapter 2 151

A.2 Proofs of Theorems in Chapter 3 151

A.3 Proofs of Theorems in Chapter 4 155

A.4 Proofs of Theorems in Chapter 6 165

A.5 Proofs of Theorems in Chapter 7 168

A.6 Proofs of Theorems in Chapter 8 169

References . 175

vii

List of Figures

1.1 The structure of the Bayesian network Alarm. 9

1.2 The structure of the Markov network Disease. 13

2.1 The structure of the Bayesian network Fire. 27

2.2 A screenshot of SamIam returning suggestions of single parameter

changes for enforcing a query constraint. 37

3.1 The plot of the upper bound on the derivative of a query with

respect to a Bayesian network parameter against the query and

parameter values. 43

3.2 The plots of a sensitivity function against a parameter value. . . . 53

3.3 The plot of the admissible Bayesian network parameter change

against its initial parameter value that would ensure robustness

for a query whose value is .9, such that its absolute change is no

more than .05. 55

3.4 The plot of the admissible Bayesian network parameter change

against its initial parameter value that would ensure robustness

for a query whose value is .6, such that its absolute change is no

more than .05. 57

3.5 The plot of the log-odds change against its initial and new proba-

bility values. 58

3.6 The plots of the log-odds change against its new probability value

for several initial probability values. 59

viii

4.1 The plots of the bounds on the new query value against its initial

value, for several values of our distance measure. 64

4.2 The plots of the bounds on the new query value against its initial

value, for several values of KL-divergence and probability of evidence. 69

4.3 The plot of the bound on KL-divergence against our distance mea-

sure. 71

5.1 The plot of a solution space of single CPT changes. 82

5.2 The plot of a near-optimal solution of single CPT changes 86

5.3 A screenshot of SamIam returning suggestions of single CPT changes

for enforcing a query constraint. 88

6.1 The structure of the naive Bayes network Pregnancy. 93

6.2 An ODD that represents the classifier induced by the naive Bayes

network Pregnancy with probability threshold .9, with respect to

variable order (U,B, S). 101

7.1 The plot of the admissible Bayesian network parameter change

against its initial parameter value that would ensure robustness

for a query whose value is .75, such that its relative odds change

is no more than 1.5. 120

7.2 The plot of the admissible Markov network parameter change against

its initial parameter value that would ensure robustness for a query

whose value is .75, such that its relative odds change is no more

than 1.5. 121

ix

8.1 An illustration of the process of applying the virtual evidence

method in a Bayesian network. 135

x

List of Tables

1.1 The joint probability distribution induced by the Bayesian network

Alarm . 5

1.2 The CPTs of the Bayesian network Alarm. 10

1.3 The clique table of {Ai, Bj} of the Markov network Disease. . . . 12

2.1 The CPTs of the Bayesian network Fire. 28

6.1 The CPTs of the naive Bayes network Pregnancy. 93

6.2 The classifier induced by the naive Bayes network Pregnancy with

probability threshold .9. 93

6.3 Experimental results of building ODDs that represent random

naive Bayes classifiers. 107

6.4 Experimental results of building ODDs that represent real-world

naive Bayes classifiers. 108

xi

List of Algorithms

6.1 Build-ODD(B, σ): builds an ODD that represents a naive Bayes

classifier. 104

6.2 Build-sub-ODD(k, v): builds a sub-ODD. 105

xii

Acknowledgments

As I complete the writing of this dissertation, I would like to take this opportunity

to express my gratitude towards the many people who I am indebted to.

First and foremost, I would like to thank my technical advisor, Adnan Dar-

wiche. I started working for him after taking his class on probabilistic reasoning.

From day one, he has offered many fresh insights on how I should conduct my

research work, and provided countless feedback on my results. He has also pro-

vided guidance in the development of the SamIam project, which I implemented

my results on, and is now one of the best Bayesian network graphical tools. He

has not only helped me in my research, but also in writing comprehensible and

well-motivated technical papers, and giving clear presentations that are appro-

priate to the audience. He is an excellent teacher, researcher, and mentor, and I

am grateful to his advice, encouragement and patience under his tutelage.

I would also like to thank the members of my doctoral committee: Richard

Korf, Stefano Soatto, and Phil Kellman. Their comments are valuable in the

preparation of this dissertation. Rich has pointed out many mistakes and con-

fusing sentences in the earlier versions of this dissertation, Stafano has given

suggestions in terms of mathematical notations, and Phil has used his knowledge

of human perception to help improve the graphical interface of SamIam. In par-

ticular, I would also like to thank Rich for being an instructor who care much

about students’ learning, both when I took the class on artificial intelligence dur-

ing my undergraduate years and when I was a teaching assistant of the same class

a short while ago. My interest in the material of the class I took from him was

a big factor in me choosing the field of artificial intelligence in graduate school.

I must also acknowledge Judea Pearl, who has offered great advice on my

xiii

work throughout the years. My research is firmly based on the many foundations

of probabilistic reasoning he has built in his brilliant career, and none of my work

would be possible without them. Moreover, he is a great teacher in the classroom

(I very much enjoyed his class on causality), and a great humanitarian outside.

My research on belief revision has been significantly enhanced by comments

and discussions with Carl Wagner, Judea Pearl, and the late Richard Jeffrey. I

was fortunate enough to communicate with Richard only a few months before his

death. His kind words on my initial paper on the topic were an encouragement to

me, and he also helped me by pointing out other relevant work in the field. Carl’s

investigation on the commutativity of iterated revisions, and Judea’s discussion

of the interpretation of evidential statements, also inspire me to pursue the work

further and complete the big picture of the process of belief revision.

I have also benefited from suggestions from Rina Dechter of the University

of California at Irvine, Russ Greiner of the University of Alberta, and Wotjek

Przytula of HRL. My work on tuning Bayesian network parameters came from a

problem originating from Wotjek, and his many inputs provided the impetus for

us to develop SamIam, and pointers for us to improve it afterwards.

My colleagues at the UCLA Automated Reasoning Group, including David

Allen, Keith Cascio, Mark Chavira, Arthur Choi, Jinbo Huang, and James Park,

have all asked interesting questions and offered helpful comments on my research,

and I have enjoyed their company in our offices and on our trips to meetings

and conferences. Most of us have participated in the SamIam program, and I

commend all the developers and testers for a job well done. I would especially

like to thank James for writing the inference engine, David for developing the

graphical user interface with me in its early stage, and Keith for being in charge

of all programming issues of the project. Without Keith’s diligent maintenance

xiv

of the code repository and his ability to produce new codes and debug as quickly

as possible, most of my research results would not have been implemented.

Members of the UCLA Cognitive Systems Laboratory, including Chen Avin,

Blai Bonet, Carlos Brito, Mark Hopkins, and Jin Tian, have also given useful

remarks on my research when attending the seminars I have given throughout

the years. The members of our group have spent a lot of time with them during

seminars, classes, and conferences, and we have all got along very well. I would

also like to thank Brenda Ng of Harvard University. She has been great fun to

hang out with at the conferences, and we have shared our thoughts and problems

(research related and others) by e-mails throughout the years. Brenda, I am

looking forward to you graduating soon!

My years as a graduate student would not have been possible without the

financial support I have received from the UCLA Computer Science Department

during my stints as a graduate student researcher and a teaching assistant, and

the grants from DiMI, MURI, NSF, and the Air Force. I offer my gratefulness to

them for easing my financial burden.

I will soon receive my third degree from the UCLA Computer Science De-

partment. I have learned a lot from its faculty through the classes and seminars

I attended, and its staff has provided considerable help in all administrative mat-

ters. I would especially like to thank Verra Morgan, our Graduate Student Affairs

Officer. She has solved many of my potentially disastrous problems, helped me

navigate through bureaucracy, and genuinely cared about my well-being as a

student, despite having hundreds of students to attend to.

On a personal note, I would like to thank all my friends who have helped,

supported, or just shared laughs with me throughout my life. They include: the

friends I have back in Hong Kong, who continue to keep in touch with me and

xv

welcome me when I go back to visit; the friends I make during my undergraduate

years, who have all graduated but remain great friends with me; my brothers and

sisters of the UCLA Chinese Christian Fellowship, who have treated me as one

of them despite my “advanced” age; and my brothers and sisters of the Chinese

United Methodist Church at Los Angeles, who have offered me spiritual and

emotional support for the last two years. Unfortunately (or fortunately), the list

of people is too long for me to write here!

More than ten years ago, when I was a secondary school student in Hong

Kong, an alumnus named James Tong, who is a professor of the UCLA Political

Science Department, came to visit. He encouraged some of us to pursue university

studies in the United States, and recommended me to come to UCLA. He has

been instrumental in introducing me and many other students to the opportunity

of studying at universities such as UCLA, and finding financial support for many

of them. He also enlisted the help of many kind people, including Fred Luk,

Norma and Howard Lee, and Barbara and Gerald Lee (and others), who offered

hospitality by inviting us to their homes, and eased our transition to a new

environment. Therefore, I would like to express my appreciation to all of them.

Last but certainly the most important, I owe a great debt to my family mem-

bers: my brother Kong, my father, and my mother. My brother has been a great

companion to me, my father has worked tirelessly to financially support the whole

family, including my studies, and my mother taught me many things during my

childhood, has worked hard with my father, and has taken great care of me even

to this day. Their love and continual support on all levels of my life are priceless.

Finally, as I will soon leave UCLA after studying here for ten years, I must

say I have enjoyed every moment of it, and I will remain a Bruin forever!

xvi

Vita

March 30, 1978 Born in Jiangxi Province, China

1998 B.Sc., Computer Science and Engineering, University of Cali-

fornia, Los Angeles

2000–2005 Graduate Student Researcher, Department of Computer Sci-

ence, University of California, Los Angeles

2001 M.Sc., Computer Science, University of California, Los Angeles

2002 Dimitris N. Chorafas Foundation Prize, in recognition of work

on sensitivity analysis

Fall 2004 Teaching Assistant of the class Fundamentals of Artificial In-

telligence, Department of Computer Science, University of Cal-

ifornia, Los Angeles

Publications

Hei Chan and Adnan Darwiche. “When Do Numbers Really Matter?” In Pro-

ceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI),

pp. 65–74, 2001.

Hei Chan and Adnan Darwiche. “A Distance Measure for Bounding Probabilistic

Belief Change.” In Proceedings of the 18th National Conference on Artificial

Intelligence (AAAI), pp. 539–545, 2002.

xvii

Hei Chan and Adnan Darwiche. “When Do Numbers Really Matter?” Journal

of Artificial Intelligence Research, 17:265–287, 2002.

Hei Chan and Adnan Darwiche. “On the Revision of Probabilistic Beliefs Using

Uncertain Evidence.” In Proceedings of the 18th International Joint Conference

on Artificial Intelligence (IJCAI), pp. 99–105, 2003.

Hei Chan and Adnan Darwiche. “Reasoning About Bayesian Network Classi-

fiers.” In Proceedings of the 19th Conference on Uncertainty in Artificial Intelli-

gence (UAI), pp. 107–115, 2003.

Hei Chan and Adnan Darwiche. “Sensitivity Analysis in Bayesian Networks:

From Single to Multiple Parameters.” In Proceedings of the 20th Conference on

Uncertainty in Artificial Intelligence (UAI), pp. 67–75, 2004.

Hei Chan and Adnan Darwiche. “A Distance Measure for Bounding Probabilistic

Belief Change.” International Journal of Approximate Reasoning, 38:149–174,

2005.

Hei Chan and Adnan Darwiche. “On the Revision of Probabilistic Beliefs Using

Uncertain Evidence.” Artificial Intelligence, 163:67–90, 2005.

Hei Chan and Adnan Darwiche, 2005. “Sensitivity Analysis in Markov Net-

works.” In Proceedings of the 19th International Joint Conference on Artificial

Intelligence (IJCAI), pp. 1300–1305, 2005.

xviii

Abstract of the Dissertation

Sensitivity Analysis of

Probabilistic Graphical Models

by

Hei Chan

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2005

Professor Adnan Darwiche, Chair

Probabilistic belief systems are used in artificial intelligence to model uncertainty.

A popular framework for realizing probabilistic belief systems is to use graphical

models, such as Bayesian networks and Markov networks. The topic of sensi-

tivity analysis is concerned broadly with the relationships between local beliefs,

such as network parameters, and global beliefs, such as values of probabilistic

queries. Sensitivity analysis is crucial to probabilistic belief systems because we

often need to revise our state of belief to incorporate new probabilistic informa-

tion in the form of local belief changes. This work focuses on sensitivity analysis

of probabilistic graphical models, by addressing central research problems such

as the assessment of global belief changes due to local belief changes, the iden-

tification of local belief changes that induce certain global belief changes, and

the quantifying of belief changes in general. Our results can be divided into

the following parts. First, we develop procedures and complexity results for

tuning Bayesian or Markov network parameters (single or multiple) to ensure

certain query constraints. Second, we provide network-independent bounds on

changes in query values due to arbitrary changes in Bayesian or Markov network

xix

parameters. Third, we propose a new distance measure for quantifying proba-

bilistic belief changes, and use it to provide guarantees on global belief changes

in Bayesian or Markov networks. Fourth, we provide algorithms and complex-

ity results on the sensitivity of decisions induced by Bayesian networks. Finally,

we discuss the philosophical topic of belief revision. Many of our results have

been implemented in a program called SamIam (Sensitivity Analysis, Modeling,

Inference and More), a graphical Bayesian network tool developed by the UCLA

Automated Reasoning Group.

xx

CHAPTER 1

Introduction

Probabilistic belief systems are used in artificial intelligence to model uncertainty.

A popular framework for realizing probabilistic belief systems is to use graphical

models, such as Bayesian networks and Markov networks, which capture uncer-

tain knowledge naturally and efficiently, and are widely used in various fields such

as medicine and diagnosis-and-repair modules. A probabilistic state of belief, in

terms of a joint probability distribution, can be induced from a complete spec-

ification of the graphical model, consisting of a network structure that specifies

the conditional independence relationships in the domain, and a set of network

parameters that quantify the degrees of influence between variables.

Given a probabilistic belief system, we can make a distinction between the

local beliefs and the global beliefs captured by the state of belief. For example,

the network parameters, which measure probabilities or compatibilities between

variables within localized frames such as cause-and-effect relationships, are viewed

as local beliefs. They constitute the building blocks for representing the state of

belief, and are estimated by experts or from statistical data in order to construct

the probabilistic belief system. On the other hand, given a state of belief, we can

perform inference and compute probability values of query propositions on the

global scale of the domain. These probabilistic queries are viewed as global beliefs,

which are the conclusions drawn from the probabilistic belief system, and provide

useful answers under various scenarios. Therefore, the goal of constructing a

1

probabilistic belief system is to infer global beliefs that faithfully correspond to

the domain by accurately estimating local beliefs.

The topic of sensitivity analysis is concerned broadly with how the outputs

of a system depends upon its input parameters. In the case of a probabilistic

belief system, we can interpret the local beliefs and global beliefs as its inputs

and outputs. This work is a comprehensive study of the theory and applications

involved in the sensitivity analysis of probabilistic belief systems, with the focus

mostly on the graphical models of Bayesian networks and Markov networks, by

examining the relationships between local beliefs and global beliefs. In particular,

it addresses these central research problems:

• The assessment of global belief changes due to local belief changes, such

as the impact on values of certain queries due to perturbations in network

parameters, or when some localized evidence is obtained;

• The identification of local belief changes that induce certain global belief

changes, such as the set of network parameter changes that can enforce a

certain query constraint;

• The quantifying of belief changes in general, such that changes in local and

global beliefs can be measured and compared meaningfully and efficiently.

Moreover, this work also discusses the philosophical topic of belief revision, and

how it is related to sensitivity analysis.

In this chapter, we will first present the fundamentals of probabilistic belief

systems, including the syntax and semantics of the graphical models of Bayesian

networks and Markov networks. We will then introduce the concepts of local and

global belief changes, and the topic of sensitivity analysis, and explain why sen-

sitivity analysis is important to probabilistic belief systems. We will also present

2

the central research problems concerning sensitivity analysis, a brief summary of

the results we have obtained, and the applications facilitated by these results.

1.1 Probabilistic Belief Systems

In artificial intelligence, we often have to deal with uncertainty. This may be due

to a lack of understanding of the environment, incomplete information, and/or

inaccurate results of sensors and tests. For example, in medical diagnosis, we

must take into account the facts that the medical theory we have may not be

complete, we do not have complete information about the patient, and the tests

we run may be inaccurate.

To represent uncertain knowledge, we must be able to provide degrees of

belief in propositions. A common way to do this is to use probabilities, which

can summarize the uncertainty that comes from our ignorance. For example,

given a patient with a certain disease, we may believe that there is a probability

of .8 that a certain symptom will appear. This probability value can be derived

from statistical data or some general rules, and it summarizes all cases where the

disease and the symptom may or may not be connected. The use of probabilities

to model uncertainty gives rise to probabilistic belief systems.

To construct a probabilistic belief system, we first have to define a set of

random variables, which are used to represent the pieces of information we are

interested in or may acquire knowledge about, such as whether the patient has

a certain disease, or the result of a blood test. Each variable has a domain of

possible values it can take on.1 For example, the result of a blood test may take

on either of two values: positive or negative. An instantiation of all variables in

1We will only deal with discrete values in this work.

3

the probabilistic belief system is called a world (or atomic event). Each world

describes a unique and complete specification of the domain that we are concerned

with.

To model uncertainty in a probabilistic belief system, we need to define a

joint probability distribution, which assigns probabilities to all possible worlds.2

The joint probability distribution captures our state of belief, and from it we can

compute the probability of any statement using basic probability theory.

Throughout this work, we will use the following convention. Random variables

are denoted by upper-case letters (A) and their values are denoted by lower-case

letters (a). Sets of random variables are denoted by bold-face upper-case letters

(A) and their instantiations are denoted by bold-face lower-case letters (a). For

a binary random variable A with values true and false, we use a to denote the

event A = true and ā to denote the event A = false.

The following example illustrates a probabilistic belief system.

Example 1.1 Mr. Holmes has just installed a new security alarm at his house,

and he would like to know the probability of the alarm being triggered on any given

day, and how the alarm may be affected by a burglar breaking into his house or

the occurrence of an earthquake. The manufacturer of the alarm provides him

a joint probability distribution, shown in Table 1.1. In this probabilistic belief

system, there are three variables: A, which represents whether the alarm of Mr.

Holmes’ house is triggered (values a and ā); B, which represents whether there is

a burglary at his house (values b and b̄); and E, which represents whether there

is an earthquake (values e and ē). The joint probability distribution consists of

the probabilities of the eight possible worlds, which sum up to 1. For example,

2Because the worlds are mutually exclusive and collectively exhaustive, due to the axioms
of probability, the sum of the probabilities of all worlds must be 1.

4

A B E Pr(ω)

a b e .0000019

a b ē .00093812

a b̄ e .00057942

a b̄ ē .000997002

ā b e .0000001

ā b ē .00005988

ā b̄ e .00141858

ā b̄ ē .996004998

Table 1.1: The joint probability distribution defined by the probabilistic belief

system in Example 1.1.

the probability that the alarm is triggered, a burglar breaks into his house, and

there is no earthquake on any given day, is Pr(a, b, ē) = .00093812. From this

joint probability distribution, we can also answer various queries. For example, to

compute the probability of the alarm being triggered on any given day, Pr(a), we

add up the probabilities of all worlds ω which are consistent with the instantiation

A = a (denoted by ω ∼ a),3 giving us Pr(a) =
∑

ω∼a Pr(ω) ≈ .0025. We can also

easily compute conditional queries, such as the probability that there is a burglary

at his house given the alarm is not triggered, Pr(b | ā), by first obtaining both

Pr(b, ā) and Pr(ā) by adding up the probabilities of the consistent worlds, then

computing their ratio, giving us Pr(b | ā) = Pr(b, ā)/Pr(ā) ≈ .00006.

3Two instantiations are consistent iff they do not assign different values to the same variable.

5

1.2 Probabilistic Graphical Models

In Example 1.1, we define a probabilistic belief system by directly specifying the

joint probability distribution. There are two problems when we use this method

in real life. First, the size of the distribution grows exponentially with the number

of variables, making it impractical to directly specify the entire distribution when

given even a moderate number of variables. Second, it is usually quite unnatural

and difficult to estimate directly the probabilities of all worlds unless we are given

a large amount of statistical data. Therefore, we need a more natural and efficient

method of specifying the joint probability distribution.

To do this, we need to exploit the presence of conditional independence rela-

tionships between the variables. For example, from the joint probability distri-

bution shown in Table 1.1, we find that the probability of having a burglary (or

not) is not affected by the presence (or absence) of earthquake, and vice versa:4

Pr(b) = Pr(b | e) = Pr(b | ē);
Pr(b̄) = Pr(b̄ | e) = Pr(b̄ | ē);
Pr(e) = Pr(e | b) = Pr(e | b̄);
Pr(ē) = Pr(ē | b) = Pr(ē | b̄).

This means burglary and earthquake are independent causes of the alarm being

triggered. Conditional independence relationships between variables are common

in real-world scenarios. For example, in the medical domain, a disease is caused

by only a small number of risk factors that are often independent of each other,

and the appearance of a symptom is dependent only on whether the patient has

a certain number of diseases.

Conditional independence relationships can be captured naturally and effi-

ciently by graphical models, using a graph that connects variables that are di-

4We ignore the possibility of looting when earthquakes occur.

6

rectly related with each other. In order to induce the joint probability distribution

from the graph, we now only need to specify a set of parameters that quantify the

degrees of dependence between the related variables. This significantly reduces

the number of parameter values we need to directly specify from exponential to

polynomial in the number of variables. Moreover, these parameter values can

be easily estimated by experts using their knowledge or local information with

regard to the dependence between the variables.

In this section, we will introduce two popular probabilistic graphical models:

Bayesian networks and Markov networks. In both models, there are two com-

ponents, a qualitative part and a quantitative part. In the qualitative part, a

graph called the network structure is used to represent the interactions between

variables, such that variables with direct interactions are connected by edges, and

conditional independence relationships can be inferred from the network struc-

ture. In the quantitative part, a set of network parameters are used to quantify

the degrees of dependence between related variables. The joint probability dis-

tribution can then be induced from the two components, although the process

of computing the distribution differs between Bayesian networks and Markov

networks.

1.2.1 Bayesian Networks

A Bayesian network (or belief network) B = (G, Θ) consists of two parts: the

network structure in terms of a directed acyclic graph, and the parametrization

in terms of a set of conditional probability tables (CPTs).

In the directed acyclic graph G, each random variable is represented by a

node, and there is a directed edge from one node to another if there is a direct

7

influence of the former variable on the latter variable.5 The absence of an edge

between two variables means any potential interaction between them is indirect

and conditional upon other variables. Therefore, the network structure encodes

the conditional independence relationships between variables. A test called d-

separation can be used to test if a variable X is conditionally independent of

another variable Y given a third variable Z [Jen01, Pea88]. For variable X, we

define its parents U as the set of variables that have outgoing directed edges

pointing to X.

In the parametrization Θ, a conditional probability table (CPT) is specified

for every variable X in the Bayesian network, which quantifies our belief in the

conditional probability of every value of X given every instantiation of its parents

U. The CPT of X, ΘX|U, assigns a number to the network parameter θx|u for

every value x of X and every instantiation u of U, such that θx|u = Pr(x | u).

Due to the axioms of probability, the probabilities in the conditional probability

distribution ΘX|u must sum to 1 for every u, i.e.,
∑

x θx|u = 1.

The structure and the CPTs of a Bayesian network B induce a joint probability

distribution Pr. The probability of a world, i.e., an instantiation x of all variables

in the Bayesian network X, is the product of all network parameters θx|u where

{x,u} is consistent with x:

Pr(x)
def
=

∏

{x,u}∼x

θx|u. (1.1)

We now present an example of a Bayesian network.

Example 1.2 Instead of directly specifying the joint probability distribution as

in Example 1.1, the manufacturer of the alarm now decides to use a Bayesian

5The direction of the edge usually implies that the influence from the former variable to the
latter variable is causal, although this is not always true.

8

Burglary
(B)

Earthquake
(E)

Alarm
(A)

Figure 1.1: The structure of the Bayesian network Alarm.

network, called Alarm, to model the uncertainty knowledge. After looking at the

joint probability distribution shown in Table 1.1, it concludes that burglaries and

earthquakes are direct and independent causes of whether an alarm will be trig-

gered. Therefore, we can use the network structure shown in Figure 1.1, with

directed edges from B to A and from E to A, to represent the conditional inde-

pendence relationships between the variables. The CPTs of the Bayesian network

Alarm are shown in Table 1.2. The CPTs of B and E specify the prior probability

distribution of these two variables, and the CPT of A specifies the conditional

probabilities of the possible values of A given different instantiations of B and

E. Using Equation 1.1, we can easily verify that the joint probability distribution

induced by this Bayesian network is the same as the one shown in Table 1.1. For

example, the probability of a, b̄, ē is:

Pr(a, b̄, ē) = θa|b̄,ē · θb̄ · θē

= .001× .999× .998

= .000997002.

9

B ΘB

b .001

b̄ .999

E ΘE

e .002

ē .998

B E A ΘA|B,E

b e a .95

b e ā .05

b ē a .94

b ē ā .06

b̄ e a .29

b̄ e ā .71

b̄ ē a .001

b̄ ē ā .999

Table 1.2: The CPTs of the Bayesian network Alarm.

1.2.2 Markov Networks

A Markov network M = (G, Θ) consists of two parts: the network structure in

terms of an undirected graph, and the parametrization in terms of a set of clique

tables.

In the undirected graph G, each random variable is represented by a node, and

there is an undirected edge connecting two nodes if there is a direct interaction

between them. The absence of an edge between two variables means any potential

interaction between them is indirect and conditional upon other variables. In the

network structure, we define a clique C as a maximal set of variables where every

pair of variables in the set C is connected by an edge.

In the parametrization Θ, a clique table is specified for every clique C in

the Markov network, which quantifies the degrees of interactions between the

clique variables. The clique table of C, ΘC, assigns a non-negative number to

the network parameter θc for every instantiation c of C, such that it measures

10

the relative degree of compatibility associated with c.6

The structure and the clique tables of a Markov network M induce a joint

probability distribution Pr. If X is the set of all variables in the Markov network,

the joint potential ψ over X is defined as:

ψ(x)
def
=

∏
c∼x

θc. (1.2)

That is, ψ(x) is the product of all network parameters θc where c is consistent

with x. The joint probability distribution Pr induced by the Markov network is

then defined as the normalized joint potential over X:

Pr(x)
def
=

ψ(x)∑
x ψ(x)

= ζψ(x), (1.3)

where ζ = 1/
∑

x ψ(x) is the normalizing constant. From Equation 1.3, we can

easily verify that the specific parameter values in a clique table are not important,

but their ratios are. This is a major departure from Bayesian networks, where

specific parameter values in CPTs are important when computing the joint prob-

ability distribution.

We now present an example of a Markov network.

Example 1.3 Consider four individuals {A1, A2, B1, B2}, and a contagious dis-

ease that may be transmitted between them through their interactions. To model

the transmission of the disease between the individuals, we use a Markov network,

called Disease, where the presence or absence of the disease in each individual is

represented by a binary variable of the same name. Its network structure is shown

in Figure 1.2. Every pair of variables {Ai, Bj} is connected by an edge, repre-

senting the fact that these pairs of individuals are in direct contact with each

6Note that Markov network parameters are not probabilities, and may be estimated on an
ad hoc basis [GG84] or by statistical models. It can be difficult to assign meanings and numbers
to Markov network parameters intuitively [Pea88, pp. 107–108].

11

Ai Bj ΘAi,Bj

ai bj 1

ai b̄j 2

āi bj 3

āi b̄j 4

Table 1.3: The clique table of {Ai, Bj} of the Markov network Disease.

other. The pairs {A1, A2} and {B1, B2} are not connected by an edge, mean-

ing they do not interact directly with each other, although the disease can still

be transmitted between them indirectly through the other two individuals. There

are four cliques in this graph: {A1, B1}, {A1, B2}, {A2, B1}, and {A2, B2}. For

every clique {Ai, Bj}, the same clique table ΘAi,Bj
is used to specify the param-

eter values, and is shown in Table 1.3. The parameter values indicate the level

of compatibility between the health of individuals who are in direct contact with

each other. For example, it can be seen that both Ai and Bj not having the

disease is four times more compatible than both Ai and Bj having the disease,

since θāi,b̄j
= 4θai,bj

. Using Equation 1.3, we can compute the probability of any

world. For example, given the normalizing constant ζ = 1/
∑

x ψ(x) = 1/836, the

probability of a1, ā2, b1, b̄2 is:

Pr(a1, ā2, b1, b̄2) = ζ · θa1,b1 · θa1,b̄2 · θā2,b1 · θā2,b̄2

=
1

836
× 1× 2× 3× 4

≈ .0287.

12

B1 B2

A2

A1

Figure 1.2: The structure of the Markov network Disease.

1.3 Local Belief Changes

As we are using a probabilistic belief system to model an uncertain environment,

we often receive new probabilistic information that differs from our current state

of belief. This can be due to more accurate sensory inputs, a better understand-

ing of the domain, or simply changes in the modeled environment. The new

probabilistic information that we need to incorporate is usually in the form of

changes in local beliefs, which are intuitive and central to the construction of

the probabilistic belief system. Examples of local beliefs include the probability

distribution of a random variable, or the conditional probability specified by a

Bayesian network parameter. In order to incorporate the new probabilistic infor-

mation, we have to revise our state of belief according to the local belief change,

and as a result, our global beliefs, such as the values of probabilistic queries, will

be changed.

We now show two examples of local belief changes in probabilistic belief sys-

tems: soft evidence and Bayesian network parameter changes.

13

1.3.1 Soft Evidence

Suppose we are given a joint probability distribution, which we can use to com-

pute the probability distribution of some variable X. We are now given some new

probabilistic information, and after that we conclude the probability distribution

of X should differ from the one computed from the current joint probability dis-

tribution. This piece of soft evidence (or uncertain evidence) is an example of

local belief changes.7 We must now adopt a new joint probability distribution

that incorporates this piece of soft evidence.

For example, consider again the probabilistic belief system given in Exam-

ple 1.1. Due to the result of a survey among customers, the manufacturer of the

alarm now wants to change the probability of the alarm being triggered on any

given day, Pr(a), from the current value of .0025 to a new value of .005. To do

this, the joint probability distribution shown in Table 1.1 must be changed to

incorporate this piece of soft evidence.

The modification of a state of belief due to soft evidence has been addressed

by the topic of belief revision [G88, Jef65, Jef92], which deals with two issues.

The first issue is how we should specify soft evidence. As we will see later, the

method of specifying soft evidence can be quite important. The second issue

is how we should choose the new joint probability distribution. As there are

infinitely many joint probability distributions that satisfy the soft evidence, our

task is to commit to a principle that chooses the distribution that is the “best”,

or “closest” to the initial distribution, so that our state of belief is disturbed

the least by the revision. Afterwards, sensitivity analysis can be used to provide

guarantees on the change in global beliefs due to the revision process.

7This is in contrast to hard evidence, where we know for certain that a variable has taken
on some value.

14

1.3.2 Bayesian Network Parameter Changes

Similar to general probabilistic belief systems, graphical models such as Bayesian

networks also often have to be updated due to new probabilistic information. If

we assume that the mechanisms of influence and dependence between variables

remain the same, we will continue to use the same network structure, but change

some of the network parameters to incorporate the new information. This means

we often have to find changes in the network parameters that can help us model

the new environment. For example, updating the reliability of a sensor translates

to changing parameters in the CPT of the variable that represents the sensor.

Parameter changes are also an integral part of building a Bayesian network.

Consider for example that we are constructing a Bayesian network to faithfully

reflect a domain of interest, such as medicine. First, the network structure is de-

veloped from the knowledge of the dependence between risk factors, diseases, and

symptoms. Next, parameters are estimated by non-experts using a combination

of statistical data and qualitative influences available from textbook materials.

Finally, medical experts are brought in to evaluate the network and fine-tune its

parameters. One method of evaluation is to pose diagnostic scenarios to the net-

work, and compare the results of such queries to those predicted by the experts.

For example, given some set of symptoms e, and two potential diagnoses y and z,

the current network may give us the conclusion that the ratio Pr(y | e)/Pr(z | e)

is 2, while an expert may believe that the ratio should be no less than 4. We

must now apply necessary parameter changes in order to satisfy the values given

by the experts. This refining of network parameters by posing query constraints

can also be classified as local belief changes [CPO99].

The first task we need to perform here is to efficiently find parameter changes

that we can apply such that the new Bayesian network satisfy the constraints

15

posed by the experts. Otherwise, the experts may have to spend a huge amount

of time tuning each network parameter, and it is often the case that many pa-

rameters are irrelevant to satisfying the constraints.

The parameter changes we aim to find can be of different types. The simplest

type is a single parameter change, where we change only one network parameter

at a time (plus the co-varying parameters that must be changed in order to

satisfy the sum-to-one constraint). This type of parameter changes is the easiest

to compute and can act as indications of which parameters are more relevant to

the query, yet may be too constraining to be applicable.

The second type of parameter changes is a single CPT change, where all pa-

rameters in a single CPT are changed. Single CPT changes are more intuitive

and useful than single parameter changes, and do not require much more com-

plexity in computation, as we will show later. Because multiple parameters are

involved, the whole solution space of parameter changes can be too complicated

to report. Instead, we should report a particular point in the solution space, and

the problem becomes how we should find this particular parameter change.

The third type of parameter changes is a multiple CPT change, where all

parameters in multiple CPTs are changed. This type of change is the hardest

to find as it involves computation with higher-order complexity and more com-

plicated procedures. Therefore, it is not realistic to use this procedure for every

combination of CPTs. Instead, we would like to identify a process to find subsets

of CPTs that should give meaningful results to the process of sensitivity analysis.

Finally, even though we have assumed that the network structure remains

the same, changes in the network structure can sometimes be treated as network

parameter changes. For example, deleting an edge from a Bayesian network

is the same as changing the parameters in a CPT such that new conditional

16

independence relationships between variables are reflected by the new parameter

values.

The second task we need to perform is to choose among various parameter

changes that can enforce the constraints. These parameter changes can be in

the form of single parameter changes or multiple parameter changes. Usually,

the experts will adopt parameter changes that do not disturb the state of belief

much from the initial distribution induced by the Bayesian network.

1.4 Global Belief Changes

From the examples in Section 1.3, we can see that we often need to revise our

state of belief in order to incorporate local belief changes, and obtain a new

joint probability distribution different from the initial one. Given the initial and

new joint probability distributions, we can assess how the global beliefs captured

have changed as a result. For example, we may ask how much the value of a

certain probabilistic query has changed. Alternatively, we may focus on a subset

of queries, such as those where the evidence is the same, or those of the same

event conditioned on different instantiations of the same evidence variables.

Sometimes, instead of how the exact value of a probabilistic query changes,

we may be interested in the sensitivity of decisions made from the query value.

For example, we may diagnose a certain disease given a set of symptoms if the

probability of the disease under that scenario is more than .5, or we may choose

a treatment from various choices such that the probability of recovery is the

greatest. In this case, our interest in global belief changes shifts from dealing with

continuous probability values to discrete decision values. When comparing the

initial and new joint probability distributions, we are now interested in whether

17

the new decisions made are different from the initial ones, or remain the same

despite the local belief changes.

Therefore, depending on our scope of interest, the set of global belief changes

we want to focus on can be quite different. In the most general case, the focus of

our investigation is on how the value of any query Pr(α | β), where α and β are

arbitrary events, differs under the initial and new joint probability distributions.

Any guarantees that can be computed are applicable to arbitrary queries, and

the results can usually be found using the minimum amount of computation.

1.5 Sensitivity Analysis of Probabilistic Belief Systems

The goal of sensitivity analysis of probabilistic belief systems is to investigate the

impact of local belief changes on global beliefs. We now go through the various

elements of sensitivity analysis that we will develop in this work.

1.5.1 From Local to Global Belief Changes

If we are given some new probabilistic information, and we are committed to

a certain method of applying local belief changes, an interesting question that

arises is: what would be the impact on global beliefs if we apply some local belief

change? We answer this question by looking at how the value of any probabilistic

query, Pr(α | β), where α and β are arbitrary events, changes after applying the

local belief change.

This analysis can be done in two different contexts. If we are given a specific

probabilistic belief system and a specific query, we can always simply compute

the result before and after the local belief change. However, this only works for

specific events α and β, as we cannot compute the results of all queries as there

18

are too many of them.

Another approach we can take is to perform a general analysis of the sensi-

tivity of any probabilistic query to a local belief change, even if we do not know

the details of the probabilistic belief system. For example, we may know that we

have changed a parameter in some Bayesian network from its current value of .02

to a new value of .03, but know neither its network structure nor its CPTs. Given

that the current value of some probabilistic query is .4, what can we guarantee

about the new value of this query after the parameter change?

The difference between the two approaches is that when we are given more de-

tails about the probabilistic belief system or the class of queries we are interested

in, we can get more accurate guarantees on the query changes, but we may need

more computation. On the other hand, a general analysis of query sensitivity is

useful when we only want to know a rough estimate of the impact of a local belief

change. A major goal of this work is to provide a comprehensive answer of this

problem, especially for Bayesian networks.

1.5.2 From Global to Local Belief Changes

Instead of inducing global belief changes from local belief changes, we can work in

the opposite direction, and ask what local belief changes we may apply if we want

certain global beliefs to change by a certain amount. For example, as we pointed

out in Section 1.3 about the updating of Bayesian networks, we often need to find

parameter changes that we can apply to ensure that a Bayesian network satisfies

some query constraints.

We can again perform this analysis in two different contexts. We may know all

the information about the probabilistic belief system, and obtain exact answers

to our question. Alternatively, we can perform a general analysis, and obtain

19

bounded answers to our question with less computation. A major goal of this

work is to provide accounts of this analysis in both contexts.

1.5.3 Quantifying Local and Global Belief Changes

To further understand the relationships between local and global belief changes,

we first need to settle a major issue. How do we measure belief changes, either

local or global?

To emphasize the significance of quantifying belief changes, we go back to

the two examples of local belief changes in Section 1.3. Let us first look at the

case where we want to incorporate some new soft evidence. As we are faced

with infinitely many choices of new joint probability distributions that we can

adopt, we want to adopt one that is the “closest” to the current joint probability

distribution. This calls for a measure between two probability distributions,

which must quantify the amount of difference between the two distributions,

in terms of the degree of changes in global beliefs. We can then adopt a new

joint probability distribution that minimizes this measure from the current joint

probability distribution.

To compute this measure between two probability distributions, we must ex-

amine the probabilities of every world under the two distributions. We can use

a measure that is computed using a weighted sum, such that worlds with higher

probabilities are assigned heavier weights. KL-divergence is an example of this

type of measure [KL51]. However, it can be argued that unlikely scenarios are as

important as likely scenarios when capturing global belief changes. For example,

the scenario of an accident happening, which is unlikely, is crucial in the modeling

of a disaster management system. Therefore, it can be worthwhile to consider

the change in every conditional query, no matter how unlikely the evidence may

20

be, when capturing global belief changes.

After choosing a measure, if we decide to commit to a principle of belief

revision that minimizes this measure, our goal then is to compute the global

measure between the initial and new joint probability distributions efficiently by

only examining the local belief changes. Therefore, we must first quantify the

local belief changes, then provide a formula that computes the global measure

from this local measure. The significance of this process is that it can help us

understand the relationships between local and global belief changes, as discussed

previously in this section. Moreover, this local measure can also help us define

the notion of evidence strength. For example, we are often faced with several

alternative pieces of soft evidence, and we may want to choose one that gives us

the “minimal” change.

The same principle applies when we are given several candidate Bayesian

network parameter changes. Because the joint probability distribution is uniquely

induced by the parameters, the measure between the initial and new distributions

induced can be determined from the parameter change chosen. The formula

computing the global measure from the local measure can be used for quantifying

parameter changes, and is useful when we want to adopt a parameter change such

that the new Bayesian network is the “closest” to the initial Bayesian network.

The measure we propose for quantifying belief changes is a distance measure

between two probability distributions that we will introduce later. We will show

that this distance measure is both useful because it gives us the ability to bound

any query change between two distributions, and easily computable because it

allows the conversion between local and global measures for both soft evidence

and Bayesian network parameter changes.

21

1.6 Applications

We now present a few applications of sensitivity analysis of probabilistic belief

systems. First of all, as we have repeatedly shown, sensitivity analysis is inte-

gral to understanding the relationships between local and global belief changes.

The ability to infer global belief changes from local belief changes is quite useful

because often after a local belief change, we do not want to redo inference com-

pletely as it can be expensive. Instead, we would like to compute an estimate

of new query results from the initial query results and the local belief change

without redoing the entire inference.

Our results can also help experts build better probabilistic belief systems. As

experts have to estimate a large number of probabilities, such as network param-

eter values, it is often difficult and expensive to estimate all the probabilities with

great accuracy. With sensitivity analysis, we can identify probabilities where a

small change can greatly affect certain global beliefs, and those where even a

large change does not affect these global beliefs much. This can help direct the

experts to probability values that must be accurately estimated.

Understanding of sensitivity analysis is also useful in a number of areas, in-

cluding model debugging and system design. In model debugging, we want to

identify parameters that are relevant to certain queries, or to find parameter

changes that would be necessary to enforce certain sanity checks on the values of

probabilistic queries. In system design, sensitivity analysis can be used to choose

false-positive and false-negative rates for sensors and tests, in order to ensure the

quality of an information system based on a Bayesian network.

Moreover, our results can be applied in the domain of approximate reasoning.

For example, after learning the parameter values of a Bayesian network from

22

statistical data, we may want to round them off to a certain degree of accuracy.

Using our results on sensitivity analysis, we can provide robustness assurances of

the query results after the approximation.

We can also often approximate a probabilistic belief system by a simpler one

that can help us save computational resources. For example, a Bayesian network

that is highly connected and contains many cycles is often computationally too

expensive to perform inference on. Instead, we can delete edges from the network

structure, and obtain another Bayesian network with a simpler network structure,

such that inference can be performed in less time. Even though the network

structure has been changed, we can consider this as a local belief change in the

form of parameter changes, by interpreting the edge deletions as changes in the

CPTs of the child nodes where new conditional independence relationships are

introduced. Therefore, the process of edge deletion can be interpreted as an

approximation of our state of belief. Previous work on edge deletion has focused

mainly on the reduction of complexity without providing guarantees on the query

results [Kjae94, van97]. Using our sensitivity analysis results, we can compute the

bound on query changes due to the approximation, and can provide guarantees

on the real query results from the approximated query results.

Finally, by providing a measure that quantifies belief changes, we can help

humans visualize belief changes and make better decisions based on them. Many

graphical Bayesian network tools do a good job of providing users with visual

cues indicating the current state of belief, but have not paid any attention to the

change in the state of belief due to new probabilistic information. However, it

has been shown that users of these tools have difficulty visualizing belief changes

because of the large amount of information usually on display, the transient

nature of the different states of belief, and the unfamiliarity of probability theory.

23

The measure we provide can thus be a great help for users for many purposes,

such as gauging the strength of some new evidence, or comparing the impact

of a parameter change on different query values. We have experimented with

providing numerical and visual indicators of belief changes based on this measure

in a graphical Bayesian network tool called SamIam [ACC].

1.7 Overview

The following chapters are laid out as follows:

• In Chapter 2, we start our work on sensitivity analysis of Bayesian networks,

as we solve the problem of tuning single parameters to enforce a query

constraint in a given Bayesian network. We provide a procedure to do so,

present its complexity results, and its implementation with a graphical user

interface.

• In Chapter 3, we expand the question of sensitivity analysis to arbitrary

Bayesian networks in general, as we investigate the global impact of pa-

rameter changes, by first bounding the derivative of a query with respect

to a parameter, then bounding the change in a query due to an arbitrary

parameter change. We also use the results for an intuitive understanding of

when parameter changes do or do not matter in terms of query robustness.

• In Chapter 4, we discuss how we can quantify belief changes between proba-

bilistic states of belief, and aim to bound the impact on global belief changes

due to local belief changes in general probabilistic belief systems. To do

this, we propose a distance measure that allows us to quantify belief dif-

ferences between two probabilistic distributions. We compare this measure

with existing measures, and show its applications to Bayesian networks.

24

• In Chapter 5, we expand our work on tuning Bayesian network parame-

ters to enforce a query constraint from the domain of single parameters

to multiple parameters, and discuss the additional work that is needed to

solve the problem of finding multiple parameter changes that enforce query

constraints in a given Bayesian network.

• In Chapter 6, we turn our attention to the sensitivity of decisions induced

by Bayesian networks. In particular, we provide an algorithm that con-

verts naive Bayes classifiers, which are simple in structure but commonly

used for classification purposes, into logical representations, which allows

reasoning for sensitivity analysis purposes in time polynomial in the sizes

of the representations.

• In Chapter 7, we turn our focus of sensitivity analysis to Markov networks,

and compare the similarities and differences between sensitivity analysis of

Markov networks and Bayesian networks.

• In Chapter 8, we discuss the philosophical topic of belief revision. We look

into two existing methods of belief revision given soft evidence, Jeffrey’s

rule and Pearl’s method of virtual evidence, and use the distance measure

proposed to bound the global belief change. We also discuss the similarities

and differences between the two methods, in the principle used for belief

revision, the specification of the soft evidence, and the interpretation of

evidential statements.

• In Chapter 9, we summarize the contributions of this work, and present

some final remarks regarding possible future directions of the research of

sensitivity analysis of probabilistic graphical models.

• Proofs of all theorems are included in Appendix A.

25

CHAPTER 2

Tuning Single Bayesian Network Parameters

Sensitivity analysis of Bayesian networks is broadly concerned with understand-

ing the relationships between local network parameters and global conclusions

drawn based on the network. In this chapter, we will first discuss the process

of finding single parameter changes that can help enforce query constraints in a

given Bayesian network [CD01, CD02b]. This process is integral to building and

debugging Bayesian networks, which we illustrate by the following example.

Suppose we are given a Bayesian network, called Fire, which is built by experts

to model the possible scenario of whether there is a fire in a building. Its structure

is shown in Figure 2.1 and its CPTs are shown in Table 2.1.1 The experts now

test the network by posing possible queries and comparing the results with those

expected by the experts. For example, we may have evidence e = {Report =

true, Smoke = false}, i.e., the fire department receives a report that people are

evacuating the building, but no smoke is observed. This evidence should make

the occurrence of tampering more likely than the occurrence of fire, and the given

Bayesian network does indeed reflect this with Pr(Tampering = true | e) = .501

and Pr(Fire = true | e) = .0294. However, the experts believe the probability of

the alarm having been tampered should be no less than .65 given this evidence.

Naturally, we must change some of the network parameters to satisfy this query

1This Bayesian network is distributed with the evaluation version of the commercial Hugin
Graphical User Interface by Hugin Expert.

26

Fire Tampering

Alarm Smoke

Leaving

Report

Figure 2.1: The structure of the Bayesian network Fire.

constraint, if we believe the network structure is indeed correct.

Suppose now the experts attempt to enforce the query constraint by changing

only one network parameter.2 The experts find out that either of the following

two changes can be made to satisfy the constraint:

1. Increase the prior probability of alarm tampering, Pr(Tampering = true),

from its current value .02 to ≥ .0364;

2. Decrease the probability of a false report given there is no evacuation,

Pr(Report = true | Leaving = false), from its current value .01 to ≤ .00471.

The experts also find out that the parameters in the CPTs of variables Fire,

Smoke, Alarm, and Leaving are irrelevant to satisfying the query constraint, i.e.,

no matter how much we change any single parameter in these CPTs, we would

not be able to enforce the desired constraint.

2Because the probabilities of mutually exclusive and exhaustive events must sum to 1, the
experts also have to change other parameters in the same CPT. Later, we will introduce the
concept of meta-parameters to deal with this problem.

27

Fire ΘX|U

true .01

false .99

Fire Smoke ΘX|U

true true .9

true false .1

false true .01

false false .99

Alarm Leaving ΘX|U

true true .88

true false .12

false true .001

false false .999

Tampering ΘX|U

true .02

false .98

Fire Tampering Alarm ΘX|U

true true true .5

true true false .5

true false true .99

true false false .01

false true true .85

false true false .15

false false true .0001

false false false .9999

Leaving Report ΘX|U

true true .75

true false .25

false true .01

false false .99

Table 2.1: The CPTs of the Bayesian network Fire.

28

Notice that here we are only interested in single parameter changes. However,

it is also possible that we can change a combination of parameters to satisfy the

constraint, which we will look at in a later chapter.

As the number of parameters increases with the number of variables in the

Bayesian network, it is difficult for experts to manually find parameter changes

that can enforce a query constraint. Therefore, we would like to find an efficient

procedure to automatically find these parameter changes. We will first discuss

this topic, then present an automated program we have developed that imple-

ments this procedure, called SamIam [ACC]

2.1 Procedure and Complexity of Tuning Single Parame-

ters

In general, given a Bayesian network, we want to efficiently find parameter

changes that can be made to satisfy constraints on probabilistic queries. Here

are some of the most common types of query constraints, given some value κ:

Pr(y | e) ≥ κ; (2.1)

Pr(y | e) ≤ κ; (2.2)

Pr(y | e)− Pr(z | e) ≥ κ; (2.3)

Pr(y | e)

Pr(z | e)
≥ κ. (2.4)

Here, evidence e is an instantiation of variables E, and events y and z are values

of the variables Y and Z respectively, with Y, Z 6∈ E. These types of constraints

often arise when we debug Bayesian networks. For example, if we want to make

event y more likely than event z, given evidence e, we can specify the constraint,

Pr(y | e) − Pr(z | e) ≥ 0. We can also make event y at least twice as likely as

29

event z, given evidence e, by specifying the constraint, Pr(y | e)/Pr(z | e) ≥ 2.

We now proceed to introduce a procedure that efficiently finds single param-

eter changes that can enforce a single query constraint.

2.1.1 Parameters of Binary Variables

We first consider the parameters in the CPT of a binary variable X, with two

values x and x̄, meaning there are two parameters θx|u and θx̄|u for every parent

instantiation u. Because we must have θx|u + θx̄|u = 1, it is not meaningful to

change only θx|u or θx̄|u without changing the other. Therefore, for every parent

instantiation u, we introduce a meta-parameter τx|u, and assign θx|u = τx|u and

θx̄|u = 1 − τx|u. Our goal is then to determine the amount of change that must

be applied to τx|u, which would lead to complementary changes in θx|u and θx̄|u,

that can enforce the query constraint.

First we observe that the probability of an instantiation e, Pr(e), is a linear

function of any parameter θx|u in a Bayesian network [CGH97, RBK95]. In

fact, the probability is linear in any meta-parameter τx|u, giving us the following

theorem.

Theorem 2.1 The derivative of Pr(e) with respect to τx|u, which we define as

πe
x|u, is given by:

πe
x|u

def
=

∂Pr(e)

∂τx|u
=

Pr(e, x,u)

θx|u
− Pr(e, x̄,u)

θx̄|u
, (2.5)

if θx|u 6= 0 and θx̄|u 6= 0.3 Since Pr(e) is linear in τx|u, if we apply a change of

∆τx|u to τx|u, the change in Pr(e) is given by:

∆Pr(e) = πe
x|u∆τx|u. (2.6)

3If either of the parameters is zero, we can use the differential approach to compute this
derivative [Dar03].

30

In Equation 2.5, πe
x|u is a constant in terms of both θx|u and θx̄|u, and conse-

quently also a constant in terms of τx|u.4 The constant πe
x|u, as well as πy,e

x|u and

πz,e
x|u, when applicable, is crucial to the procedure of finding the necessary change

in τx|u to enforce the query constraint.

We are now ready to find the single parameter changes that can enforce the

query constraint, given that it is not satisfied by the current Bayesian network,

which induces the probability distribution pr. For example, to enforce Inequal-

ity 2.1, it suffices to ensure that Pr(y, e) ≥ κ · Pr(e), or equivalently:

pr(y, e) + ∆Pr(y, e) ≥ κ (pr(e) + ∆Pr(e)) ,

where pr(e) and pr(y, e) are the current probabilities of e and y, e respectively.

If we apply a change of ∆τx|u to τx|u, from Equation 2.6, we have:

pr(y, e) + πy,e
x|u∆τx|u ≥ κ

(
pr(e) + πe

x|u∆τx|u
)
.

Rearranging the terms, we get the following result.

Corollary 2.1 To satisfy Inequality 2.1, Pr(y | e) ≥ κ, we need to change τx|u

by ∆τx|u, such that:

pr(y, e)− κ · pr(e) ≥ ∆τx|u
(
−πy,e

x|u + κ · πe
x|u

)
,

where pr(e) and pr(y, e) are the current probabilities of e and y, e respectively,

and the constants πe
x|u and πy,e

x|u are defined by Equation 2.5.

Similarly, the solution to Inequality 2.2 is as follows.

4The closed form of πe
x|u is Pr(u)(Pr(e | x,u)−Pr(e | x̄,u)), which is constant in terms of

both θx|u and θx̄|u.

31

Corollary 2.2 To satisfy Inequality 2.2, Pr(y | e) ≤ κ, we need to change τx|u

by ∆τx|u, such that:

pr(y, e)− κ · pr(e) ≤ ∆τx|u
(
−πy,e

x|u + κ · πe
x|u

)
,

where pr(e) and pr(y, e) are the current probabilities of e and y, e respectively,

and the constants πe
x|u and πy,e

x|u are defined by Equation 2.5.

To enforce Inequality 2.3, it suffices to ensure that Pr(y, e) − Pr(z, e) ≥
κ · Pr(e). Therefore, we need to solve for ∆τx|u in the following inequality:

pr(y, e) + πy,e
x|u∆τx|u − pr(z, e)− πz,e

x|u∆τx|u ≥ κ
(
pr(e) + πe

x|u∆τx|u
)
.

Rearranging the terms, we get the following result.

Corollary 2.3 To satisfy Inequality 2.3, Pr(y | e) − Pr(z | e) ≥ κ, we need to

change τx|u by ∆τx|u, such that:

pr(y, e)− pr(z, e)− κ · pr(e) ≥ ∆τx|u
(
−πy,e

x|u + πz,e
x|u + κ · πe

x|u
)
,

where pr(e), pr(y, e), and pr(z, e) are the current probabilities of e, y, e, and z, e

respectively, and the constants πe
x|u, πy,e

x|u, and πz,e
x|u are defined by Equation 2.5.

To enforce Inequality 2.4, we need to solve for ∆τx|u in the following inequality:

pr(y, e) + πy,e
x|u∆τx|u ≥ κ

(
pr(z, e) + πz,e

x|u∆τx|u
)
.

Rearranging the terms, we get the following result.

Corollary 2.4 To satisfy Inequality 2.4, Pr(y | e)/Pr(z | e) ≥ κ, we need to

change τx|u by ∆τx|u, such that:

pr(y, e)− κ · pr(z, e) ≥ ∆τx|u
(
−πy,e

x|u + κ · πz,e
x|u

)
,

where pr(y, e) and pr(z, e) are the current probabilities of y, e and z, e respec-

tively, and the constants πy,e
x|u and πz,e

x|u are defined by Equation 2.5.

32

The solutions of ∆τx|u in Corollaries 2.1 to 2.4 are always in one of the fol-

lowing two forms:

• ∆τx|u ≤ δ, for some computed δ < 0, in which case the new value of τx|u

must be in the interval [0, p + δ], where p is the current value of τx|u;

• ∆τx|u ≥ δ, for some computed δ > 0, in which case the new value of τx|u

must be in the interval [p + δ, 1], where p is the current value of τx|u.

Therefore, δ is the minimum amount of change in τx|u that can enforce the query

constraint. For many parameters, no solutions can be found, meaning there is no

way we can change these parameters to enforce the desired query constraint.

The question now is how to find the solutions efficiently for all network pa-

rameters. Note that there are usually several parameter changes that can enforce

the given constraint, and we are interested in identifying all such changes. To

do so, we must be able to compute a number of probabilities under the cur-

rent distribution pr. For example, we can easily solve for the amount of change

∆τx|u in Corollary 2.1, once we know the following probabilities: pr(e), pr(y, e),

pr(e, x,u), pr(e, x̄,u), pr(y, e, x,u), and pr(y, e, x̄,u). This leads to the following

complexity of a procedure that finds all solutions of single parameter changes.

Corollary 2.5 If we have an algorithm that can compute Pr(i, x,u), for a given

instantiation i, and all family instantiations x,u of all variables X in a Bayesian

network,5 in O(f) time, we can solve for the solution of ∆τx|u in Corollaries 2.1

to 2.4 for all meta-parameters τx|u of the Bayesian network in O(f) time.

For example, to solve for ∆τx|u in Corollary 2.3 for all meta-parameters τx|u

of the Bayesian network, we need to run the algorithm that computes Pr(i, x,u)

three times, first with i = e, then with i = y, e, and finally with i = z, e.

5The family of a variable X is the set containing X and its parents U.

33

The join-tree algorithm [JLO90, SS86] and the differential approach [Dar03]

can both compute Pr(i, x,u), for a given instantiation i and all family instantia-

tions x,u of all variables X, in O(n2w) time, where n is the number of variables in

the Bayesian network and w is the tree width, which is a quantity that depends

on the connectivity of the network structure [Dar03]. Note that O(n2w) time

is also the complexity needed to answer one of the simplest queries in Bayesian

networks, that of computing the probability of evidence Pr(e).

2.1.2 Parameters of Multi-Valued Variables

Our previous results can be easily extended to a multi-valued variable X, as long

as we use a scheme to change the co-varying parameters when a parameter in the

CPT of X is changed [Dar03, Kv00]. After the parameter θx|u is changed, we need

to change the other parameters in the same conditional probability distribution,

i.e., θx∗|u for all x∗ 6= x, to ensure that θx|u +
∑

x∗ 6=x θx∗|u = 1. The most common

way to do this is to use the proportional scheme. In this scheme, we change

the co-varying parameters such that the ratios between them remain the same.

For example, given a variable X with three values {1, 2, 3}, the current values

of the three parameters in a conditional probability distribution are θX=1|u = .6,

θX=2|u = .3, and θX=3|u = .1. After θX=1|u is changed to .8, we change the other

two parameter values to θX=2|u = .3(.2/.4) = .15 and θX=3|u = .1(.2/.4) = .05,

such that the ratio θX=2|u/θX=3|u remains 3. We now formally define the meta-

parameter τx|u such that all co-varying parameters can be changed simultaneously

using the proportional scheme.

Definition 2.1 After the parameter θx|u is changed, we can change the co-varying

parameters using the proportional scheme, by introducing the meta-parameter

34

τx|u, and assigning:

θx|u = τx|u;

θx∗|u =
ϑx∗|u

1− ϑx|u

(
1− τx|u

)
for all x∗ 6= x,

where ϑx|u and ϑx∗|u are the current parameter values of θx|u and θx∗|u respec-

tively.6

With this definition of meta-parameter τx|u, Pr(e) is again linear in τx|u, and

the derivative of Pr(e) with respect to τx|u is given by:

πe
x|u

def
=

∂Pr(e)

τx|u
=

Pr(e, x,u)

θx|u
−

∑
x∗ 6=x Pr(e, x∗,u)

∑
x∗ 6=x θx∗|u

. (2.7)

Equation 2.7 is similar to Equation 2.5, if we group all values x∗ 6= x into the

pseudo-value x̄, and thus we can easily solve for ∆τx|u in Corollaries 2.1 to 2.4

for multi-valued variables.

There are certainly other schemes for changing co-varying parameters of multi-

valued variables that experts may want to use. For example, sometimes certain

parameters, such as those that are assigned 0 values, should remain constant

[WD00]. This can easily be done by using another set of equations to relate the

meta-parameter τx|u with the parameters θx∗|u for all x∗ 6= x. As long as Pr(e)

is linear in τx|u, we can compute πe
x|u, which is a constant in terms of τx|u, and

all of the previous results still hold.

6If ϑx|u = 1, we define the proportional scheme as assigning θx|u = τx|u and θx∗|u =
(1− τx|u)/(c− 1) for all x∗ 6= x, where c is the cardinality of X.

35

2.2 SamIam: A Tool for Tuning Bayesian Network Pa-

rameters

To automate the process of tuning Bayesian network parameters, we have devel-

oped a program called SamIam (Sensitivity Analysis, Modeling, Inference And

More) [ACC]. The procedure of finding single parameter changes that can enforce

a query constraint in a Bayesian network given in Section 2.1 has been imple-

mented in SamIam, which includes two main components: a graphical user inter-

face and a reasoning engine. Figure 2.2 shows a screenshot of SamIam performing

sensitivity analysis. We now present an example to illustrate how SamIam can

be used in practice.

Example 2.1 Consider again the Bayesian network Fire. We now set the evi-

dence e = {Smoke = true,Report = false}, i.e., smoke is observed, but there is

no report of people evacuating the building. Current query results indicate that

Pr(Fire = true | e) = .246 and Pr(Tampering = true | e) = .0160. However, we

believe in this case that the posterior probability of having a fire should be no less

than .5, and ask SamIam to find the single parameter changes that can enforce

the query constraint Pr(Fire = true | e) ≥ .5. SamIam solves for the solution of

Corollary 2.1 for every network parameter, and returns five suggestions of single

parameter changes, as shown in Figure 2.2:

1. Increase Pr(Fire = true) from .01 to ≥ .0300;

2. Increase Pr(Leaving = true | Alarm = false) from .001 to ≥ .923;

3. Increase Pr(Report = true | Leaving = false) from .01 to ≥ .776;

4. Decrease Pr(Smoke = true | Fire = false) from .01 to ≤ .00327;

36

Figure 2.2: A screenshot of SamIam returning suggestions of single parameter

changes for enforcing a query constraint.

5. Increase Pr(Tampering = true) from .02 to ≥ .801.

Clearly, three of these parameter changes can be ruled out based on qualitative

considerations, and the only sensible parameter changes are either to increase the

prior probability of having a fire, or to decrease the probability of observing smoke

without having a fire.

This example and other similar ones suggest that finding such parameter

changes and their magnitudes is inevitable for developing a faithful Bayesian

network, yet it is not trivial for experts to accomplish this task by visual inspec-

37

tion of the Bayesian network, often due to its size and complexity. Sensitivity

analysis tools such as SamIam can help facilitate this process by identifying im-

portant parameters that need to be fine-tuned in order to satisfy certain query

constraints. Of course, if we are given multiple query constraints, we need to be

cautious when implementing a suggestion made by SamIam to satisfy one of the

query constraints, since applying this change may result in violating other query

constraints. In this case, the parameter changes suggested by SamIam should be

used to help experts focus their attention on the relevant parameters.

Moreover, the examples we have shown illustrate the need to develop more

analytic tools to understand and explain the sensitivity of queries to certain

parameter changes. There is also a need to reconcile the sensitivity of parameters

exhibited by the examples with previous experimental studies demonstrating the

robustness of probabilistic queries against small parameter changes in certain

application areas, such as diagnosis [PHP96]. We will address these questions in

Chapter 3.

38

CHAPTER 3

Network-Independent Sensitivity Analysis

In Chapter 2, we focused our study on the relationships between parameter

changes and query changes given the specific details of the Bayesian network.

In this chapter, we will instead perform a network-independent analysis of the

relationships between parameter changes and query changes, which can be done

without being given any information about the Bayesian network [CD01, CD02b].

One of the central issues for sensitivity analysis of Bayesian networks is the

assessment of the impact of parameter changes on probabilistic queries of interest.

Common wisdom has it that small perturbations in the parameter values of a

Bayesian network do not matter much for the results of probabilistic queries.

However, we have encountered scenarios in which queries are quite sensitive to

small variations in certain network parameters, i.e., small variations in these

network parameters can lead to significant changes in computed queries. For

example, the absolute change in a query can be much larger than the absolute

change in a network parameter. Moreover, we will show later an example where

an infinitesimal change in a network parameter leads to a change of .5 to a query.

We will also show examples in which the relative change in a query is larger than

the relative change in a network parameter. One may wonder then whether there

is a different method of measuring probabilistic change, other than absolute or

relative, which gives a non-trivial bound on the change in a probabilistic query

in terms of the change in a network parameter.

39

To answer this and other related questions, we will conduct an analytic

study of the derivative of a probabilistic query Pr(y | e) with respect to a meta-

parameter τx|u, which was introduced in Chapter 2 and enables us to change

co-varying parameters simultaneously. Our study leads us to three main results:

1. A bound on the partial derivative ∂Pr(y | e)/∂τx|u in terms of Pr(y | e)

and Pr(x | u) only, which is independent of any other aspect of the given

Bayesian network;

2. A bound on the sensitivity of a query to an infinitesimal change in a

Bayesian network parameter;

3. A bound on the sensitivity of a query to an arbitrary change in a Bayesian

network parameter.

The last bound in particular shows that the amount of change in a probabilistic

query can be bounded in terms of the amount of change in a network parameter,

as long as the amount of change is measured in the relative change in odds. This

result has a number of practical implications. First, it can relieve experts from

having to be too precise when specifying certain parameters subjectively. Next, it

can be important for approximate inference algorithms that pre-process network

parameters to eliminate small distinctions between a set of parameters in order

to increase the efficiency of inference [Poo98]. Finally, it can be used to show

that automated reasoning systems based on Bayesian networks are robust, and

hence, suitable for real-world applications [PHP96]. We will then explore the

implications of the above bounds, where we provide an analytic explanation of

why certain parameter changes do not matter.

40

3.1 Bounding the Derivative of a Query With Respect To

a Parameter

Our starting point in understanding the sensitivity of a query Pr(y | e) to changes

in a parameter is to analyze the derivative of the query with respect to the

parameter. Because we cannot change only one parameter without changing

the other parameters in the same conditional probability distribution, we again

have to use the meta-parameter τx|u, which was introduced in the last chapter to

simultaneously change all co-varying parameters. If X is a binary variable, we

assign θx|u = τx|u and θx̄|u = 1− τx|u. If X is a multi-valued variable, we assume

that we use the proportional scheme to change co-varying parameters, as defined

in Definition 2.1.

We are now ready to tackle the problem by analyzing the partial derivative

∂Pr(y | e)/∂τx|u. The following theorem provides a simple bound on this partial

derivative, in terms of only Pr(y | e) and Pr(x | u) = τx|u, the current values

of the query and the meta-parameter. We can then use this bound to study the

effect of parameter changes on probabilistic queries.

Theorem 3.1 The derivative of Pr(y | e) with respect to τx|u is bounded by:1

∣∣∣∣∣
∂Pr(y | e)

∂τx|u

∣∣∣∣∣ ≤
Pr(y | e) (1− Pr(y | e))

Pr(x | u) (1− Pr(x | u))
.

The bound given in Theorem 3.1 is tight, and we will show later an example

where this bound is exactly assumed. The main point to note about this bound

is that it is independent of the specific details of the given Bayesian network.

Note that we have an exact closed form of the partial derivative ∂Pr(y | e)/∂τx|u

1This theorem and all results that follow in this chapter requires that τx|u 6= 0 and τx|u 6= 1,
since we can only use the expression in Equation 2.5 under these conditions.

41

[Dar03, GGS97], but that form includes terms that are specific to the given

Bayesian network.

Figure 3.1 plots the upper bound given in Theorem 3.1 against Pr(x | u) and

Pr(y | e). We can make two observations about this plot. For extreme values

of Pr(x | u), the bound approaches infinity, and thus a small absolute change in

the meta-parameter τx|u can have a big impact on the query Pr(y | e). On the

other hand, the bound approaches 0 for extreme values of the query Pr(y | e).

Therefore, a small absolute change in the meta-parameter τx|u can only have a

small effect on the absolute change in the query Pr(y | e)

One of the implications of Theorem 3.1 is that if we have a Bayesian network

where the queries of interest have extreme values, such queries are robust against

small absolute changes in the network parameters. This of course assumes that

robustness is understood to be a small absolute change in the value of the given

query. Interestingly enough, if y is a disease that is diagnosed by finding e, i.e.,

the probability Pr(y | e) is quite high, it is not surprising that this query would

be robust against small perturbations to network parameters. This seems to

explain some of the previous results where robustness have been confirmed for

queries where Pr(y | e) ≥ .9 [PHP96].

Another implication of Theorem 3.1 is that we have to be careful when chang-

ing parameters that are extreme. Such parameters are potentially very influential

and we must handle them with care.

Therefore, the worst situation from a robustness viewpoint materializes if

we have to deal with extreme parameters and non-extreme queries. In such a

case, the queries can be very sensitive to small variations in the parameters. We

illustrate this by the following example.

Example 3.1 Consider a Bayesian network with three binary variables, X, Y ,

42

0.2

0.4

0.6

0.8
Pr(x|u)

0.2

0.4

0.6

0.8

Pr(y|e)

0

2

4

6

b

0.2

0.4

0.6

0.8
Pr(x|u)

Figure 3.1: The plot of the upper bound on the partial derivative,

b = ∂Pr(y | e)/∂τx|u, against Pr(x | u) and Pr(y | e), as given in Theorem 3.1.

43

and E. There are two binary root nodes, X and Y , with respective parameters

{θx, θx̄} and {θy, θȳ} in their CPTs. The node E is a deterministic binary node

whose parents are X and Y , where E = e iff X = Y . This dictates the following

parameters in the CPT of E: Pr(e | x, y) = 1, Pr(e | x, ȳ) = 0 and Pr(e | x̄, y) =

0, Pr(e | x̄, ȳ) = 1. The conditional probability Pr(y | e) can be expressed using

the parameters of X and Y :

Pr(y | e) =
θxθy

θxθy + θx̄θȳ

.

Since ∂θx/∂τx = 1 and ∂θx̄/∂τx = −1, the derivative of Pr(y | e) with respect to

τx is given by:

∂Pr(y | e)
∂τx

=
(θxθy + θx̄θȳ) θy − θxθy (θy − θȳ)

(θxθy + θx̄θȳ)
2

=
θyθȳ

(θxθy + θx̄θȳ)
2 .

This is equal to the upper bound given in Theorem 3.1:

Pr(y | e) (1− Pr(y | e))
Pr(x) (1− Pr(x))

=
(θxθy) (θx̄θȳ)

θxθx̄ (θxθy + θx̄θȳ)
2

=
θyθȳ

(θxθy + θx̄θȳ)
2 .

If we now set θx = θȳ, the derivative becomes:

∂Pr(y | e)
∂τx

=
1

4θxθx̄

,

and as θx or θx̄ approaches 0, the derivative approaches infinity. Finally, if we

set θx = θȳ = ε, where ε is very close to 0, we have Pr(y | e) = .5. However, if

we change τx from ε to 0, but keep θy and θȳ constant at 1− ε and ε, we get the

new result Pr(y | e) = 0.

Example 3.1 illustrates three points. First, it shows that the bound given in

Theorem 3.1 is tight, i.e., we can construct a Bayesian network that exactly

44

assumes the bound. Second, it gives an example network where the partial

derivative ∂Pr(y | e)/∂τx|u tends to infinity, and thus it cannot be bounded

by any constant. Third, it shows that applying an infinitesimal absolute change

to a meta-parameter, as we did by changing τx from ε to 0, can induce a non-

infinitesimal absolute change in some query, as Pr(y | e) changes from .5 to

0.

3.2 Bounding Query Changes Due To Parameter Changes

In this section, we will use the bound on the partial derivative ∂Pr(y | e)/∂τx|u,

given in Theorem 3.1, to bound the changes in a query due to changes in a meta-

parameter. We first consider the case where we apply an infinitesimal change to

a meta-parameter. Example 3.1 shows that an infinitesimal absolute change in

a meta-parameter can induce a non-infinitesimal absolute change in some query.

The following theorem, however, shows that this is not possible if we consider a

relative notion of change.

Theorem 3.2 Given meta-parameter τx|u ≤ .5,2 let ∆τx|u be an infinitesimal

change applied to τx|u, leading to a change of ∆Pr(y | e) to the query Pr(y | e).

The relative change in the query Pr(y | e) is bounded by:

∣∣∣∣∣
∆Pr(y | e)

Pr(y | e)

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
∆τx|u
τx|u

∣∣∣∣∣ .

For a function f(p), the quantity:

lim
p→p0

f(p)−f(p0)
f(p0)
p−p0

p0

,

2For a binary variable X, if τx|u > .5, we can instead choose the meta-parameter τx̄|u without
loss of generality.

45

is typically known as the sensitivity of f to p at p = p0. Therefore, Theorem 3.2

shows that the sensitivity of Pr(y | e) to τx|u is bounded.

To illustrate Theorem 3.2, consider again Example 3.1. The change of τx from

ε to 0 amounts to a relative change of | − ε/ε| = 1. The change of Pr(y | e) from

.5 to 0 amounts to a relative change of | − .5/.5| = 1. Therefore, the relative

change in the query is not as great from this viewpoint.3

The relative change in Pr(y | e) may be greater than double the relative

change in τx|u for non-infinitesimal changes, since the partial derivative ∂Pr(y |
e)/∂τx|u depends on the value of τx|u [Dar03, Jen99]. Consider again the Bayesian

network given in Example 3.1. If we set θx = .5 and θy = .01, we obtain the result

Pr(y | e) = .01. If we now increase τx to .6, amounting to a relative change of

20%, we get the new result Pr(y | e) = .0149, amounting to a relative change of

49%, which is more than double of the relative change in τx.

The question now becomes: if we change a meta-parameter τx|u by an ar-

bitrary (non-infinitesimal) amount, what can we say about the corresponding

change in the query Pr(y | e)? Before giving the answer, we first define the

notion of odds.

Definition 3.1 The odds of conditional event α | β under distribution Pr is

given by:4

O(α | β)
def
=

Pr(α | β)

Pr(ᾱ | β)
=

Pr(α | β)

1− Pr(α | β)
.

We now present the following theorem which bounds the amount of query

change due to an arbitrary parameter change.

3If we consider the meta-parameter τx̄ = 1−ε instead, the relative change in τx̄ then amounts
to ε/(1 − ε). However, Theorem 3.2 is not applicable in this case with ε close to 0, since the
theorem requires that the chosen meta-parameter to be no greater than .5.

4Of course, we must have Pr(β) 6= 0 for the odds to be defined.

46

Theorem 3.3 Assume that we apply an arbitrary change to the meta-parameter

τx|u. The initial odds of x | u and y | e are denoted by O(x | u) and O(y | e)

respectively, and the new odds of x | u and y | e after the parameter change are

denoted by O′(x | u) and O′(y | e) respectively. If the change in τx|u is positive,

we have:
O(x | u)

O′(x | u)
≤ O′(y | e)

O(y | e)
≤ O′(x | u)

O(x | u)
,

or if it is negative, we have:

O′(x | u)

O(x | u)
≤ O′(y | e)

O(y | e)
≤ O(x | u)

O′(x | u)
.

Combining both results, we have:

|ln O′(y | e)− ln O(y | e)| ≤ |ln O′(x | u)− ln O(x | u)| .

Theorem 3.3 states that the relative change in the odds of y | e is bounded by

the relative change in the odds of x | u, or equivalently, the log-odds change in

any query is bounded by the log-odds change in any parameter. Note that this

result makes no assumptions whatsoever about the structure or the CPTs of the

given Bayesian network. We now illustrate this using an example.

Example 3.2 Consider again Example 2.1. Given evidence e = {Smoke =

true,Report = false}, we decide to increase the posterior probability Pr(Fire =

true | e) from .246 to .5. The log-odds change in this query is | ln O′(Fire =

true | e) − ln O(Fire = true | e)| = 1.12. There were five single parameter

changes suggested by SamIam, as shown in Figure 2.2, and for the minimum

amount of each of these parameter changes, we calculate the log-odds change,

|∆ ln O(x | u)| = | ln O′(x | u)− ln O(x | u)|:

1. Increase Pr(Fire = true) from .01 to .0300: |∆ ln O(x | u)| = 1.12;

47

2. Increase Pr(Leaving = true | Alarm = false) from .01 to .923: |∆ ln O(x |
u)| = 9.39;

3. Increase Pr(Report = true | Leaving = false) from .01 to .776: |∆ ln O(x |
u)| = 5.84;

4. Decrease Pr(Smoke = true | Fire = false) from .01 to .00327: |∆ ln O(x |
u)| = 1.13;

5. Increase Pr(Tampering = true) from .02 to .801: |∆ ln O(x | u)| = 5.29.

Therefore, we can see that all suggested parameter changes satisfy Theorem 3.3,

i.e., the log-odds change in the query value is bounded by the log-odds change in

the parameter value.

An interesting special case of Theorem 3.3 is when X is a root node and

X = Y . From basic probability theory, we have:

O(x | e) = O(x)
Pr(e | x)

Pr(e | x̄)
.

As the ratio Pr(e | x)/Pr(e | x̄) is independent of Pr(x), the ratio O(x | e)/O(x)

is also independent of this prior probability. Therefore, we can conclude that:

O′(x | e)

O(x | e)
=

O′(x)

O(x)
. (3.1)

This means we can find the exact amount of change needed for a meta-parameter

τx in order to induce a particular change in the query Pr(x | e). There is no need

to use the more expensive procedure given in Section 2.1 in this case. For example,

consider again Example 3.2. We can easily compute the new prior probability

Pr′(Fire = true) that enforces the desired constraint using Equation 3.1:

.5

.5
.246
.754

=

Pr′(Fire=true)
1−Pr′(Fire=true)

.01

.99

,

48

giving us Pr′(Fire = true) = .0300, which is equal to the result we obtained

using SamIam. Both the changes in Pr(Fire = true) and Pr(Fire = true | e)

amount to a log-odds change of 1.12.

Theorem 3.3 has a number of implications. First, given a particular query

Pr(y | e) and a meta-parameter τx|u, it can be used to bound the effect that

a change in τx|u will have on the query Pr(y | e). Suppose we follow the first

suggestion by SamIam in Example 3.2, and increase Pr(Fire = true) from .01 to

.0300. Consequently, the log-odds change in any query will be bounded by the

log-odds change in this network parameter. For example, currently we have the

query value Pr(Tampering = true | e) = .016. We can find the range of the new

query value Pr′(Tampering = true | e) using Theorem 3.3:
∣∣∣∣∣ln

Pr′(Tampering = true | e)

1− Pr′(Tampering = true | e)
− ln

.016

.984

∣∣∣∣∣ ≤
∣∣∣∣ln

.0300

.9700
− ln

.01

.99

∣∣∣∣ ,

giving us the bound .00528 ≤ Pr′(Tampering = true | e) ≤ .0474. The exact new

query value Pr′(Tampering = true | e), obtained by inference, is .0233, which is

within the computed bounds.

Second, Theorem 3.3 can be used to efficiently approximate the solutions given

in Corollaries 2.1 to 2.4, which compute single parameter changes for enforcing

query constraints. Given a desirable change in the value of query Pr(y | e), we can

use Theorem 3.3 to immediately compute a lower bound on the minimum change

in the meta-parameter τx|u needed to induce the query change. This method can

be applied in constant time and can serve as a preliminary suggestion, as the

procedure given in Section 2.1 is much more expensive computationally.

Third, when SamIam suggests several parameter changes where each one of

them can induce a desirable change on a given query, we may want to ask: which

one of these changes should we adopt? The main principle applied in these

situations is to adopt a “minimal” change. However, what is “minimal” in this

49

case? As previous examples have revealed, a notion of minimality that is based

on the amount of absolute change or relative change can be very misleading.

Instead, according to Theorem 3.3, we should adopt the parameter change that

minimizes the relative change in odds, as other queries can be shown to be robust

against such a change in a precise sense.

For example, we are given two parameter changes, one from .1 to .15, and

another from .4 to .45. Both these changes amount to the same absolute change

of .05. However, the first change amounts to a log-odds change of .462, while the

second change amounts to a log-odds change of .205. Therefore, two parameter

changes that amount to the same absolute change can have different amounts of

log-odds change.

On the other hand, two parameter changes that amount to the same relative

change can also have different amounts of log-odds change. For example, we

are given two parameter changes, one from .1 to .2, and another from .2 to .4.

Both these changes double the initial parameter value. However, the first change

amounts to a log-odds change of .811, while the second change amounts to a

log-odds change of .981.

Finally, the results in this section can be used to obtain a better intuitive

understanding of parameter changes that do or do not matter, a topic that we

will discuss in the next section.

3.3 Parameter Changes That (Don’t) Matter

We now return to a central question: when do changes in network parameters

matter (or not matter)? As we mentioned earlier, there have been experimen-

tal studies investigating the robustness of Bayesian networks against parameter

50

changes [PHP96]. However, we have also shown very simple and intuitive exam-

ples where networks can be very sensitive to small parameter changes. This calls

for a better understanding of the effect of parameter changes on queries, so we

can intuitively sort out situations in which such changes do or do not matter. Our

goal in this section is to further develop such an understanding by looking more

closely into some of the implications of Theorem 3.3. We start by highlighting

the difference between this theorem and previous results on sensitivity analysis.

3.3.1 Network-Specific Sensitivity Analysis

One of the main differences between our results and other approaches to sensitiv-

ity analysis is that we do not need to know the Bayesian network, and hence, do

not need to perform inference. To clarify this difference, we now look at the sen-

sitivity function approach [vR01], which computes the sensitivity function that

relates a query, f(p) = Pr(y | e), and a meta-parameter, p = τx|u, in the form:

f(p) =
µ1p + µ0

ν1p + ν0

, (3.2)

where µ1, µ0, ν1, ν0 are constants that depend on the given network and are

computed by performing inference [vR01].5

As an example, consider again the Bayesian network Fire. We can express

the query Pr(Fire = true | Smoke = true,Report = false) as a function of

the parameter p = Pr(Smoke = true | Fire = false) using Equation 3.2. The

sensitivity function is given by:

f(p) =
.00317

.968 · p + .00317
,

and we plot this function in Figure 3.2. We can see that at the current parameter

value .01, the query value is .246, but if we decrease the parameter value to

5It can be easily verified that µ1 = πy,e
x|u and ν1 = πe

x|u, as defined in Theorem 2.1.

51

.00327, the query value increases to .5, which is one of the parameter changes

suggested by SamIam in Example 2.1.

However, from our work in Section 3.2, we can find a bound on the rela-

tionship between a query and a network parameter without doing inference on

the Bayesian network (and without knowing the network). This is because The-

orem 3.1 gives us the bound on the derivative of f(p) with respect to p, and

Theorem 3.3 gives us the bound on the change in f(p) after an arbitrary change

in p. For example, by changing the current parameter value from .01 to .00327,

the new query value will be within the bounds of .0958 and .501. On the other

hand, if we want the query value to increase from .246 to .5, we will have to

decrease the parameter value from .01 to .00328 or less, or increase it to .0300 or

more.

3.3.2 Assuring Query Robustness

One of the important issues we have yet to settle is: what does it mean for a

parameter change to not matter? We can think of at least three definitions.

First, the absolute change in the probability value Pr(y | e) is small. Second,

the relative change in the probability value Pr(y | e) is small. Third, the relative

change in the odds value O(y | e) is small. The first notion is the most prevalent

one in the literature, so we will adopt it in the rest of this section.

Suppose we have a Bayesian network for a diagnostic application and we are

concerned about the robustness of the query Pr(y | e) with respect to changes in

network parameters. In this application, y is a particular disease and e is a set

of observations that predicts the disease, where the current value of the query is

Pr(y | e) = .9. Let us define robustness in this case to be an absolute change

of no more than .05 in the query value. We would like to know: what amount

52

0.2 0.4 0.6 0.8 1
p

0.1

0.2

0.3

0.4

0.5

f(p)

0.005 0.01 0.015 0.02
p

0.2

0.4

0.6

0.8

1

f(p)

Figure 3.2: The plots of the sensitivity function

f(p) = Pr(Fire = true | Smoke = true,Report = false) against the pa-

rameter value p = Pr(Smoke = true | Fire = false), in the Bayesian network

Fire. The second plot magnifies the first plot for the region where p is between 0

and .02.

53

of change in a single network parameter is guaranteed to keep the query within

the desirable range? We can use Theorem 3.3 easily to answer this question. If

the current value of a parameter is p, and we are going to change its value to

p′ = p + δ, and we want the value of the query to remain ≤ .95, we must ensure

that: ∣∣∣∣∣ln
p + δ

1− (p + δ)
− ln

p

1− p

∣∣∣∣∣ ≤
∣∣∣∣ln

.95

.05
− ln

.9

.1

∣∣∣∣ = .747.

Similarly, if we want to ensure that the query remains ≥ .85, we must ensure

that: ∣∣∣∣∣ln
p + δ

1− (p + δ)
− ln

p

1− p

∣∣∣∣∣ ≤
∣∣∣∣ln

.85

.15
− ln

.9

.1

∣∣∣∣ = .463.

Figure 3.3 plots δ as a function of p. The main observation we can make

here is that the amount of permissible parameter change depends on the current

parameter value p, with smaller absolute changes allowed for extreme values of p.

It is also interesting to note that it is easier to guarantee that the query remains

no more than .95 than to guarantee that it remains no less than .85. In general,

it is more likely for a parameter change to reduce the value of a query that is

close to 1 than to increase it by the same amount (and to increase the value of

a query that is close to 0 than to reduce it by the same amount). Finally, if

we are going to increase the parameter, a parameter value close to .4 allows the

biggest absolute change. However, if we are going to decrease the parameter, a

parameter value close to .6 allows the biggest absolute change.

Let us now repeat the same exercise but given that the current value of the

query is Pr(y | e) = .6, yet insisting on the same measure of robustness. We

must now ensure that:

∣∣∣∣∣ln
p + δ

1− (p + δ)
− ln

p

1− p

∣∣∣∣∣ ≤
∣∣∣∣ln

.65

.35
− ln

.6

.4

∣∣∣∣ = .214,

54

0.2 0.4 0.6 0.8 1
p

−0.2

−0.15

−0.1

−0.05

0.05

0.1

0.15

0.2
δ

Figure 3.3: The plot of δ against p that would guarantee the query Pr(y | e) = .9

to stay within the interval [.85, .95], where p and p′ = p + δ are the initial and

new parameter values respectively. The outer envelope guarantees the query to

remain no more than .95, while the inner envelope guarantees the query to remain

no less than .85.

55

and: ∣∣∣∣∣ln
p + δ

1− (p + δ)
− ln

p

1− p

∣∣∣∣∣ ≤
∣∣∣∣ln

.65

.35
− ln

.6

.4

∣∣∣∣ = .205.

Figure 3.4 plots δ as a function of p, and again, we observe that smaller absolute

changes are allowed for extreme values of p. Another observation we emphasize

here is that for the same parameter value p, the amount of permissible parameter

change is now much smaller compared with the previous case, since the current

value of the query is not as extreme. Therefore, this query is much less robust

than the previous one.

Finally, Figure 3.5 plots the log-odds change, |∆ ln O(α | β)| = | ln O′(α |
β)−ln O(α | β)|, in the query value of an arbitrary conditional event α | β, against

its initial and new probability values, p = Pr(α | β) and p′ = p + δ = Pr′(α | β),

and Figure 3.6 shows cross-sections of Figure 3.5 for three different values of p.

These plots again explain analytically why for the same log-odds change, we can

apply bigger absolute changes to non-extreme probabilities [Poo98, PHP96].

From Figure 3.6, we also notice that although the plot is symmetric for p = .5,

it is not for either p = .1 or p = .9, i.e., the new parameter values of p′ = p+δ and

p′ = p − δ give us different amounts of log-odds change. For example, changing

the probability value from .1 to .05 amounts to a larger log-odds change than

changing it from .1 to .15. We also notice that the plots for p = .1 and p = .9

are mirror images of each other. Therefore, the log-odds changes are the same

for complementary changes in probabilities Pr(α | β) and Pr(ᾱ | β).

We close this section by emphasizing that the results above identify param-

eter changes that guarantee keeping queries within certain ranges. However, if

the Bayesian network has specific properties, such as a specific topology, it is

possible for the query to be robust against parameter changes that are outside

the identified bounds.

56

0.2 0.4 0.6 0.8 1
p

−0.2

−0.15

−0.1

−0.05

0.05

0.1

0.15

0.2
δ

Figure 3.4: The plot of δ against p that would guarantee the query Pr(y | e) = .6

to stay within the interval [.55, .65], where p and p′ = p + δ are the initial and

new parameter values respectively. The outer envelope guarantees the query to

remain no more than .65, while the inner envelope guarantees the query to remain

no less than .55.

57

0.2

0.4

0.6

0.8
p

0.2

0.4

0.6

0.8

p’

0

5

10
∆log O(α|β)

0.2

0.4

0.6

0.8
p

Figure 3.5: The plot of the log-odds change,

|∆ ln O(α | β)| = | ln O′(α | β) − ln O(α | β)|, against its initial and new

probability values, p = Pr(α | β) and p′ = p + δ = Pr′(α | β) respectively.

58

0.2 0.4 0.6 0.8 1
p’

1

2

3

4

5

6
∆log O(α|β)

0.2 0.4 0.6 0.8 1
p’

1

2

3

4

5

6
∆log O(α|β)

0.2 0.4 0.6 0.8 1
p’

1

2

3

4

5

6
∆log O(α|β)

Figure 3.6: The plots of the log-odds change,

|∆ ln O(α | β)| = | ln O′(α | β) − ln O(α | β)|, against its new probability

value p′ = p + δ = Pr′(α | β), for several initial probability values p = Pr(α | β):

p = .1 (top left), p = .9 (top right), p = .5 (bottom).

59

CHAPTER 4

Quantifying Belief Changes

In this chapter, we will discuss the problem of quantifying belief changes. In par-

ticular, we want to quantify the global belief changes between two probabilistic

states of belief. To achieve this, we propose a distance measure that allows us

to bound the amount of global belief change that results from transforming one

probabilistic state of belief into another [CD02a, CD05a]. Specifically, given a

probability distribution Pr representing an initial state of belief, and a distribu-

tion Pr′ representing a new state of belief, we define a distance measure that al-

lows us to tightly bound belief changes as follows: e−d ≤ O′(α | β)/O(α | β) ≤ ed.

Here, d is the proposed distance computed between Pr and Pr′, α and β are ar-

bitrary events, O(α | β) is the odds of conditional event α | β under Pr, and

O′(α | β) is the odds of conditional event α | β under Pr′. We show a number of

theoretical results about the proposed measure and then present two of its key

applications.

On the theoretical side, we prove that our proposed measure satisfies the

three properties of distance. We also contrast our distance measure with classical

measures, including KL-divergence [KL51], where we present results on its ability

to bound belief changes. Specifically, we show that the belief change between two

states of belief can be unbounded, even when the KL-divergence between them

tends to zero. We show, however, that KL-divergence can be used to bound the

average change in beliefs as opposed to the worst-case change in beliefs.

60

On the practical side, we apply our distance measure to sensitivity analysis

of Bayesian networks, an area that concerns itself with bounding global belief

changes that result from applying a local perturbation to a Bayesian network

[CGH97, CPO99, Dar03, Kv00, Las95, vR01], as discussed in Chapter 3. We

show three key results here. First, we show that if Pr is the distribution induced

by a Bayesian network B, and if Pr′ is the distribution induced by a Bayesian

network B′ that results from changing some conditional probability distribution

in B, the distance measure between Pr and Pr′ can be computed locally by

only examining the changed parameters. Second, we use our distance measure to

provide a bound on the change in a query that results from a local CPT change,

and show that this bound generalizes and provides more insights into the bound

given in Theorem 3.3. Third, we use our distance measure to prove the optimality

of the proportional scheme defined in Definition 2.1, which is a prevalent, but

formally unjustified, technique in the literature on sensitivity analysis used to

change the CPTs of multi-valued variables [Dar03, Kv00, Las95].

4.1 A Distance Measure for Bounding Probabilistic Belief

Changes

Our proposed measure is defined between two probability distributions as follows.

Definition 4.1 Let Pr and Pr′ be two probability distributions over the same

set of worlds ω. We define a measure D(Pr, Pr′) as follows:

D(Pr, Pr′) def
= ln max

ω

Pr′(ω)

Pr(ω)
− ln min

ω

Pr′(ω)

Pr(ω)
,

where we also define, 0/0
def
= 1 and ∞/∞ def

= 1.

61

We say that two probability distributions Pr and Pr′ have the same support,

if for every world ω, Pr(ω) = 0 iff Pr′(ω) = 0. Note that D(Pr, Pr′) = ∞ iff two

distributions Pr and Pr′ do not have the same support.

Our first result on this measure is that it satisfies the three properties of

distance, and hence, it is a distance measure.

Theorem 4.1 Let Pr, Pr′ and Pr′′ be three probability distributions over the

same set of worlds. The distance measure defined in Definition 4.1 satisfies these

three properties:

Positiveness D(Pr, Pr′) ≥ 0, and D(Pr, Pr′) = 0 iff Pr = Pr′;

Symmetry D(Pr, Pr′) = D(Pr′, P r);

Triangle inequality D(Pr, Pr′) + D(Pr′, P r′′) ≥ D(Pr, Pr′′).

Our interest in this distance measure stems from two reasons. First, it can be

easily computed in a number of practical situations that we will discuss in later

sections. Second, it allows us to bound the difference in beliefs captured by two

probability distributions.

Theorem 4.2 Let Pr and Pr′ be two probability distributions over the same

set of worlds, and α and β be arbitrary events. Given the distance measure

D(Pr, Pr′) between Pr and Pr′, we have the following bound:

e−D(Pr,Pr′) ≤ O′(α | β)

O(α | β)
≤ eD(Pr,Pr′),

where O(α | β) and O′(α | β) are the odds of α | β under distributions Pr and Pr′

respectively. The bound is tight in the sense that for every pair of distributions

62

Pr and Pr′, there are events α and β such that:

O′(α | β)

O(α | β)
= eD(Pr,Pr′);

O′(ᾱ | β)

O(ᾱ | β)
= e−D(Pr,Pr′).

We can express the bound given in Theorem 4.2 in two other useful forms.

First, we can use logarithms:

|ln O′(α | β)− ln O(α | β)| ≤ D(Pr, Pr′). (4.1)

Second, we can use probabilities instead of odds to express the bound on Pr′(α |
β):

e−dp

(e−d − 1) p + 1
≤ Pr′(α | β) ≤ edp

(ed − 1) p + 1
, (4.2)

where p = Pr(α | β) and d = D(Pr, Pr′). The bounds on Pr′(α | β) are plotted

against p for several values of d in Figure 4.1.

In the applications we will discuss next, Pr is a distribution that represents

an initial state of belief, and Pr′ is a distribution that represents a new state

of belief, which results from applying some kind of local change to the initial

state of belief. Examples include a change in some conditional belief or the in-

corporation of new soft evidence. Our goal is then to assess the global impact

of such local belief changes. According to Theorem 4.2, if we are able to com-

pute the distance measure D(Pr, Pr′), we can bound global belief changes in a

very precise sense, by using Inequality 4.2 to compute the bound on any query

Pr′(α | β), given its initial value Pr(α | β). We will later show two applications

from sensitivity analysis and belief revision where our distance measure can be

computed efficiently.

63

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

Pr’(α|β) bound

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

Pr’(α|β) bound

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

Pr’(α|β) bound

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

Pr’(α|β) bound

Figure 4.1: The plots of the bounds on Pr′(α | β) against p = Pr(α | β), for

several values of the distance measure d = D(Pr, Pr′), as given by Inequality 4.2:

d = .1 (top left), d = 1 (top right), d = 2 (bottom left), and d = 3 (bottom right).

64

4.2 Comparison with Existing Measures

Before we discuss the applications of our distance measure, we first need to settle a

major question: can we bound belief changes in the sense given above using one of

the classical probabilistic measures? We will show next that this is not possible

using at least two of the most commonly used measures: KL-divergence and

Euclidean distance. We will show, however, that KL-divergence can be used to

provide an average-case bound on belief changes, and also provide a relationship

between that bound and ours.

We start first with the Kullback-Leibler divergence, or KL-divergence, which

is one of the most common measures for comparing probability distributions

[KL51], defined as follows.

Definition 4.2 Let Pr and Pr′ be two probability distributions over the same

set of worlds ω. The KL-divergence between Pr and Pr′ is defined as:

KL(Pr, Pr′) def
= −∑

ω

Pr(ω) ln
Pr′(ω)

Pr(ω)
.

The first thing we note about KL-divergence is that it is incomparable with

our distance measure.1

Example 4.1 Consider the following distributions, Pr, Pr′ and Pr′′, over worlds

ω1, ω2 and ω3:

Pr(ω1) = .5, P r(ω2) = .25, P r(ω3) = .25;

Pr′(ω1) = .5, P r′(ω2) = .3, P r′(ω3) = .2;

Pr′′(ω1) = .43, P r′′(ω2) = .32, P r′′(ω3) = .25.

1Note that KL-divergence is asymmetric, and is thus technically not a distance measure.

65

Computing the KL-divergence and our distance measure gives us:

KL(Pr, Pr′) = .0102, KL(Pr, Pr′′) = .0137;

D(Pr, Pr′) = .405, D(Pr, Pr′′) = .398.

Therefore, according to KL-divergence, Pr′ is closer to Pr than Pr′′, while ac-

cording to our distance measure, Pr′′ is closer to Pr than Pr′.

The following example shows that we can make the KL-divergence between

two distributions arbitrarily close to 0, while keeping some odds ratio O′(α |
β)/O(α | β) arbitrarily close to some constant k. Therefore, KL-divergence

cannot be used to bound belief changes as permitted by our distance measure.

Example 4.2 Consider the following distributions, Pr and Pr′, over worlds ω1,

ω2 and ω3:

Pr(ω1) = p, Pr(ω2) = q − p, Pr(ω3) = 1− q;

Pr′(ω1) = kp, Pr′(ω2) = q − kp, Pr′(ω3) = 1− q;

where 0 ≤ p ≤ q ≤ 1 and 0 ≤ k ≤ q/p. The KL-divergence between Pr and Pr′

is:

KL(Pr, Pr′) = −p ln k − (q − p) ln
q − kp

q − p
.

Suppose we have events α = ω1 and β = ω1 ∨ω2. The odds ratio of α | β between

Pr and Pr′ is:
O′(α | β)

O(α | β)
=

k (q − p)

q − kp
.

We can see that as p approaches 0, the KL-divergence also approaches 0, while

the odds ratio O′(α | β)/O(α | β) approaches k.

In Example 4.2, we condition on event β, where Pr(β) = q where q can be

arbitrarily large. However, the probability of event α, which is p under Pr and

66

kp under to Pr′, is very small as p approaches 0, meaning that although we have

Pr′(α)/Pr(α) = k, this ratio is virtually ignored by KL-divergence because the

term −p ln k is very small. More generally, the “contribution” of a world ω to

KL-divergence is equal to −Pr(ω) ln(Pr′(ω)/Pr(ω)). Therefore, for a fixed ratio

Pr′(ω)/Pr(ω), this “contribution” becomes closer to 0 as Pr(ω) decreases, and

becomes infinitesimal when Pr(ω) approaches 0.

Another popular measure to compare two probability distributions Pr and

Pr′ is the Euclidean distance, defined as:

Eucl(Pr, Pr′) def
=

∑
ω

√
(Pr′(ω)− Pr(ω))2.

That means, when computing the Euclidean distance, we add up the squared

differences between pairs of probability values. Therefore, this measure has the

same problem as KL-divergence, as even if there is a large relative change in the

probability of a world from Pr to Pr′, it will be ignored if this probability is

very small. Consequently, we cannot provide any guarantee on the ratio O′(α |
β)/O(α | β), no matter how small the Euclidean distance is (unless it is zero). To

summarize, neither KL-divergence nor Euclidean distance can be used to provide

guarantees similar to the one given in Theorem 4.2 using our distance measure.

Finally, we note that our distance measure is an improvement over computing

the L-infinity metric:

L∞(ln Pr, ln Pr′) def
= max

ω
|ln Pr′(ω)− ln Pr(ω)|,

since our distance measure is computed from both the maximum and minimum

values of ln Pr′(ω)−ln Pr(ω). If L∞(ln Pr, ln Pr′) = l, we can conclude that −l ≤
ln Pr′(ω)− ln Pr(ω) ≤ l for any ω, and prove the following two guarantees. First,

if α and β are arbitrary events, we have e−2l ≤ O′(α | β)/O(α | β) ≤ e2l. Second,

our distance measure is bounded such that D(Pr, Pr′) ≤ 2l. However, the first

67

guarantee is also a direct result of the second guarantee, and by computing the

exact value of the distance measure D(Pr, Pr′), we can obtain a bound that is no

worse than the bound obtained from L∞(ln Pr, ln Pr′). Therefore, our distance

measure should always be preferred.

4.2.1 Worst-Case Bound vs. Average-Case Bound

Even though KL-divergence cannot be used to bound belief changes as discussed

above, it can still be used to offer a bound on the average change in beliefs, as

proved by the following theorem.

Theorem 4.3 Let Pr and Pr′ be two probability distributions over the same set

of worlds. Let α and β be arbitrary events. We have:

KL(Pr, Pr′)

≥ −Pr(β)

(
Pr(α | β) ln

Pr′(α | β)

Pr(α | β)
+ (1− Pr(α | β)) ln

1− Pr′(α | β)

1− Pr(α | β)

)
,

or alternatively, in odds:

KL(Pr, Pr′) ≥ Pr(β)

(
ln

O′(α | β) + 1

O(α | β) + 1
− O(α | β)

O(α | β) + 1
ln

O′(α | β)

O(α | β)

)
.

According to this theorem, KL-divergence can be used to provide a guarantee

on the new odds value O′(α | β) in terms of the initial odds value O(α | β). How-

ever, the provided guarantee depends on the probability of β, where the quality

of the guarantee degrades as this probability decreases. This echoes Example 4.2,

where we can get a constant log-odds change even when the KL-divergence ap-

proaches 0, since the probability Pr(β) also approaches 0. To give better insights

into the guarantee offered by Theorem 4.3, we plot in Figure 4.2 the bounds on

Pr′(α | β) against p = Pr(α | β) for different values of KL(Pr, Pr′) and Pr(β).

68

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

Pr’(α|β) bound

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

Pr’(α|β) bound

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

Pr’(α|β) bound

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

Pr’(α|β) bound

Figure 4.2: The plots of the bounds on Pr′(α | β) against p = Pr(α | β),

for several values of KL(Pr, Pr′) and Pr(β), as given in Theorem 4.3:

KL(Pr, Pr′) = .005 and Pr(β) = 1 (top left), KL(Pr, Pr′) = .02 and

Pr(β) = 1 (top right), KL(Pr, Pr′) = .005 and Pr(β) = .1 (bottom left), and

KL(Pr, Pr′) = .02 and Pr(β) = .1 (bottom right).

69

We can also provide a bound on the change in the odds of α | β that is inde-

pendent of the probability of β by taking an average over all possible probabilities

of β, but that would be an average-case bound as opposed to the worst-case bound

provided by our distance measure.

To further relate the bounds given by our distance measure and KL-divergence,

we ask an interesting question: if we are given the value of our distance measure

between two distributions, can we put a bound on the KL-divergence between

them? The following theorem provides us the answer.

Theorem 4.4 Given two distributions Pr and Pr′, where D(Pr, Pr′) = d > 0,

we have:

KL(Pr, Pr′) ≤ d

ed − 1
− 1− ln

d

ed − 1
.

Figure 4.3 plots the bound on KL(Pr, Pr′) against d given in Theorem 4.4.

We can see that the smaller d is, the more we can say about the KL-divergence as

we get a tighter bound. If we view our distance measure as providing a worst-case

bound on belief changes, and KL-divergence as providing an average-case bound

on such changes, it is not surprising that we can say more about the average-case

bound (KL-divergence) if the worst-case bound (our distance measure) is less

dramatic.

We close this section with some further comments on the suitability of the

average-case versus worst-case bounds. In general, average-case bounds have

proved to be useful in learning algorithms, while worst-case bounds are more

important in common-sense reasoning, where conditioning on unlikely events is

not uncommon. However, even in learning algorithms, worst-case analysis can be

useful if it gives us tight results.

70

0.5 1 1.5 2 2.5 3
d

0.2

0.4

0.6

0.8

1

KL(Pr,Pr’) bound

Figure 4.3: The plot of the bound on the KL-divergence KL(Pr, Pr′) against the

distance measure d = D(Pr, Pr′), as given in Theorem 4.4.

71

4.2.2 Bounding Bayes Factors

Another useful term that can help us further understand our distance measure

and its difference with KL-divergence is the Bayes factor [Goo50, Goo83, Jef92],

defined as follows.

Definition 4.3 If Pr and Pr′ are two probability distributions over the same

set of worlds, and γ1 and γ2 are arbitrary events, the Bayes factor, denoted by

BPr′,P r(γ1 : γ2), is defined as the following ratio:

BPr′,P r(γ1 : γ2)
def
=

Pr′(γ1)
Pr′(γ2)

Pr(γ1)
Pr(γ2)

.

Instead of using the definition given in Definition 4.1, our distance measure

can also be expressed using the Bayes factor:

D(Pr, Pr′) = ln max
ωi,ωj

BPr′,P r(ωi : ωj).

Therefore, our distance measure can be regarded as the logarithm of the maxi-

mum Bayes factor of any two worlds between the two distributions. Consequently,

it can be used to bound the Bayes factor of any two events between the two dis-

tributions.

Corollary 4.1 If Pr and Pr′ are two probability distributions over the same set

of worlds, and γ1 and γ2 are arbitrary events, we have:

e−D(Pr,Pr′) ≤ BPr′,P r(γ1 : γ2) ≤ eD(Pr,Pr′).

Theorem 4.2 is a special case of Corollary 4.1, when we substitute the following

terms: γ1 = α | β and γ2 = ᾱ | β.

While our distance measure provides us a worst-case bound of Bayes factors,

the KL-divergence can be perceived as an average-case bound of Bayes factors,

as shown by the following theorem.

72

Theorem 4.5 Let α be an arbitrary event, and γ1, . . . , γn be a set of mutually

exclusive and exhaustive events. We have:

0 ≤ ∑

i

Pr(γi) ln BPr′,P r(α : γi)− ln
Pr′(α)

Pr(α)
≤ KL(Pr, Pr′).

If instead of an arbitrary partition γ1, . . . , γn, we are given the set of worlds ω,

we get the following equality relation:

KL(Pr, Pr′) =
∑
ω

Pr(ω) ln BPr′,P r(α : ω)− ln
Pr′(α)

Pr(α)
.

Therefore, Theorem 4.5 gives us a bound on the weighted sum of the loga-

rithms of the Bayes factors using KL-divergence.

4.3 Application to Bayesian Networks

We now consider a major application of our distance measure to sensitivity anal-

ysis of Bayesian networks [CGH97, CPO99, Dar03, Kv00, Las95, vR01], as dis-

cussed in Chapter 3, by asking the following questions with respect to Bayesian

networks: what can we say about the global effect of changing some parameter

θx|u to a new value θ′x|u? What is the effect of this local parameter change on the

value of some arbitrary query Pr(α | β)?

Theorem 3.3 provided a partial answer, for the case where variable X is bi-

nary (or X is multi-valued and we use the proportional scheme defined in Defi-

nition 2.1), α is the value y of some variable Y , β is the instantiation e of some

variables E, and neither θx|u nor θ′x|u is extreme, i.e., equal to 0 or 1. It provided

a formalization of a number of intuitions on the sensitivity of probabilistic queries

to changes in network parameters. We now show how our distance measure can

be used to derive a generalization of the bound given in Theorem 3.3, without

any of the previously mentioned restrictions.

73

Suppose we are given two Bayesian networks that differ on only a single con-

ditional probability distribution in the CPT of a variable, and the two networks

induce probability distributions Pr and Pr′ respectively. If we are able to com-

pute the distance between Pr and Pr′, D(Pr, Pr′), we can then use Theorem 4.2

to provide a guarantee on the global effect of the local CPT change. As it turns

out, the distance can be computed locally as shown by the following theorem.

Theorem 4.6 Let B and B′ be Bayesian networks that induce distributions Pr

and Pr′ respectively, and let X be a variable with parents U in networks B and

B′. If B′ is obtained from B by changing the conditional probability distribution

of variable X given parent instantiation u from ΘX|u to Θ′
X|u, i.e., we change

parameter θx|u to θ′x|u for every value x, and if Pr(u) > 0, the distance measure

between Pr and Pr′ is:2

D(Pr, Pr′) = D(ΘX|u, Θ′
X|u)

= ln max
x

θ′x|u
θx|u

− ln min
x

θ′x|u
θx|u

.

Theorem 4.6 shows that the distance between the global distributions induced

by networks B and B′ is exactly the distance between the local conditional distri-

butions ΘX|u and Θ′
X|u, assuming that all other parameters in B and B′ are the

same. It is of great practical importance as it allows us to invoke Theorem 4.2

to provide a generalized sensitivity analysis formula for Bayesian networks.

Corollary 4.2 Let B and B′ be Bayesian networks that induce distributions Pr

and Pr′ respectively, and X be a variable with parents U in networks B and B′.
If B′ is obtained from B by changing the conditional probability distribution of X

2If Pr(u) = 0, D(Pr, Pr′) = 0.

74

given parent instantiation u from ΘX|u to Θ′
X|u, i.e., we change parameter θx|u

to θ′x|u for every value x, and if Pr(u) > 0, we have the following bound:

e
−D(ΘX|u,Θ′

X|u) ≤ O′(α | β)

O(α | β)
≤ e

D(ΘX|u,Θ′
X|u)

.

Theorem 3.3 is a special case of Corollary 4.2, where variable X is binary (or

X multi-valued and we use the proportional scheme defined in Definition 2.1).

In this case, the distance D(ΘX|u, Θ′
X|u) is equal to:

D(ΘX|u, Θ′
X|u) =

∣∣∣∣∣ln
θ′x|u
θx|u

− ln
θ′x̄|u
θx̄|u

∣∣∣∣∣

=

∣∣∣∣∣∣
ln

θ′x|u
θ′x̄|u

− ln
θx|u
θx̄|u

∣∣∣∣∣∣
.

We have therefore generalized our previous results on sensitivity analysis to arbi-

trary events and general Bayesian networks. We have also relaxed the condition

that neither θx|u nor θ′x|u can be extreme.

Under the same circumstances, we can also compute the KL-divergence be-

tween two Bayesian networks that differ on only a single conditional probability

distribution:

KL(Pr, Pr′) = Pr(u)KL(ΘX|u, Θ′
X|u). (4.3)

We can see from Equation 4.3 that to compute the KL-divergence between the

two Bayesian networks, we need to know the probability Pr(u), the probability of

the parent instantiation. Therefore, the KL-divergence cannot be obtained locally

as it would require a global computation to obtain Pr(u). This is not necessary

when we compute our distance measure as given in Theorem 4.6. Therefore, we

have two differences between our distance measure and KL-divergence in this

regard. The first difference is semantical in which our distance measure can be

used to bound worst-case belief changes, while KL-divergence can be used to

bound average-case belief changes. The second difference is computational where

75

our distance measure can be computed in constant time under local changes,

while the KL-divergence cannot.

Finally, we close this chapter with another application of our distance mea-

sure, which is to prove the optimality of the proportional scheme defined in

Definition 2.1. This scheme has been used in all approaches to tuning Bayesian

network parameters that we are familiar with [Dar03, Kv00, Las95], yet with-

out justification. As it turns out, we can use our distance measure to prove the

optimality of this scheme in a very precise sense.

Theorem 4.7 When changing a parameter θx|u to θ′x|u for a multi-valued variable

X, the proportional scheme defined in Definition 2.1, which sets θ′x∗|u = (1 −
θ′x|u)(θx∗|u/(1 − θx|u)) for all x∗ 6= x, leads to the smallest distance between the

initial and new distributions of X given u, which is given by:

D(ΘX|u, Θ′
X|u) =

∣∣∣∣∣ln
θ′x|u
θx|u

− ln
1− θ′x|u
1− θx|u

∣∣∣∣∣

=

∣∣∣∣∣∣
ln

θ′x|u
1− θ′x|u

− ln
θx|u

1− θx|u

∣∣∣∣∣∣
.

Therefore, Theorem 4.7 justifies the use of the proportional scheme on the

grounds that it leads to the tightest bound on the amount of the belief change.

76

CHAPTER 5

Tuning Multiple Bayesian Network Parameters

In Chapter 2, we introduced a procedure that tunes single Bayesian network

parameters to enforce a certain query constraint. Although single parameter

changes are easy to visualize and compute, they are only a subset of possible

parameter changes. Generally, we are interested in changing a set of parameters

in a Bayesian network simultaneously to enforce the query constraint. In this

chapter, we will expand our work on tuning Bayesian network parameters from

the domain of single parameters to multiple parameters [CD04].

To facilitate this, we need to understand the relationship between a joint

probability and the set of network parameters [CJK00, Dar03]. A common case

involves changing all parameters in the CPT of a single variable. We first show

how to find such changes, with little extra computation beyond that needed for

finding single parameter changes. This is significant because multiple parameter

changes can be more meaningful, and may disturb the probability distribution

less significantly than single parameter changes. Practically speaking, this new

technique allows us to change both the false-positive and false-negative rates of a

certain information source, which can allow the enforcement of certain constraints

that cannot be enforced by only changing either the false-positive or the false-

negative rate.

As expected, the solution space of multiple parameter changes is a region

in the s-dimensional space, where s is the number of parameters involved. For

77

example, the solution space is a half-plane in the two-dimensional space if we

change both the false-positive and false-negative rates of a sensor. However, the

solution space is difficult to visualize and present to users. Therefore, we would

like to identify and report a particular point in the solution space, i.e., a specific

amount of change in each of the parameters involved. The key question now

is: which point in the solution space should we report? Theoretically, we want

to report the point that minimizes model disturbance, which can be quantified

using the distance measure given in Definition 4.1, computed between the initial

distribution and the new distribution after the parameters have been changed.

Practically, we will introduce a simple numerical procedure which finds a solution

close to this optimal point.

Instead of just changing multiple parameters in a single CPT, we may also

want to change multiple parameters in a subset of CPTs. For example, given a

number of sensors with the same reliability, the CPTs of these variables should

always be the same, meaning we need to change the parameters in all of these

CPTs at the same time. At the end of this chapter, we outline some preliminary

work on finding multiple CPT changes to enforce a query constraint.

5.1 Tuning Parameters in a Single CPT

In Section 2.1, we presented a procedure that efficiently finds single parameter

changes to enforce a query constraint. This time, instead of only changing a

single parameter, we are allowed to change all parameters in the CPT of a single

variable X. Similar to what we did in Section 2.1, we introduce a meta-parameter

τx|u for every parent instantiation u, such that all parameters in the conditional

probability distribution ΘX|u can be changed accordingly. If X is binary, we

assign θx|u = τx|u and θx̄|u = 1−τx|u. If X is multi-valued, we use the proportional

78

scheme to change co-varying parameters, as defined in Definition 2.1. We now

introduce a procedure that efficiently finds sufficient parameter changes in a single

CPT to enforce a query constraint. We will use Inequality 2.1, Pr(y | e) ≥ κ, as

the constraint we would like to enforce.

5.1.1 Finding Sufficient Single CPT Changes

We first reiterate that the probability of an instantiation e, Pr(e), is a linear

function in any meta-parameter τx|u, and the derivative of Pr(e) with respect

to τx|u, which we designated as πe
x|u, is given by Equation 2.5 if X is binary, or

Equation 2.7 if X is multi-valued and we use the proportional scheme to change

co-varying parameters.1 Moreover, we also note that two meta-parameters in

the CPT of X, τx|u and τx|u∗ where u 6= u∗, are never multiplied together in

the expression of Pr(e), i.e., ∂2Pr(e)/∂τx|u∂τx|u∗ = 0 for every pair of parent

instantiations u and u∗ [Dar03].

Therefore, if for every τx|u, we apply a change of ∆τx|u, the change in Pr(e)

is given by:

∆Pr(e) =
∑
u

πe
x|u∆τx|u. (5.1)

To enforce Inequality 2.1, it suffices to ensure that Pr(y, e) ≥ κ · Pr(e), or

equivalently:

pr(y, e) + ∆Pr(y, e) ≥ κ (pr(e) + ∆Pr(e)) ,

where pr(e) and pr(y, e) are the current probabilities of e and y, e respectively.

If for every τx|u, we apply a change of ∆τx|u, from Equation 5.1, we have:

pr(y, e) +
∑
u

πy,e
x|u∆τx|u ≥ κ

(
pr(e) +

∑
u

πe
x|u∆τx|u

)
.

Rearranging the terms, we get the following result.

1For simplicity of presentation, we will assume X is binary from now on.

79

Corollary 5.1 To satisfy Inequality 2.1, Pr(y | e) ≥ κ, for every τx|u, we need

to change it by ∆τx|u, such that:

pr(y, e)− κ · pr(e) ≥ ∑
u

∆τx|u
(
−πy,e

x|u + κ · πe
x|u

)
,

where pr(e) and pr(y, e) are the current probabilities of e and y, e respectively,

and the constants πe
x|u and πy,e

x|u are defined by Equation 2.5.

Therefore, to enforce the query constraint by changing all parameters in the

CPT of X, we need to solve for possible combinations of τx|u in Corollary 5.1.

The solution space can be found by solving for the equality condition, and it is

in the shape of a half-space due to the linearity of the terms.

To find the solution space of single CPT changes for all CPTs in a Bayesian

network, we need to compute the derivatives ∂Pr(y, e)/∂τx|u and ∂Pr(e)/∂τx|u

for all network parameters. They can be computed using the join-tree algorithm

[JLO90, SS86] or the differential approach [Dar03]. The complexity of this com-

putation is O(n2w), where n is the number of variables in the Bayesian network

and w is the tree width, which is a quantity that depends on the connectivity of

the network structure [Dar03]. This complexity is the same as that of computing

the probability of evidence Pr(e). Moreover, this means that the procedure of

finding single CPT changes has the same complexity as the previous procedure

of finding single parameter changes, as given in Corollary 2.5.

We now present an example of finding sufficient single CPT changes.

Example 5.1 Consider again the Bayesian network Fire. We now set the ev-

idence e = {Report = true, Smoke = false}, i.e., smoke is not observed, but

there is report of people evacuating the building. The current Bayesian network

gives us the posterior probabilities Pr(Tampering = true | e) = .50. However,

80

we would like this query value to be at least .65, and we want to change the

CPT of Report to enforce this constraint. Assume that we apply changes to the

parameters Pr(Report = false | Leaving = true), i.e., the probability of not re-

ceiving an evacuation report when there is an evacuation (false-negative), and

Pr(Report = true | Leaving = false), i.e., the probability of receiving an evac-

uation report when there is no evacuation (false-positive), respectively. Their

current values are .25 and .01 respectively, and the changes applied to them are

denoted by δ1 and δ2. Corollary 5.1 gives us the inequality that specifies the solu-

tion space:

−.00329 ≥ .00390 · δ1 + .622 · δ2.

The solution space is plotted in Figure 5.1. The line indicates the set of points

where the equality condition Pr(Tampering = true | e) = .65 holds and is the

boundary of the solution space, while the solution space is the region below the

line. Therefore, we can ensure that Pr(Tampering = true | e) ≥ .65 by applying

any parameter change in this region.

5.1.2 Approximating Optimal Single CPT Changes

We now address the second problem of interest in this section, which is how to

find a solution in Corollary 5.1 that minimizes the distance measure between

the initial and new distributions, defined in Definition 4.1. A solution close to

optimal in this sense can be found using a simple numerical procedure, which is

based on the following observations.

The first observation is that if the new distribution Pr′ is obtained from the

initial distribution Pr by changing only one CPT, the distance measure between

Pr and Pr′, D(Pr, Pr′), can be computed from the local information about this

CPT, using the following result.

81

−0.2 0.2 0.4 0.6
δ1

−0.01

−0.008

−0.006

−0.004

−0.002

δ2

Figure 5.1: The plot of the solution space of the single CPT changes given in Ex-

ample 5.1. The solution space is the region below the line, which is the boundary

of the solution space.

82

Corollary 5.2 Let B and B′ be Bayesian networks that induce distributions Pr

and Pr′ respectively, and X be a variable with parents U in networks B and B′.
If B′ is obtained from B by changing the CPT of X from ΘX|U to Θ′

X|U, i.e., we

change parameter θx|u to θ′x|u for every value x and every parent instantiation u,

and if Pr(u) > 0 for every u, the distance measure between Pr and Pr′ is:2

D(Pr, Pr′) = ln max
x,u

θ′x|u
θx|u

− ln min
x,u

θ′x|u
θx|u

.

We will loosen up the definition of the distance measure given in Definition 4.1,

and define this value as D(ΘX|U, Θ′
X|U), since the previous definition only accepts

probability distributions and not CPTs.3

The second observation is that we must be able to find an optimal solution

on the boundary of the solution space, i.e., the line where Pr(y | e) = κ, since

if there is an optimal solution where Pr(y | e) > κ, we can always decrease

the absolute change in some parameter to satisfy the equality condition, and the

distance measure will not increase.

Finally, we observe that the distance measure D(ΘX|U, Θ′
X|U) can be approx-

imated by the following term:4

max
Pr(u)>0

|ln O′(x | u)− ln O(x | u)| . (5.2)

Note that this term is simply the maximum log-odds change in any meta-parameter

τx|u. Moreover, for any solution that satisfies Pr(y | e) = κ, it follows that the

solution that minimizes the term in Equation 5.2 is the one where the log-odds

2If Pr(u) = 0 for some u, we can leave the parameters θx|u out when computing the distance
measure.

3In many fields, the ratio between the smallest and largest possible values of a changeable
quantity is often called the dynamic range. Therefore, D(ΘX|U, Θ′X|U) is simply the dynamic
range of the log-odds changes in the parameter values.

4Previously, we claimed D(ΘX|U,Θ′X|U) is equal to the term in Equation 5.2 [CD04], which
turns out to be incorrect. We regret this error.

83

changes in all parameters in the CPT is the same. This is because to obtain

another solution on the line, we must increase the log-odds change in one param-

eter and decrease it in another, thereby producing a larger maximum log-odds

change.

Given the above observations, we can now search for an approximate optimal

single CPT parameter change among the solutions in Corollary 5.1, using the

following procedure:

1. Pick all meta-parameters τx|u in the CPT of X where the terms κx|u =

−πy,e
x|u +κ ·πe

x|u are non-zero, and categorize them according to whether this

term is positive or negative.

2. Choose a certain amount of log-odds change, and apply it to each meta-

parameter τx|u, such that whether a parameter is increased or decreased

depends on the term κx|u.

3. If Pr(y | e) = κ within an acceptable degree of error, return the current

point as our solution. Otherwise, try a larger log-odds change if Pr(y | e) <

κ, or a smaller one if Pr(y | e) > κ. The new amount of log-odds change

applied should be determined numerically by the last computed query value

of Pr(y | e) for a fast rate of convergence.

This numerical procedure is implemented in SamIam [ACC].5 We now illus-

trate this procedure with an example.

Example 5.2 Consider again the solution space given in Example 5.1. Fig-

ure 5.2 shows the solution space of single CPT changes, and a curve originating

5To find the optimal solution, we can perform local search starting from the solution we
obtained from this procedure to find the point which minimizes the real distance measure
D(ΘX|U, Θ′X|U).

84

from the origin where the log-odds changes in the two parameters involved are

the same for every point on the curve (for the case where both parameters are

decreased because this gives us the best solution). The intersection of this curve

and the boundary of the solution space gives us a solution which minimizes the

term in Equation 5.2, which is a near-optimal solution in terms of minimizing

the distance measure. To find this solution, we only need to move on the curve

using a numerical procedure, until we are at the boundary of the solution space.

The solution found is δ1 = −.100 and δ2 = −.00467. Therefore, this solution

gives us the new parameter values Pr(Report = false | Leaving = true) = .150

and Pr(Report = true | Leaving = false) = .00533.

5.1.3 Single CPT Changes vs. Single Parameter Changes

We now proceed to compare applying single CPT changes with applying single

parameter for sensitivity analysis purposes. As we have shown, finding both

types of changes require the same computation complexity, for computing the

partial derivatives of joint probabilities with respect to all parameters. However,

solutions of single CPT changes are harder to visualize and present, and it takes

a little more time to find a near-optimal solution using the numerical method we

proposed.

However, it is advantageous to apply single CPT changes instead of single

parameter changes to a Bayesian network in order to satisfy a query constraint.

First, single CPT changes are more meaningful and intuitive than single param-

eter changes. For example, given a sensor in a network, single parameter changes

allow us to change only the false-positive or false-negative rate of this sensor,

while single CPT changes allow us to change both rates.

Second, for some variable in the network, there may exist single CPT changes,

85

−0.2 0.2 0.4 0.6
δ1

−0.01

−0.008

−0.006

−0.004

−0.002

δ2

Figure 5.2: The plot of a near-optimal solution of single CPT changes given in

Example 5.2. This solution is found by traversing on the curve originating from

the origin where the log-odds changes in the two parameters are the same, until

it meets the boundary of the solution space.

86

but not single parameter changes, that can ensure a certain query constraint.

For example, consider again the Bayesian network Fire. Suppose we are given

evidence e = {Smoke = true,Report = true}, i.e., smoke is observed, and there

is a report of people evacuating the building. The current Bayesian network

gives us the posterior probability Pr(Tampering = true | e) = .0284. We may

now pose this question: what parameter changes can we apply to decrease this

query value to at most .01? If we can only change a single parameter in the

network, SamIam returns a simple answer: the only parameter you can change

is the prior probability of tampering having occurred, from its initial parameter

value of .02 to less than .00700. You cannot change any single parameter in

the CPT of Alarm to ensure the constraint, and we may be inclined to believe

that the parameters in this CPT are irrelevant to the query. However, if we are

allowed to change multiple parameters in a single CPT, SamIam returns a new

suggestion, telling us that we can indeed change the CPT of Alarm to ensure the

constraint. The suggestion found by SamIam is shown in Figure 5.3, where the

initial parameter values are in white background, and the suggested parameter

values are in shaded background. Therefore, we can change the reliability of the

alarm when it responds to various scenarios of fire and tampering to enforce the

query constraint.

Third, even if changes of both types are available, single CPT changes are

often preferred because they disturb the network less significantly, as they incur

a smaller distance measure. For example, we can pose another query constraint,

where we want to decrease the posterior probability Pr(Tampering = true | e)

from .0284 to at most .025. This time, for the CPT of Alarm, SamIam returns

parameter change suggestions of both types. A possible single parameter change

is to decrease the probability Pr(Alarm = true | Fire = false,Tampering = true)

from .85 to .684, incurring a distance measure of .960. On the other hand, if we

87

Figure 5.3: A screenshot of SamIam returning suggestions of single CPT changes

for enforcing a query constraint.

change all parameters in the CPT simultaneously, the distance measure incurred

by the solution suggested by SamIam is a much smaller value of .435. Therefore,

the suggested single CPT change ensures a tighter bound on the change in any

query value.

5.2 Tuning Parameters in Multiple CPTs

In this section, we remove the restriction that we are only allowed to change

parameters in a single CPT, and assume that we are able to change parameters

88

in multiple CPTs simultaneously. For example, we may want to change all pa-

rameters in the CPTs of variables X1 and X2, whose parents are U1 and U2

respectively. In this case, if we apply a change of ∆τx1|u1 to each meta-parameter

τx1|u1 in the CPT of X1, and a change of ∆τx2|u2 to each meta-parameter τx2|u2

in the CPT of X2, the change in the joint probability Pr(e) is given by:

∆Pr(e) =
∑
u1

πe
x1|u1

∆τx1|u1 +
∑
u2

πe
x2|u2

∆θx2|u2 +
∑

u1,u2

πe
x1|u1,x2|u2

∆τx1|u1∆τx2|u2 ,

(5.3)

where πe
x1|u1,x2|u2

denotes the second derivative of Pr(e) with respect to τx1|u1

and τx2|u2 :

πe
x1|u1,x2|u2

def
=

∂Pr(e)

∂τx1|u1∂τx2|u2

. (5.4)

To find the solution of parameter changes that satisfies Pr(y | e) ≥ κ, from

Equation 5.3, we have:

pr(y, e)− κ · pr(e)

≥ ∑
u1

∆τx1|u1

(
−πy,e

x1|u1
+ κ · πe

x1|u1

)
+

∑
u2

∆τx2|u2

(
−πy,e

x2|u2
+ κ · πe

x2|u2

)

+
∑

u1,u2

∆τx1|u1∆τx2|u2

(
−πy,e

x1|u1,x2|u2
+ κ · πe

x1|u1,x2|u2

)
, (5.5)

where pr(e) and pr(y, e) are the current probabilities of e and y, e respectively,

the constants πe
xi|ui

and πy,e
xi|ui

are defined by Equation 2.5, and the constants

πe
x1|u1,x2|u2

and πy,e
x1|u1,x2|u2

are defined by Equation 5.4.

Therefore, we now need to additionally compute the second partial derivatives

of Pr(y, e) and Pr(e) with respect to τx1|u1 and τx2|u2 for all pairs of parent

instantiations of u1 and u2. A simple way to do this is to set evidence on every

family instantiation x1,u1, then find the derivatives with respect to τx2|u2 for all

u2 [Dar03]. The complexity of this method is O(n2w|ΘX1|U1|), where |ΘX1|U1| is

the size of the CPT of X1, i.e., the number of family instantiations of X1. This

approach is however limited to non-extreme values of τx1|u1 , yet it allows us to

89

use any general inference algorithm [Dar03]. For extreme parameters, we can use

a specific inference approach [Dar03] to obtain these derivatives using the same

complexity as given above.

The above results can be expanded to multiple parameter changes involving

more than two CPTs. For example, if we change three CPTs simultaneously,

we need to compute the third partial derivatives with respect to the correspond-

ing parameters. The complexity of obtaining these higher order derivatives is

O(n2w ∏
Xi
|ΘXi|Ui

|), where {Xi} are the variables whose CPTs we are interested

in, and |ΘXi|Ui
| is the size of the CPT of Xi [Dar03].

We would now like to compute the distance measure of multiple CPT param-

eter changes in order to find an optimal solution. Although this cannot be easily

computed in some cases, for the special case where the families {X1,U1} and

{X2,U2} are disjoint, i.e., X1 and X2 do not have a parent-child relationship and

do not have a common parent, the distance measure between the initial and new

distributions induced can be easily computed as:

D(Pr, Pr′) = D(ΘX1|U1 , Θ
′
X1|U1

) + D(ΘX2|U2 , Θ
′
X2|U2

). (5.6)

Therefore, the total distance measure can be computed as the sum of the distances

incurred individually by each of the CPT changes, as computed by Corollary 5.2.6

Even though we have this restriction of disjointness for Equation 5.6, many CPTs

satisfy this condition. For example, when the variables involved are sensors on

different variables in a Bayesian network, their families are disjoint, and we can

easily compute the distance measure using Equation 5.6.

6If the families X1,U1 and X2,U2 are not disjoint, the distance measure cannot be computed
as the sum of the distance measure of the individual CPTs, since a pair of family instantiations
of X1 and X2 may not be consistent. In this case, the sum is an upper bound of the distance
measure, and we can still compute the exact distance measure using a procedure that mul-
tiplies two tables (thereby eliminating inconsistent pairs of instantiations), a harder but still
manageable process.

90

Similar to single CPT changes, we are often more interested in finding a near-

optimal solution than presenting the whole solution space. As in the previous

case, we can find a near-optimal solution on the boundary where Pr(y | e) =

κ, and also on the curve where the log-odds changes in all parameters in each

individual CPT are the same. With these two assumptions, we can find the

combination of CPT changes that gives us the smallest distance measure.

Because of the computation involved, the key to an automated sensitivity

analysis tool that attempts to find multiple CPT changes is to find relevant

CPTs to check for solutions, instead of trying all combinations of CPTs, which

would be computationally too costly. The first partial derivatives computed for

finding single CPT changes can serve as a guide for identifying these relevant

CPTs. For many CPTs, the first partial derivatives of the query with respect

to the parameters are 0, thereby eliminating them from consideration. On the

other hand, we should definitely consider CPTs where small parameters changes

can induce large changes in the queries of interest. Therefore, the local search

procedure in this case is not as straightforward as the one for single CPT changes.

91

CHAPTER 6

Sensitivity of Decisions Induced by Bayesian

Networks

In previous chapters, we were interested in how the exact value of a probabilistic

query responds to Bayesian network parameter changes. However, when using a

Bayesian network, we may not be interested in the exact value of a query, but in

the decisions made according to the value of the query.

For example, consider a Bayesian network called Pregnancy, whose structure

is shown in Figure 6.1 and whose CPTs are shown in Table 6.1. The network

represents a scenario where there are three different tests for detecting pregnancy

of a cow. Given the results of the three tests, we can compute the probability of

pregnancy given the evidence, and if this probability is no less than .9, we can say

that we are confident that the cow is pregnant. Here, we are using the Bayesian

network as a classifier, where we attempt to classify the input (test results) into a

small number of (usually two) classes, depending on the query value with respect

to a given probability threshold (whether the posterior probability of pregnancy

is no less than .9). Therefore, the classifier acts as a logical function, returning

yes or no as the answer instead of the exact probability value. The classifier

induced under this scenario is shown in Table 6.2.

We can now formally define a classifier induced by a Bayesian network. Given

a Bayesian network B, which induces the probability distribution Pr, we select

92

Pregnancy
(P)

Scan test
(S)

Blood test
(B)

Urine test
(U)

Figure 6.1: The structure of the naive Bayes network Pregnancy.

P ΘP

p .87

p̄ .13

P S ΘS|P

p s .90

p s̄ .10

p̄ s .01

p̄ s̄ .99

P B ΘB|P

p b .64

p b̄ .36

p̄ b .106

p̄ b̄ .894

P U ΘU |P

p u .73

p ū .27

p̄ u .107

p̄ ū .893

Table 6.1: The CPTs of the naive Bayes network Pregnancy.

U B S Pr(p | u, b, s) ≥ .9?

u b s .999 yes

u b s̄ .966 yes

u b̄ s .999 yes

u b̄ s̄ .65 no

ū b s .999 yes

ū b s̄ .552 no

ū b̄ s .987 yes

ū b̄ s̄ .076 no

Table 6.2: The classifier induced by the naive Bayes network Pregnancy with

probability threshold .9.

93

a variable C, called the class variable, and a set of variables E = {E1, . . . , En}
known as the attributes.1 Each instantiation e of E is known as an instance.

Moreover, given some probability threshold p, the Bayesian network can be viewed

as inducing the function F , which maps each instance e into {0, 1} as follows:

F (e) = 1 if Pr(c | e) ≥ p, and F (e) = 0 otherwise. This function F is called a

Bayesian network classifier [FGG97, GR01].

In this chapter, we will look at how decisions induced by Bayesian networks

are affected by parameter changes, and provide some results using a principled

approach for reasoning about Bayesian network classifiers [CD03b]. In particular,

we are interested in answering the following types of questions:

• Given two Bayesian networks B and B′, do they induce the same classifier?

If not, which, and how many, instances do they disagree on? Instead of

being interested in the changes in query values from B to B′, we now focus

on whether the output of any instance is different between the classifiers

induced by networks B and B′.

• Given a Bayesian network B, what are the allowable changes in some CPT

in B that will not change the current classifier induced? Instead of measur-

ing robustness by bounding changes in query values due to the parameter

changes, we now define it as such that the output of every instance remains

the same after applying the parameter changes.

These questions can be answered by enumerating all instances e explicitly.

However, this brute-force approach is often infeasible given the exponential num-

ber of instances. Instead, we propose to build a tractable logical representation

1The other variables in the network are called hidden or intermediate variables. They are
not mentioned and are used for modeling purposes.

94

of the Bayesian network classifier, which allows us to answer the above questions

in time polynomial in the size of the constructed representation.

The specific logical representation we propose is that of ordered decision dia-

grams (ODDs), which are known to be tractable. Although our long-term objec-

tive is to construct ODDs (or other logical representations) for general Bayesian

network classifiers, we will focus on the simplest, yet very common, class of naive

Bayes classifiers [DH73, LIT92], which are induced by naive Bayes networks.

6.1 Sensitivity Analysis of Naive Bayes Classifiers

A naive Bayes classifier is induced by a naive Bayes network, which contains the

class variable C as the root, with the attributes E = {E1, . . . , En} as its children.

No other nodes or edges exist in the network. For example, the Bayesian network

Pregnancy, whose structure is shown in Figure 6.1, is a naive Bayes network.

To classify an instance e = {e1, . . . , en}, we need to compute the poste-

rior probability Pr(c | e). However, for ease of computation, we will compute

this probability in log-odds space, where its log-odds is ln O(c | e) = Pr(c |
e)/(1− Pr(c | e)). Given a naive Bayes network B where C is binary,2 if χ is an

instantiation of a subset of E, and ei is a value of an un-instantiated attribute

Ei, we have:

ln O(c | χ, ei) = ln O(c | χ) + W (ei, c), (6.1)

where W (ei, c) is the weight of evidence ei in favor of c:

W (ei, c)
def
= ln

Pr(ei | c)
Pr(ei | c̄) .

2If C is non-binary, we can group all values c∗ 6= c into the pseudo-value c̄.

95

We can now compute the value ln O(c | e) using Equation 6.1:

ln O(c | e) = ln O(c) +
n∑

i=1

W (ei, c). (6.2)

We call the value ln O(c) the prior log-odds of B. Therefore, a naive Bayes network

is a tuple B = (C, {E1, . . . , En}, ln O(c), {W (ei, c)}).

Given a probability threshold p, the log-odds threshold is σ = ln(p/(1 − p)),

such that Pr(c | e) ≥ p iff ln O(c | e) ≥ σ. We now formally define the naive

Bayes classifier induced by a naive Bayes network B with log-odds threshold σ.

Definition 6.1 The naive Bayes classifier F σ
B induced by a naive Bayes network

B with log-odds threshold σ is defined as follows:

F σ
B (e)

def
=





1 if ln O(c | e) ≥ σ;

0 otherwise.

We now show an example naive Bayes classifier.

Example 6.1 In the naive Bayes network Pregnancy, denoted by B, P is the

class variable, and the variables {U,B, S} are the attributes. Given the log-odds

threshold σ = ln(.9/.1) = 2.20, the naive Bayes classifier F σ
B induced determines

whether the probability of pregnancy given an instance (the results of the three

tests) is no less than .9, and is shown in Table 6.2.

We now discuss the following key question: how much change can we apply

to a CPT in the network B without changing the current classifier induced, F σ
B ?

6.1.1 Changing the Prior Log-Odds

We first look at the case where we change only the CPT of the class variable C,

and obtain a new naive Bayes network B′. This is equivalent to changing only

96

the prior log-odds ln O(c) to the new value ln O′(c). The question is, are F σ
B

and F σ
B′ the same classifier? This obviously depends on the amount of change

in the prior log-odds. However, the following theorem states that the amount of

allowable change in the prior log-odds can be determined precisely once we know

the following two values, known as margins :

• The minimum value of ln O(c | e) attained by any positive instance e:

σ1 def
= min

e:F σ
B (e)=1

ln O(c | e); (6.3)

• The maximum value of ln O(c | e) attained by any negative instance e:

σ0 def
= max

e:F σ
B (e)=0

ln O(c | e). (6.4)

Theorem 6.1 Let B′ be a naive Bayes network obtained from B by changing the

CPT of the class variable C, such that the prior log-odds changes from ln O(c)

to ln O′(c). The classifiers F σ
B and F σ

B′ are the same iff ln O′(c) ∈ [ln O(c) +

σ − σ1, ln O(c) + σ − σ0), where σ1 and σ0 are given by Equations 6.3 and 6.4

respectively.3

As an example, consider the naive Bayes classifier F σ
B given in Example 6.1.

By enumerating all instances explicitly, we find that σ1 = 3.33 and σ0 = .619.

Therefore, any change in the CPT of variable P will keep the classifier F σ
B un-

changed as long as ln O′(p) ∈ [.772, 3.48), according to Theorem 6.1. Therefore,

the classifier will remain unchanged as long as the new prior probability of preg-

nancy falls in the interval [.684, .970). Note that the current value of this prior

probability is .87, showing that we can apply a significant change to this prior

probability without changing the classifier.

3If there are no positive instances, σ1 = ∞, and if there are no negative instances, σ0 = −∞.

97

We will call the interval given in Theorem 6.1 the equivalence interval of the

naive Bayes classifier F σ
B , denoted by I(F σ

B). Later, we will show how we can find

the equivalence interval without enumerating all instances explicitly.

The maximum number of distinct naive Bayes classifiers (including the current

classifier) that can be induced by changing the prior log-odds can also be counted,

as shown by the following theorem.

Theorem 6.2 The number of distinct naive Bayes classifiers (including the cur-

rent classifier) that can be induced by changing the prior log-odds is at most

‖E‖+ 1, where ‖E‖ is the number of instances.4

If all attributes are binary, this number is 2n +1. For the naive Bayes network

Pregnancy, 9 different classifiers can be induced by changing the CPT of variable

P , according to Theorem 6.2. However, note that the total number of distinct

Boolean functions is 22n
= 256 in this case.

To further illustrate Theorems 6.1 and 6.2, we now rephrase them using

the mathematical notion of equivalence class. Given naive Bayes network B =

(C, {E1, . . . , En}, ln O(c), {W (ei, c)}), we define the set S as containing exactly

all naive Bayes networks B′ obtained from B by changing only the prior log-odds

(including B), i.e., S = {B′ : B′ = (C, {E1, . . . , En}, ln O′(c), {W (ei, c)})}. The

equivalence class [B] ⊂ S is defined such that B′ ∈ [B] iff the classifiers F σ
B and

F σ
B′ are the same. Theorem 6.1 allows us to test for B′ ∈ [B] by verifying if

ln O′(c) ∈ I(F σ
B),5 while Theorem 6.2 gives us the number of equivalence classes

that form the partition of S.6

4In general, if ‖Xi‖ is the cardinality of variable Xi, i.e., the number of possible values of
Xi, ‖X1, . . . , Xk‖ =

∏k
i=1 ‖Xi‖ is the number of instantiations of variables X1, . . . , Xk.

5If B′ ∈ [B], we have [B′] = [B] and I(Fσ
B′) = I(F σ

B) by the definition of equivalence class.
6We note that both theorems hold not only for naive Bayes classifiers, but more generally

for any Bayesian network classifier in which the attributes E are all descendants of the class
variable C.

98

We close this section by emphasizing that Theorems 6.1 and 6.2 will be crucial

to our algorithm that converts a naive Bayes classifier into an ordered decision

diagram.

6.1.2 Changing the Weights of Evidence of an Attribute

We now look at the case where we change only the CPT of attribute Ei, and

obtain the new naive Bayes network B′. This is equivalent to changing only the

weight of evidence ei from W (ei, c) to the new value W ′(ei, c) for every value ei of

Ei. The question is, are F σ
B and F σ

B′ the same classifier? The following theorem

states that this can be determined once we know the following two values for

every ei:

• The minimum value of ln O(c | e) attained by any positive instance e such

that ei ∈ e:

σ1
ei

def
= min

e:ei∈e,F σ
B (e)=1

ln O(c | e); (6.5)

• The maximum value of ln O(c | e) attained by any negative instance e such

that ei ∈ e:

σ0
ei

def
= max

e:ei∈e,F σ
B (e)=0

ln O(c | e). (6.6)

Theorem 6.3 Let B′ be a naive Bayes network obtained from B by changing the

CPT of attribute Ei, such that the weight of evidence ei changes from W (ei, c) to

W ′(ei, c) for every value ei of Ei. The classifiers F σ
B and F σ

B′ are the same iff for

every ei, W ′(ei, c) ∈ [W (ei, c) + σ− σ1
ei
,W (ei, c) + σ− σ0

ei
), where σ1

ei
and σ0

ei
are

given by Equations 6.5 and 6.6 respectively.

As an example, consider again the naive Bayes classifier F σ
B given in Exam-

ple 6.1. If we would like to change the CPT of attribute U without changing

99

the classifier, the allowable new weights of evidence are W ′(u, p) ∈ [.791, 3.50)

and W ′(ū, p) ∈ [−3.30, .791), according to Theorem 6.3. For example, even if we

improve the reliability of the urine test by changing the false-negative rate from

.27 to .1 and the false-positive rate from .107 to .05, the classifier will still remain

unchanged.

The maximum number of distinct naive Bayes classifiers (including the current

classifier) that can be induced by changing all weights of evidence of attribute Ei

can also be counted, as shown by the following theorem.

Theorem 6.4 The number of distinct naive Bayes classifiers (including the cur-

rent classifier) that can be induced by changing all weights of evidence of attribute

Ei is at most (a + 1)b − ba/2cb − da/2eb, where a = ‖E− Ei‖ and b = ‖Ei‖.

If all attributes are binary, this number is 22n−3 +2n +1. For the naive Bayes

network Pregnancy, at most 17 different classifiers can be induced by changing

the CPT of attribute U , according to Theorem 6.4.

6.2 Converting Naive Bayes Classifiers into Logical Rep-

resentations

In this section, we will introduce an algorithm that converts a naive Bayes clas-

sifier into an ordered decision diagram (ODD), defined as follows.

Definition 6.2 An ordered decision diagram (ODD), with respect to variable

order (E1, . . . , En), is a rooted, directed, acyclic graph, with two sinks labeled with

1 and 0, called 1-sink and 0-sink respectively. Every node (except the sinks) in

the ODD is labeled with a variable Ei, and for every value ei of Ei, there is an

100

U

true

false
B

S

F(e) = 1
Pr(P=true | e) ≥ 0.9

F(e) = 0
Pr(P=true | e) < 0.9

true

true

false

false

Figure 6.2: An ODD that represents the classifier induced by the naive Bayes

network Pregnancy with probability threshold .9, with respect to variable order

(U,B, S).

edge labeled with ei exiting this node. Finally, a node is labeled with Ei and its

child is labeled with Ej only if j > i.

An ODD represents a classifier F variables E = {E1, . . . , En} as follows.

Given an instantiation e = {e1, . . . , en}, we traverse the ODD starting at the

root. At a node labeled with Ei, we go to the child pointed by the edge labeled

with ei ∈ e. If we reach 1-sink, we have F (e) = 1, and if we reach 0-sink,

we have F (e) = 0. Figure 6.2 shows the ODD that represents the naive Bayes

classifier F σ
B given in Example 6.1, with respect to variable order (U,B, S). If

all the variables in the ODD are binary, as in this case, it is called an ordered

binary decision diagram (OBDD) [Bry86], a well-researched representation of

boolean functions. As we will discuss later in this section, the tractability of the

ODD representation allows us to answer the questions we posed earlier in time

polynomial in the size of the ODD.

101

6.2.1 Algorithm and Theoretical Results

Suppose now we are given a naive Bayes classifier F σ
B , which is induced by the

naive Bayes network B = (C, {E1, . . . , En}, ln O(c), {W (ei, c)}) with log-odds

threshold σ. Our goal is to build an ODD D that represents F σ
B , with respect to

attribute order (E1, . . . , En). Before we state our algorithm and its complexity,

we first explain two key observations underlying our algorithm.

The first key observation is as follows. Given an instantiation χ = e1, . . . , ek

of the first k attributes E1, . . . , Ek, we assume the node reached by the path χ

from the root of ODD D is the root of a sub-ODD denoted by Dχ. We also note

that a new naive Bayes network Bχ = (C, {Ek+1, . . . , En}, ln O(c | χ), {W (ei, c)})
can be obtained by removing attributes E1, . . . , Ek from B, and updating the

prior log-odds to ln O(c | χ). Note that the output of the naive Bayes classifier

F σ
B given instance e = χ, ek+1, . . . , en can now be obtained from the new naive

Bayes classifier F σ
Bχ

, since from Equation 6.2, we have:

ln O(c | e) = ln O(c) +
n∑

i=1

W (ei, c)

= ln O(c | χ) +
n∑

i=k+1

W (ei, c).

Therefore, F σ
B (e) = F σ

Bχ
(ek+1, . . . , en), and consequently, the sub-ODD Dχ repre-

sents F σ
Bχ

.

The second key observation is based on Theorem 6.1. If χ∗ is another instanti-

ation of attributes E1, . . . , Ek, the path χ∗ reaches the root of the sub-ODD Dχ∗ ,

which represents the naive Bayes classifier F σ
Bχ∗ , where the naive Bayes network

Bχ∗ = (C, {Ek+1, . . . , En}, ln O(c | χ∗), {W (ei, c)}) can be obtained by removing

attributes E1, . . . , Ek from B, and updating the prior log-odds to ln O(c | χ∗).

Because Bχ and Bχ∗ differ only on their prior log-odds, from Theorem 6.1, the

classifiers F σ
Bχ

and F σ
Bχ∗ are the same iff ln O(c | χ∗) ∈ I(F σ

Bχ
). If this is true,

102

the two sub-ODDs Dχ and Dχ∗ are isomorphic, and we can build the ODD D
such that the paths χ and χ∗ reach the same node. This allows us to save space

and time when building the ODD D. The following theorem shows how we can

compute the equivalence interval I(F σ
Bχ

) inductively, as it is key to our algorithm.

Theorem 6.5 If χ is an instantiation of attributes E1, . . . , Ek, the equivalence

interval I(F σ
Bχ

) can be computed if we know the equivalence interval I(F σ
Bχ,ek+1

)

for every value ek+1 of Ek+1:

I(F σ
Bχ

) =
⋂

ek+1

{
x : x + W (ek+1, c) ∈ I(F σ

Bχ,ek+1
)
}
.

In our algorithm, we associate the node node with the equivalence interval

I[node] = I(F σ
Bχ

) if node is reached by path χ. Theorem 6.5 states that we

can compute this equivalence interval if we are given the equivalence interval of

every child of node. Therefore, we can compute the equivalence interval of every

node in the ODD D inductively, with the end conditions I[1-sink] = [σ,∞) and

I[0-sink] = (−∞, σ).

To identify isomorphic sub-ODDs, we employ n + 1 caches in our algorithm,

one for each k = 0, . . . , n, where the k-th cache stores nodes at depth k. In

each cache, nodes are indexed by their equivalence intervals. Given some path χ

of length k, we check if there already exists some node in the k-th cache where

ln O(c | χ) ∈ I[node]. If this is true, the ODD D will be built such that the path

χ also reaches node.

Algorithm 6.1 shows the procedure Build-ODD(B, σ), which returns the

root of the ODD D that represents the naive Bayes classifier F σ
B , with respect

to attribute order (E1, . . . , En). After initialization of the sinks, the ODD D is

built recursively by calling the procedure Build-sub-ODD(k, v), shown in Algo-

103

Algorithm 6.1 Build-ODD(B, σ): returns the root of the ODD D that repre-

sents the naive Bayes classifier F σ
B , with respect to attribute order (E1, . . . , En),

where B = (C, {E1, . . . , En}, ln O(c), {W (ei, c)}) is a naive Bayes network, and σ

is the log-odds threshold.

1-sink ← Create-Node()

I[1-sink] ← [σ,∞)

Store-in-Cache(n, 1-sink)

0-sink ← Create-Node()

I[0-sink] ← (−∞, σ)

Store-in-Cache(n, 0-sink)

return Build-sub-ODD(0, ln O(c))

rithm 6.2.7 This procedure returns the root of the sub-ODD Dχ that represents

the naive Bayes classifier F σ
Bχ

, where χ is an instantiation of E1, . . . , Ek, and

v = ln O(c | χ) is the prior log-odds of Bχ.

The following theorem gives us a theoretical upper bound on the number of

nodes in the ODD D and the time complexity of Algorithm 6.1, which can be

proved using Theorem 6.2.

Theorem 6.6 The number of nodes in the ODD D built by Algorithm 6.1 is at

most:
n∑

k=0

min {‖E1, . . . , Ek‖ , ‖Ek+1, . . . , En‖+ 1}.

7In Algorithm 6.2, we define the following procedures as: Create-Node() returns a newly-
created node; Find-in-Cache(j, x) returns node in the j-th cache where x ∈ I[node], or Nil
if no such node exists; Store-in-Cache(j,node) stores node in the j-th cache, indexed by
I[node]; Add-Child(node, child , label) adds child as a child of node, with label being the label
of the edge from node to child ; Offset(I, d) returns {x : x− d ∈ I}, i.e., the interval I moved
by a displacement of d. We also assume that the weights of evidence {W (ei, c)} can be accessed
globally.

104

Algorithm 6.2 Build-sub-ODD(k, v): returns the root of the sub-ODD Dχ

that represents the naive Bayes classifier F σ
Bχ

, where χ is an instantiation of

E1, . . . , Ek, and v = ln O(c | χ) is the prior log-odds of Bχ.

node ← Create-Node()

I[node] ← (−∞,∞)

for all values ek+1 of Ek+1 do

vchild ← v + W (ek+1, c)

child ← Find-in-Cache(k + 1, vchild)

if child = Nil then

child ← Build-sub-ODD(k + 1, vchild)

end if

Add-Child(node, child , ek+1)

I[node] ← I[node] ∩Offset(I[child],−W (ek+1, c))

end for

Store-in-Cache(k, node)

return node

If all attributes have at most b values, the space complexity is O(bn/2). Moreover,

the time complexity of Algorithm 6.1 is O(nbn/2).

Theorem 6.6 means that we are able to convert a naive Bayes classifier with n

attributes into an ODD in space and time that are no more than exponential in

n/2. This is significant both theoretically and practically compared to the brute-

force method whose space and time complexity are exponential in n. Therefore,

classifiers with up to 50 attributes can be handled in practice. However, as we

will show in our experimental results, the actual space and time required by

our algorithm are usually much less than the theoretical upper bound, showing

promise for classifiers with even more attributes. We also note that the actual

105

number of nodes in the ODD depends on the attribute order, and later we will

suggest some ordering heuristics that perform well in practice.

Finally, in the case where the class variable C is non-binary, we may be

interested in mapping an instance e to the value of C that is the most likely

given e. To handle this problem, we can build a series of ODDs that classify

which of any two values of C are more likely. For example, if C can take on three

values {1, 2, 3}, we can build three ODDs, the first classifying whether C = 1 is

more likely than C = 2 given e, the second classifying whether C = 1 is more

likely than C = 3 given e, and the third classifying whether C = 2 is more likely

than C = 3 given e. The combination of these outputs of the ODDs gives us the

most likely value of C given e.

6.2.2 Experimental Results

We now show experimental results of building ODDs for both random and real-

world naive Bayes classifiers using our algorithm.

In the first part of our experiment, we build ODDs that represent random

naive Bayes classifiers with binary attributes E = {E1, . . . , En}, for different

values of n. The prior log-odds and the weights of evidence of the naive Bayes

networks take on random values, which are translated to the log-odds space from

the uniform probability space. The log-odds threshold is set at σ = 0, meaning

F σ
B (e) = 1 iff Pr(c | e) ≥ 0.5. We generate 100 random classifiers for each n,

and the results are displayed in Table 6.3. The second column shows the number

of instances, i.e., ‖E‖ = 2n, while the third column shows the theoretical upper

bound on the number of nodes in the ODDs given in Theorem 6.6. The fourth

column shows the average number of nodes in the ODDs built using 100 random

attribute orders. As we can see, the number of nodes is on average about two-

106

n ‖E‖ Bound Random Desc. Asc.

10 1024 99 64 56 51

15 32768 518 347 270 263

20 1× 106 3080 2032 1541 1531

25 3× 107 16395 11968 8753 8740

30 1× 109 98317 66160 50116 50100

Table 6.3: Experimental results of building ODDs that represent random naive

Bayes classifiers.

thirds of the bound. We also sort the attributes by the absolute differences of the

weights of evidence, i.e., |W (ei, c)−W (ēi, c)|, where a larger absolute difference

means the attribute Ei has more evidential impact on the posterior probabilities

Pr(c | e). The average sizes of the ODDs built using the attribute orders with

descending and ascending orders of evidential impact are shown in the fifth and

sixth columns respectively. In either case, the number of nodes is on average

about half of the bound, an improvement over using random attribute orders.

In the second part of our experiment, we build ODDs that represent real-world

naive Bayes classifiers. The naive Bayes networks are constructed by learning

data obtained from the UCI Machine Learning Repository [HBM]. The log-odds

threshold σ is also set at 0. The results are displayed in Table 6.4 for several

networks. The second column shows n, the number of attributes in the classifier,

while the third column shows ‖E‖, the number of instances. Note that many

attributes in the networks are multi-valued. The fourth column shows the theo-

retical upper bound on the number of nodes in the ODDs given in Theorem 6.6.8

8Because the bound varies with the attribute order if the attributes do not have the same
cardinality (number of values), the bound displayed here is computed using the attribute order
where the ODD with the fewest number of nodes is obtained.

107

Network n ‖E‖ Bound Best

Tic-tac-toe 9 19683 247 58

Votes 16 65536 774 396

Spect 22 4× 106 6153 609

Breast-cancer-w 9 1× 109 21117 4405

Hepatitis 19 2× 1010 46794 9644

Kr-vs-kp 36 1× 1011 917488 59905

Mushroom 22 1× 1014 1× 108 43638

Table 6.4: Experimental results of building ODDs that represent real-world naive

Bayes classifiers.

For each classifier, we build ODDs using 100 random attribute orders, plus the

attribute orders with descending and ascending orders of evidential impact,9 and

the final column shows the fewest number of nodes among the ODDs built.

The results we produce are very satisfactory, as for many of these classifiers,

there is an intractable number of instances, yet we are able to build ODDs with

at most 60000 nodes in the best cases. The number of nodes actually created

are also often much less than the theoretical upper bound, even with a random

attribute order, since many of the CPTs in the classifiers are sparse, i.e., filled

with parameters whose values are 0 or 1. An example is naive Bayes network

Mushroom. The time to run our algorithm is also relatively short, as it takes less

than five seconds to build an ODD with about 60000 nodes.

We also note that although the sizes of the ODDs vary with the attribute

orders, experimentally we find that for each classifier, the size of the ODD in the

9For a multi-valued attribute Ei, we use the distance measure defined in Definition 4.1,
which computes the difference between the maximum and minimum weights of evidence, i.e.,
maxei W (ei, c)−minei W (ei, c).

108

worst case is at most about twice the size of the ODD in the best case. Therefore,

even with a random attribute order, we are able to build ODDs of reasonable size.

In the future, we would like to explore other ordering heuristics. Currently, the

method of sorting the attributes by ascending order of evidential impact gives us

the best results in many, but not all cases.

Finally, our algorithm can also be augmented, without affecting its complexity,

to generate reduced ODDs [Bry86], which eliminate nodes whose outgoing edges

all point to the same child. However, we find that after including this reduction

step, the sizes of the ODDs decrease by less than 1% in many of the cases, and less

than 5% in most of the cases. Therefore, we do not include this in our algorithm

for simplicity of exposition.

6.2.3 Applications

After presenting the theoretical and experimental results of our algorithm of

converting a naive Bayes classifier into an ODD, we can discuss the variety of

applications enabled by the construction of such an ODD.

We first point out that ODDs are tractable logical representations in the

sense that they permit a number of operations on the functions they represent

in time polynomial in their sizes, even though such operations are intractable in

general [DM02]. In particular, given two ODDs D and D′ with respect to the

same variable order, with sizes s and s′ respectively, we can perform the following

operations:

• Testing whether D and D′ are equivalent in O(s + s′) time;

• Counting the number of instances mapped to 1 or 0 by D (positive or

negative instances) in O(s) time;

109

• Testing whether all positive or negative instances of D satisfy some con-

junction or disjunction of features (attribute-value pairs) in O(s) time;

• Conjoining or disjoining D and D′ in O(s · s′) time.

All of the above operations on ODDs are supported by standard packages such as

the CU Decision Diagram Package [Som]. These operations, plus many others,

can be combined to answer queries. For example, if we want to know the number

of positive instances in the intersection of two classifiers, we can first conjoin the

two classifiers and then perform a count operation.

The equivalence operation is one of the most important operations because

if two Bayesian network classifiers are shown to be equivalent, we can use either

network to model the domain for the purpose of classifying instances. This is

helpful if we want to test whether simplifying a Bayesian network, such as round-

ing off the parameters, changes the classification of any instance. We can also

check whether adding another attribute will improve the classification ability of

the network. For example, for the naive Bayes classifier given in Example 6.1, we

may want to know if adding a particular new test will be beneficial in detecting

pregnancy, i.e., given any set of results from the current tests, whether applying

this new test may potentially support the presence or absence of pregnancy.

Moreover, we can use the equivalence operation to see whether the classifica-

tion outputs given by networks produced from different learning algorithms are

the same when run over the same data set, as the networks will differ on their

parameters and possibly their structures. We can also determine whether adding

some data samples will change the behavior of the classifier produced by any

learning algorithm.

Another application of converting a naive Bayes classifier F σ
B into an ODD D

110

is that we can efficiently find the intervals given in Theorems 6.1 and 6.3 as a side

effect of our algorithm. This is due to the computation of the equivalence interval

of every node in the ODD D by our algorithm. For example, we note that the

equivalence interval I(F σ
B) given in Theorem 6.1, which contains the allowable

prior log-odds that will keep the classifier unchanged from F σ
B , is equal to I[root]

if root is the root of the ODD D.

We can also find the intervals given in Theorem 6.3, which contain the allow-

able weights of evidence of attribute Ei that will keep the classifier unchanged

from F σ
B . However, in order to find these intervals, it is required that Ei must

come first in the attribute order used to build the ODD D. In this case, if the

node child ei
is the child of the root of the ODD D reached by the edge labeled

ei, the equivalence interval I[child ei
] = I(F σ

Bei
) contains the allowable weight of

evidence W (ei, c) that will keep the classifier unchanged from F σ
B .

Therefore, instead of enumerating all instances explicitly, which requires space

and time complexity exponential in n, where n is the number of attributes, we

can find the intervals given in Theorems 6.1 and 6.3 by converting the naive

Bayes classifier into an ODD using our algorithm. The asymptotic space and

time complexity are exponential only in n/2, but as shown by our experimental

results, the actual time and space required are often much less.

111

CHAPTER 7

Sensitivity Analysis of Markov Networks

In earlier chapters, we focused our study of sensitivity analysis on the domain of

Bayesian networks. We observed that the joint probability distribution induced

by a Bayesian network corresponds to a multi-linear function, providing efficient

methods for computing the derivative of a query with respect to a single Bayesian

network parameter, with results summarized as follows:

• What is the necessary parameter change we need to apply such that a given

query constraint is satisfied? We presented efficient procedures that find

minimum changes in single parameters in Chapter 2, and approximate op-

timal changes in multiple parameters in Chapter 5.

• What is the bound on the change in some query value if we apply an arbi-

trary parameter change? In Chapter 3, we showed that the log-odds change

in any conditional query in a Bayesian network is bounded by the log-odds

change in any single parameter.

• What is the bound on the difference between some query value induced by

two networks that have the same structure but different parameter values?

We proposed a distance measure in Chapter 4 that allows us to bound

the difference between the query values under two distributions. Based

on this distance measure, and given two Bayesian networks that differ on

only a single CPT, the global distance measure between the distributions

112

induced by the networks can be computed from the local distance measure

between the CPTs, thereby allowing us to provide a bound on the difference

between the query values. Moreover, if we are given multiple CPTs where

the variables are disjoint, the global distance measure can still be computed

as the sum of the local distance measures between the individual CPTs.

In this chapter, we will address these key questions, but in the context of

Markov networks [CD05c]. The main topic of interest is the extent to which

these promising results hold for Markov networks as well. There is indeed a

key difference between Bayesian networks and Markov networks that appears to

suggest a lack of parallels in this case: whereas the joint probability distribution

induced by a Bayesian network corresponds to a multi-linear function, the joint

probability distribution induced by a Markov network corresponds to a ratio

of multi-linear functions. As it turns out, however, a conditional probability

has the same functional form of being a ratio of multi-linear functions, in both

Bayesian and Markov networks. This similarity turns out to be the key factor

here, allowing us to derive similarly efficient results for Markov networks. This

is greatly beneficial because we can answer the previous three questions in the

context of Markov networks as well, with the same computational complexity. For

example, we can go through each parameter in a Markov network, compute the

minimum single parameter changes necessary to enforce a query constraint, and

find the one that disturbs the network the least. Alternatively, we can change all

parameters in a single clique table, and find the change that minimizes network

disturbance. Afterwards, we can compute a bound on any query change using

the distance measure incurred by the parameter change.

Our results, however, point to a main semantical difference between Bayesian

networks and Markov networks, relating to how we should quantify and measure

113

parameter changes. That is, how should we quantify a parameter change from .3

to .4? In a Bayesian network, parameters are interpreted as conditional probabil-

ities, and the measure that quantifies the change is the relative odds change in the

parameter value. This means query values are much more sensitive to changes

in extreme probability values, whether close to 0 or 1. On the other hand, in

a Markov network, parameters are interpreted as compatibility ratios, and the

measure that quantifies the change is the relative change in the parameter value.

This difference stems from how the parameters in the two models are interpreted

and will be explained in more depth later.

7.1 Tuning Markov Network Parameters

We now answer the following question in the context of Markov networks: what

is the necessary change we can apply to certain parameter(s) such that a query

constraint is satisfied, such as Pr(y | e) ≥ κ?

We first define the function φ(e) as the sum of the potentials of x that are

consistent with e:

φ(e)
def
=

∑
x∼e

ψ(x) =
∑
x∼e

∏
c∼x

θc,

Notice that φ(e) is linear in each parameter θc, and no two parameters in the

same clique table are multiplied together. Therefore, if we apply a change of ∆θc

to each parameter θc in the clique table of C, the change in φ(e) is:

∆φ(e) =
∑
c

∂φ(e)

∂θc

∆θc. (7.1)

We also note that the conditional probability Pr(y | e) can be expressed as:

Pr(y | e) =
Pr(y, e)

Pr(e)
=

ζφ(y, e)

ζφ(e)
=

φ(y, e)

φ(e)
.

Since φ(e) and φ(y, e) are both multi-linear functions of the network parameters,

114

a conditional probability can be expressed as a ratio of multi-linear functions

of the network parameters. Because this property holds true for both Bayesian

and Markov networks, this means the procedure of tuning Bayesian network

parameters given in Section 2.1 can also be applied for tuning Markov network

parameters.

Therefore, to ensure the query constraint Pr(y | e) ≥ κ, it suffices to ensure

that φ(y, e) ≥ κ · φ(e), or equivalently:

ϕ(y, e) + ∆φ(y, e) ≥ κ (ϕ(e) + ∆φ(e)) ,

where ϕ(e) and ϕ(y, e) are the current φ values of e and y, e respectively. If we

apply a change of ∆θc to θc, from Equation 7.1, we have:

ϕ(y, e) +
∑
c

∂φ(y, e)

∂θc

∆θc ≥ κ

(
ϕ(e) +

∑
c

∂φ(e)

∂θc

∆θc

)
.

Rearranging the terms, we get the following corollaries.

Corollary 7.1 To ensure the probability distribution Pr induced by a Markov

network satisfies the query constraint Pr(y | e) ≥ κ, we must change each pa-

rameter θc in the clique table of C by ∆θc such that:

ϕ(y, e)− κ · ϕ(e) ≥ ∑
c

∆θc

(
−∂φ(y, e)

∂θc

+ κ · ∂φ(e)

∂θc

)
,

where ϕ(y, e) and ϕ(e) are the current φ values of y, e and e respectively.

Corollary 7.2 If instead of changing all parameters in the clique table of C,

we are only allowed to change a single parameter θc by ∆θc, the solution of

Corollary 7.1 becomes:

ϕ(y, e)− κ · ϕ(e) ≥ ∆θc

(
−∂φ(y, e)

∂θc

+ κ · ∂φ(e)

∂θc

)
,

which returns a solution interval of ∆θc.

115

Therefore, to solve for ∆θc in Corollary 7.2 for all network parameters, we

need to compute the initial values ϕ(y, e) and ϕ(e), which should already be

known when computing the initial probability of y | e, and the partial deriva-

tives ∂φ(y, e)/∂θc and ∂φ(e)/∂θc for all parameters θc. To do this, we can use

a procedure whose complexity is O(n2w), where n is the number of variables

in the Markov network, and w is the tree-width, which depends on the connec-

tivity of the network structure, similar to the one proposed to compute partial

derivatives for Bayesian networks [Dar03]. This can greatly help users debug a

Markov network when they are faced with query results that do not match their

expectations.

We now consider an example to illustrate this procedure.

Example 7.1 We consider again the Markov network Disease given in Exam-

ple 1.3. The distribution induced by the current Markov network gives us the

conditional query value Pr(ā2 | a1) = .789. Assume that we would like to

change a single parameter in the clique table of {A2, B1} to ensure the constraint

Pr(ā2 | a1) ≥ .9. We need to use Corollary 7.2 to solve for the minimum ∆θc

for each θc. The solutions are:

∆θa2,b1 ≤ −2.93;

∆θa2,b̄1 ≤ −1.47;

∆θā2,b1 ≥ 12;

∆θā2,b̄1 ≥ 8.8.

However, notice that because the parameter values have to be non-negative, the

solution of ∆θa2,b1 is impossible to achieve. Therefore, no possible change in the

parameter θa2,b1 is possible to ensure the query constraint. On the other hand, we

can decrease the parameter θa2,b̄1 from 2 to .533 to ensure the query constraint.

116

If we are able to change all parameters in the clique table of {A2, B1} to

satisfy the query constraint, we need to find a solution in Corollary 7.1. As

a consequence, we are now faced with a solution space of multiple parameter

changes, and we want to commit to a solution that disturbs the network the

least. We will discuss this in the next section using the distance measure defined

in Definition 4.1.

7.2 Bounding Belief Changes Between Markov Networks

We now answer the following question in the context of Markov networks: what

is the bound on the difference between some query value induced by two networks

that have the same structure but different parameter values? We will answer it

by computing the distance measure between the distributions induced by the two

Markov networks, which provides a bound on the amount of change in any query

between two probability distributions.

As we have shown in Corollary 5.2, the distance measure can be computed

using local information for Bayesian networks when changing a single CPT. We

can get a similar result for Markov networks, where the distance measure between

distributions induced by two Markov networks that differ on only a single clique

table can be computed by the distance measure between the tables.

Theorem 7.1 Given distributions Pr and Pr′ induced by two Markov networks

M and M′ that differ on only the parameters in a single clique table, such that

the clique tables are ΘC and Θ′
C respectively, the distance measure between Pr

117

and Pr′ is given by:1

D(Pr, Pr′) = D(ΘC, Θ′
C)

= ln max
c

θ′c
θc

− ln min
c

θ′c
θc

,

if ∂ψ(x)/∂θc 6= 0 for all c ∼ x.2

Therefore, the global distance measure between the distributions induced is

equal to the local distance measure between the individual clique tables. This is

useful for computing the bound on the change in a query after changing param-

eters in a clique table. For example, if we apply an arbitrary change on a single

parameter θc, the distance measure is given by:

D(Pr, Pr′) =

∣∣∣∣∣ln
θ′c
θc

∣∣∣∣∣ ,

and the change in the value of query y | e is bounded by:

θc

θ′c
≤ O′(y | e)

O(y | e)
≤ θ′c

θc

. (7.2)

This means for Markov networks, the relative change in query odds is bounded by

the relative change in the parameter itself, not the relative change in the parameter

odds as for Bayesian networks. This is an important distinction between Markov

networks and Bayesian networks.

As an example, suppose we want to ensure the robustness of the query Pr(y |
e) after we apply a parameter change. Assume that we define robustness as the

relative change in any query odds to be no more than 1.5, or a log-odds change

1We have again loosen up the definition of the distance measure given in Definition 4.1 to
accept clique tables instead of only probability distributions.

2This condition is satisfied when the network parameters are all strictly positive. However,
this is a sufficient condition, not a necessary condition. The necessary condition is there exists
some x such that ∂ψ(x)/∂θc 6= 0 for all c. This means that changing any parameter θc will
have some impact on the joint potential ψ.

118

of no more than .405. For example, if currently we have Pr(y | e) = .75, the

new query value must stay in the interval [.667, .818] after the parameter change.

We may ask, how much change can we apply to a network parameter if we want

to ensure robustness? The answers for Bayesian networks and Markov networks

are different due to our previous results, as we will show next.

For a Bayesian network, the amount of permissible parameter change is de-

termined by Theorem 3.3, and is plotted against the initial parameter value in

Figure 7.1. We can see that the amount of permissible parameter change is small

when the parameters have extreme values close to 0 or 1, since the relative odds

change is large when even a very small absolute change is applied.

On the other hand, for a Markov network, the amount of permissible param-

eter change is determined by Inequality 7.2, and is plotted against the initial

parameter value in Figure 7.2. We can see that the amount of permissible pa-

rameter change is proportional to the parameter values, since relative change is

the factor here instead of relative odds change.

Therefore, for a Bayesian network, the sensitivity of the network with respect

to a parameter is largest for extreme parameter values close to 0 or 1, and becomes

smaller as the its value approaches .5, while for a Markov network, the sensitivity

of the network with respect to a parameter is proportional to its value, and

increases as it grows larger.

The distance measure is also useful in many other aspects of sensitivity analy-

sis of Markov networks. For example, given the possible single parameter changes

given in Example 7.1, we can choose the one that disturbs the network the least

according to the distance measure. In this case, the most preferred single param-

eter change is to decrease the parameter θa2,b̄1 from 2 to .533, incurring a distance

measure of 1.322.

119

0.2 0.4 0.6 0.8 1
p

−0.2

−0.15

−0.1

−0.05

0.05

0.1

0.15

0.2
δ

Figure 7.1: The plot of δ against p that would guarantee the query Pr(y | e) = .75

to stay within the interval [.667, .818], where p and p′ = p + δ are the initial and

new parameter values of a Bayesian network respectively.

120

0.2 0.4 0.6 0.8 1
p

−0.4

−0.3

−0.2

−0.1

0.1

0.2

0.3

0.4

δ

Figure 7.2: The plot of δ against p that would guarantee the query Pr(y | e) = .75

to stay within the interval [.667, .818], where p and p′ = p + δ are the initial and

new parameter values of a Markov network respectively.

121

Moreover, we can also use the distance measure to find an optimal solution

of changing all parameters in a clique table, which is the solution given in Corol-

lary 7.1 that minimizes the distance measure. Given an optimal solution, the

relative changes in all parameters must be the same, since to obtain another

solution that satisfies the constraint, we must increase the relative change in

one parameter while decreasing the relative change in another, thereby incur-

ring a larger distance measure. For example, to ensure the query constraint

Pr(ā2 | a1) ≥ .9, we would like to decrease the parameters θa2,b1 and θa2,b̄1 and

increase the parameters θā2,b1 and θā2,b̄1 , such that the relative changes in all pa-

rameters are the same. However, because only the ratios between the parameters

are important, we can keep the first two parameters constant and only increase

the last two parameters. The optimal solution computed is:

∆θa2,b1 = 0;

∆θa2,b̄1 = 0;

∆θā2,b1 = 6.26;

∆θā2,b̄1 = 8.68.

This optimal solution incurs a distance measure of 1.127. It involves all param-

eters in the clique table and incurs a smaller distance measure than any of the

single parameter changes computed in Example 7.1.

Finally, if we change the parameters in different clique tables that do not

share any variables, the distance measure can be computed as the sum of the

local distance measures between the clique tables, similar to Bayesian networks.

122

CHAPTER 8

Belief Revision

In Section 1.3, we mentioned two types of local belief changes: soft evidence

and Bayesian network parameter changes. In previous chapters, we focused on

Bayesian network parameter changes, where we can obtain a unique new proba-

bility distribution. However, for the case of soft evidence, it is not obvious what

the new probability distribution should be. In this chapter, we will look at belief

revision, which addresses this problem. We will compare two existing methods

of belief revision, and use the distance measure defined in Chapter 4 to bound

global belief changes due to soft evidence [CD03a, CD05b].

In contrast to hard evidence, which confirms for certain that a random vari-

able has taken on some value, we are often given soft evidence (or uncertain

evidence) that makes us believe that the probability distribution of a random

variable has changed from our initial beliefs. Due to different interpretations of

the evidential reports, there are two main methods of revising probabilistic beliefs

given soft evidence [Pea01]. The first method is known as Jeffrey’s rule and is

based on the principle of probability kinematics, which can be viewed as a princi-

ple for minimizing belief changes [Jef65]. The second method is called the virtual

evidence method and was proposed by Pearl in the context of Bayesian networks,

even though it can be easily generalized to arbitrary probability distributions,

and is based on recasting soft evidence as hard evidence on some virtual event

[Pea88]. We will analyze both methods with respect to the following questions:

123

1. How should one specify soft evidence?

2. How should one revise a probability distribution?

3. How should one interpret informal evidential statements?

4. Should, and do, iterated belief revisions commute?

5. What guarantees can be offered on the amount of belief change induced by

a particular revision?

To answer the first question, we note that soft evidence must be specified as

a formal constraint on posterior beliefs. This can be an absolute constraint on

posterior beliefs, or a relative constraint on how posterior beliefs should relate to

prior beliefs. Yet, the constraint specified by a given evidence usually does not

define posterior beliefs uniquely, and hence, we need to adopt a principle that

commits to a unique set of posterior beliefs that satisfy the given constraint. This

principle then defines the belief revision method. However, even if we choose a

method of specifying evidence formally, and a method of revising beliefs, there is

still the problem of interpreting informal evidential statements, which are usually

specified in natural language. These statements may not map directly to our

formal specification language for evidence, and it is this process of interpretation

that appears to underlie most of the controversies on revision methods.

Our main findings can be summarized as follows. First of all, Jeffrey’s rule

and Pearl’s method both revise beliefs using the principle of probability kinemat-

ics. Whereas Jeffrey’s rule explicitly commits to this principle, Pearl’s method

is based on a different revision principle, yet it implicitly implies the principle

of probability kinematics, leading to the same revision method as that of Jef-

frey’s. The difference between Jeffrey’s rule and Pearl’s method is in the way

124

soft evidence is specified. Jeffrey requires soft evidence to be specified in terms

of the effect it has on beliefs once accepted, which is a function of both evidence

strength and beliefs held before the evidence is observed. Pearl, on the other

hand, requires soft evidence to be specified in terms of its strength only. Despite

this difference, we will show that we can easily translate between the two methods

of specifying evidence and provide the equations for carrying out this translation.

The multiplicity of methods for specifying evidence also raises an important

question: how should informal statements about evidence be captured formally

using available methods? For example, what should the statement, “seeing these

clouds, I believe there is an 80% chance that it will rain,” translate to? We will

discuss the implicit difference between the two revision methods in interpreting

informal evidential statements, where we emphasize its subtlety and show how it

appears to be the reason that the two methods reach different conclusions.

As for the question of iterated belief revisions, it is well known that Jeffrey’s

rule does not commute, and hence, the order in which different pieces of soft ev-

idence are accepted matters [DZ82]. This has long been perceived as a problem,

until clarified recently by the work of Wagner who observed that the method of

specifying evidence used by Jeffrey’s rule is dependent of what is believed before

the evidence is observed, and hence, should not be commutative to start with

[Wag02]. Wagner proposed a method of specifying evidence, based on the no-

tion of Bayes factor, and argued that this method specifies only the strength of

evidence, and is independent of the beliefs held before attaining the evidence.

Wagner argued that when evidence is specified in this particular way, iterated

revisions should commute. He even showed that combining this method of speci-

fying evidence with the principle of probability kinematics leads to a revision rule

that commutes. We will actually show that Pearl’s method of virtual evidence

125

specifies evidence according to Bayes factors, exactly as proposed by Wagner, and

hence, corresponds exactly to the proposal he calls for. Therefore, the results we

will discuss in this chapter unify the two main methods of probabilistic belief

revision proposed by Jeffrey and Pearl, and show that differences between them

amount only to a difference in the protocol for specifying soft evidence.

Our last set of results relate to the problem of providing guarantees on the

amount of belief change induced by a revision. In Chapter 4, we proposed a

distance measure for bounding belief changes, by providing guarantees on the

amount of query change. We will demonstrate how this distance measure can be

computed when one distribution is obtained from another using the principle of

probability kinematics. The guarantees provided by this distance measure can

be realized when applying either Jeffrey’s rule or Pearl’s method, since they both

perform revisions based on the principle of probability kinematics.

8.1 Probability Kinematics and Jeffrey’s Rule

Consider the problem of revising a probability distribution Pr given soft evidence

relating to a set of mutually exclusive and exhaustive events γ1, . . . , γn. One of

the methods of specifying soft evidence is through the effect that it would have on

beliefs once accepted. Specifically, according to this method, we have to specify

evidence by providing the following set of posterior probabilities :

Pr′(γi) = ρi for i = 1, . . . , n,

where Pr′ denotes the new probability distribution that results from accepting the

given evidence. Therefore, to revise the distribution Pr, we must choose a unique

posterior distribution Pr′ that satisfies the above constraint. The principle of

probability kinematics [Jef65], which we now define, assumes that the conditional

126

belief in any event α given any γi remains unchanged.

Definition 8.1 Given two probability distributions Pr and Pr′ that disagree on

the probabilities they assign to a set of mutually exclusive and exhaustive events

γ1, . . . , γn, the distribution Pr′ is said to be obtained from Pr by probability kine-

matics on γ1, . . . , γn, iff for every event α in the probability space:

Pr(α | γi) = Pr′(α | γi) for i = 1, . . . , n. (8.1)

This concept was proposed by Jeffrey [Jef65] to capture the notion that even

though Pr and Pr′ disagree on the probabilities of events γ1, . . . , γn, they agree

on their relevance to every event α.

We now define the belief revision method of Jeffrey’s rule [Jef65], which can

be viewed as consisting of two components: a suggestion to specify soft evidence

as a constraint on the posterior probabilities of events γ1, . . . , γn; and a proposal

to choose the posterior distribution using the principle of probability kinematics.

Definition 8.2 Given an initial distribution Pr and some soft evidence bearing

on a set of mutually exclusive and exhaustive events γ1, . . . , γn, and assuming

that such evidence is specified by the set of posterior probabilities:

Pr′(γi) = ρi for i = 1, . . . , n, (8.2)

the new posterior distribution Pr′ proposed by Jeffrey’s rule is as follows:

Pr′(α)
def
=

n∑

i=1

ρi
Pr(α, γi)

Pr(γi)
. (8.3)

Theorem 8.1 The posterior distribution Pr′ given in Equation 8.3 is the one

and only distribution that satisfies the constraint given by Equation 8.2 and is

obtained from Pr by probability kinematics on γ1, . . . , γn.

127

We emphasizxe that we are drawing a distinction between the principle of

probability kinematics and the revision method of Jeffrey’s rule, which are often

considered synonymous. As we mentioned, Jeffrey’s rule arises from a combina-

tion of two proposals: the principle of probability kinematics, and the specifica-

tion of soft evidence using a posterior distribution. It is possible to combine the

principle of probability kinematics with other methods of specifying evidence, as

we will discuss later.

We now show an example of using Jeffrey’s rule.

Example 8.1 [Jef65] Suppose we are given a piece of cloth, where its color can

be one of: green (cg), blue (cb), or violet (cv). We want to know whether, on the

next day, the cloth will be sold (s), or not sold (s̄). Our initial state of belief is

given by the distribution Pr:

Pr(s, cg) = .12, P r(s, cb) = .12, P r(s, cv) = .32,

P r(s̄, cg) = .18, P r(s̄, cb) = .18, P r(s̄, cv) = .08.

Our initial belief on the color of the cloth is (Pr(cg), P r(cb), P r(cv)) = (.3, .3, .4).

Suppose we now inspect the cloth by candlelight, and conclude that our new belief

on the color of the cloth should be (Pr′(cg), P r′(cb), P r′(cv)) = (.7, .25, .05). If

we revise our beliefs by applying Jeffrey’s rule (Equation 8.3), we get the new

distribution Pr′:

Pr′(s, cg) = .28, P r′(s, cb) = .10, P r′(s, cv) = .04,

P r′(s̄, cg) = .42, P r′(s̄, cb) = .15, P r′(s̄, cv) = .01.

8.2 Virtual Evidence and Pearl’s Method

The problem of revising a probability distribution using soft evidence can be

approached from a different perspective than that of the principle of probability

128

kinematics. For example, when we have soft evidence about some mutually exclu-

sive and exhaustive events γ1, . . . , γn, we can recast this evidence as hard evidence

on some virtual event η, where the relevance of γ1, . . . , γn to η is uncertain. Ac-

cording to this approach, the uncertainty regarding evidence on γ1, . . . , γn is now

interpreted as uncertainty in the relevance of γ1, . . . , γn to the virtual event η,

and this uncertainty is specified by the likelihood of γi given this virtual evidence

η, Pr(η | γi) for i = 1, . . . , n. This belief revision method, called the virtual

evidence method, is defined explicitly as follows.

Definition 8.3 Given an initial distribution Pr and some soft evidence η bearing

on a set of mutually exclusive and exhaustive events γ1, . . . , γn, and assuming that

such evidence is specified by λ1, . . . , λn such that:

λ1 : . . . : λn = Pr(η | γ1) : . . . : Pr(η | γn), (8.4)

the revised distribution proposed by the virtual evidence method is Pr(· | η).

Moreover, this method assumes that for every event α in the probability space, we

have:

Pr(η | γi, α) = Pr(η | γi) for i = 1, . . . , n. (8.5)

That is, the virtual event η depends only on the events γ1, . . . , γn and is indepen-

dent of every event α given γi for i = 1, . . . , n.

Note that the likelihoods Pr(η | γ1), . . . , P r(η | γn) are not essential for the

virtual evidence method, but the likelihood ratios λ1 : . . . : λn = Pr(η | γ1) : . . . :

Pr(η | γn) are. The following theorem proves that we can uniquely define the

posterior distribution Pr(· | η) using the assumption given by Equation 8.5.

129

Theorem 8.2 Given the constraint given by Equation 8.4, and the assumption

given by Equation 8.5, we have:

Pr(α | η) =

∑n
i=1 λiPr(α, γi)∑n
j=1 λjPr(γj)

. (8.6)

Therefore, under the assumption given by Equation 8.5, the virtual evidence

method is able to reduce the incorporation of soft evidence into that of incorpo-

rating certain evidence using Bayes conditioning.

The virtual evidence method is a generalization of Pearl’s method of virtual

evidence, which Pearl proposed in the context of Bayesian networks [Pea88]. The

closed form of this method as given by Equation 8.6 for arbitrary probability

distributions is original as far as we know.

We now show an example of using the virtual evidence method.

Example 8.2 [Pea88] Suppose we are concerned with whether on any given day,

the alarm of Mr. Holmes’ house is triggered (values a and ā), and whether there

is burglary at his house (values b and b̄). Our initial state of belief is given by the

distribution Pr:

Pr(a, b) = .000095, P r(a, b̄) = .009999,

P r(ā, b) = .000005, P r(ā, b̄) = .989901.

This means that on any given day, there is a burglary at Mr. Holmes’ house

with probability Pr(b) = 1 × 10−4. One day, Mr. Holmes receives a call from

his neighbor, Mrs. Gibbons, saying she may have heard the alarm of his house

being triggered. Since Mrs. Gibbons suffers from a hearing problem, Mr. Holmes

concludes that there is an 80% chance that Mrs. Gibbons did hear the alarm

triggered. This can be interpreted as follows: the probability that Mrs. Gibbons

will make the call given that the alarm has been triggered is four times the prob-

ability that Mrs. Gibbons will make the call given that the alarm has not been

130

triggered. This soft evidence can be recast as hard evidence on the virtual event

η (the event of Mr. Holmes receiving a call from Mrs. Gibbons), with likelihood

ratios λa : λā = Pr(η | a) : Pr(η | ā) = 4 : 1. We can apply Equation 8.6 and

obtain the new distribution Pr(· | η):

Pr(a, b | η) ≈ .000369, P r(a, b̄ | η) ≈ .038820,

P r(ā, b | η) ≈ .000005, P r(ā, b̄ | η) ≈ .960806.

Therefore, the new probability that there is a burglary at Mr. Holmes’ house after

revising our beliefs given this piece of virtual evidence is Pr(b | η) ≈ 3.74× 10−4.

8.3 Comparing the Revision Methods

From the illustrations of the two belief revision methods, Jeffrey’s rule and Pearl’s

method of virtual evidence, we can see that a belief revision method can be broken

into two parts: a formal constraint that is used to specify the soft evidence, and a

principle of belief revision that commits to a unique distribution among many that

satisfy the evidential constraint. For the formal constraint, Jeffrey’s rule specifies

evidence using posterior probabilities, while Pearl’s method specifies evidence

using likelihood ratios. For the principle of belief revision, Jeffrey’s rule obeys

the principle of probability kinematics explicitly, while in Pearl’s method, beliefs

are revised by conditioning on a virtual event η. In this section, we will compare

the two revision methods with respect to these two parts, and consequently show

how we can translate between the two methods.

8.3.1 Pearl’s Method and Probability Kinematics

Our first result shows that the principle of belief revision underlying Pearl’s

method does indeed satisfy the principle of probability kinematics. Therefore,

131

it actually uses the same belief revision principle as Jeffrey’s rule, and what they

differ on is how soft evidence is specified.

Theorem 8.3 Given an initial distribution Pr and some soft evidence η bearing

on a set of mutually exclusive and exhaustive events γ1, . . . , γn, the new posterior

distribution Pr(· | η) proposed by the virtual evidence method is the one obtained

from the initial distribution Pr by probability kinematics on γ1, . . . , γn.

Theorem 8.3 clarifies a misconception that Jeffrey’s rule and Pearl’s method

are two different belief revision methods. In fact, what they differ on is not how

beliefs are revised as they both obey the principle of probability kinematics, but

in the constraint that is used to specify evidence. We now show how we can easily

translate between the two different evidence specification methods.

8.3.2 Translating from Pearl’s Method to Jeffrey’s Rule

We first show how we can translate from the evidential constraint used by Pearl’s

method into one used by Jeffrey’s rule.

Theorem 8.4 Suppose we have an initial distribution Pr and some soft evidence

η bearing on a set of mutually exclusive and exhaustive events γ1, . . . , γn, and this

piece of soft evidence is specified by likelihood ratios λ1 : . . . : λn = Pr(η | γ1) :

. . . : Pr(η | γn). The new posterior distribution Pr(· | η) proposed by the virtual

evidence method can be obtained using Jeffrey’s rule given that the soft evidence

is specified by the following set of posterior probabilities:

Pr′(γi) = ρi = Pr(γi | η) for i = 1, . . . , n. (8.7)

We now illustrate the translation from Pearl’s method to Jeffrey’s rule in

Theorem 8.4 by revisiting Example 8.2.

132

Example 8.3 In Example 8.2, the new distribution Pr(· | η) is obtained from

the initial distribution Pr by applying revision using Pearl’s method. From The-

orem 8.4, the equivalent distribution Pr′ = Pr(· | η) can be obtained by applying

Jeffrey’s rule, given soft evidence specified by the following set of posterior prob-

abilities, using Equation 8.6:

Pr′(a) = Pr(a | η)

=
λaPr(a)

λaPr(a) + λāPr(ā)

=
4× .010094

4× .010094 + 1× .989906

≈ .039189;

Pr′(ā) = Pr(ā | η)

=
λāPr(ā)

λaPr(a) + λāPr(ā)

=
1× .989906

4× .010094 + 1× .989906

≈ .960811.

8.3.3 Translating from Jeffrey’s Rule to Pearl’s Method

We now show how we can translate from the evidential constraint used by Jeffrey’s

rule into one used by Pearl’s method.

Theorem 8.5 Suppose we have an initial distribution Pr and some soft evidence

bearing on a set of mutually exclusive and exhaustive events γ1, . . . , γn, and this

piece of soft evidence is specified by a set of posterior probabilities Pr′(γi) = ρi

for i = 1, . . . , n. The new posterior distribution Pr′ proposed by Jeffrey’s rule

can be obtained using the virtual evidence method given that the soft evidence is

specified by the following likelihood ratios:

λ1 : . . . : λn =
ρ1

Pr(γ1)
: . . . :

ρn

Pr(γn)
. (8.8)

133

We now illustrate the translation from Jeffrey’s rule to Pearl’s method in

Theorem 8.5 by revisiting Example 8.1.

Example 8.4 In Example 8.1, the new distribution Pr′ is obtained from the ini-

tial distribution Pr by applying revision using Jeffrey’s rule. From Theorem 8.5,

the equivalent distribution Pr(· | η) = Pr′ can be obtained by applying Pearl’s

method, given virtual evidence η specified by the following likelihood ratios:

λcg : λcb
: λcv =

Pr′(cg)

Pr(cg)
:
Pr′(cb)

Pr(cb)
:
Pr′(cv)

Pr(cv)

=
.7

.3
:
.25

.3
:
.05

.4

= 7 : 2.5 : .375.

8.4 Belief Revision in Bayesian Networks

In this section, we will describe the procedure of applying belief revision in the

context of Bayesian networks, using either Pearl’s method or Jeffrey’s rule. The

method of revision by virtual evidence was first introduced by Pearl in the context

of Bayesian networks [Pea88]. Suppose we have some virtual evidence η bearing

on variable Y in a Bayesian network, which has values y1, . . . , yn. This virtual

evidence is represented in the Bayesian network by adding an auxiliary variable Z,

and a directed edge Y → Z, where one value of Z, say z, corresponds to the virtual

event η. This ensures the key assumption given by Equation 8.5, that the virtual

event z is independent of every event α given yi, i.e., Pr(z | yi, α) = Pr(z | yi)

for i = 1, . . . , n, which follows from the independence semantics of Bayesian

networks [Pea88]. The uncertainty of evidence is quantified by the likelihood

ratios λ1, . . . , λn, and the parameter values in the CPT of Z are assigned such

that Pr(z | y1) : . . . : Pr(z | yn) = λ1 : . . . : λn.1 Finally, we accommodate the

1Note that there are multiple CPTs that satisfy this condition.

134

Z Y

Y

Figure 8.1: An illustration of the process of applying the virtual evidence method

in a Bayesian network, by adding an auxiliary variable Z as a child of variable

Y , where the virtual evidence η bears on.

presence of the virtual event z by asserting the observation Z = z in the Bayesian

network. This process is shown in Figure 8.1. We now show a simple example.

Example 8.5 The probability distribution Pr in Example 8.2 can be induced by

the following Bayesian network with two variables: A, which represents whether

the alarm of Mr. Holmes’ house is triggered (values a and ā); and B, which

represents whether there is a burglary at his house (values b and b̄). To represent

the influence between the two variables, there is a directed edge from B to A. We

also assign values to the following network parameters: Pr(a | b) = .95, meaning

the alarm is triggered if there is a burglary with probability .95; Pr(a | b̄) = .01,

meaning the alarm is triggered if there is no burglary with probability .01; and

Pr(b) = 1× 10−4, meaning on any given day, there is a burglary at Mr. Holmes’

house with probability 1× 10−4.

Suppose now Mr. Holmes receives a call from his neighbor, Mrs. Gibbons,

135

saying she may have heard the alarm of his house being triggered, and he concludes

that there is an 80% chance that Mrs. Gibbons did hear the alarm triggered. This

soft evidence can be recast as hard evidence on the virtual event η, with likelihood

ratios λa : λā = 4 : 1. To incorporate this virtual evidence into the Bayesian

network, we add the auxiliary variable Z, and the directed edge A → Z, where

the value z of Z corresponds to the virtual event η, and the parameters in the CPT

of Z are assigned such that Pr(z | a) : Pr(z | ā) = 4 : 1. For example, we can

assign Pr(z | a) = .4 and Pr(z | ā) = .1. After asserting the observation Z = z

in the Bayesian network, we can easily compute values of probabilistic queries by

performing inference. For example, the probability that there is a burglary at Mr.

Holmes’ house is now Pr(b | z) ≈ 3.74× 10−4.

On the other hand, there was no known proposal for applying Jeffrey’s rule in

the context of Bayesian networks. However, due to our results on the translation

between Jeffrey’s rule and Pearl’s method in Section 8.3, we immediately have

a proposal, by first translating the evidential constraint used by Jeffrey’s rule

into one used by Pearl’s method using Theorem 8.5, and then performing belief

revision using the procedure shown above. We now show a simple example.

Example 8.6 The probability distribution Pr in Example 8.1 can be induced by

the following Bayesian network with two variables: C, which represents the color

of the cloth (values cg, cb and cv); and S, which represents whether the cloth

is sold on the next day (values s and s̄). To represent the influence between

the two variables, there is a directed edge from C to S. We also assign values

to the following network parameters: (Pr(cg), P r(cb), P r(cv)) = (.3, .3, .4); and

Pr(s | cg) = .4, Pr(s | cb) = .4, and Pr(s | cv) = .8.

Suppose we now inspect the cloth by candlelight, and conclude that our new

belief on the color of the cloth should be (Pr′(cg), P r′(cb), P r′(cv)) = (.7, .25, .05).

136

To incorporate this soft evidence into the Bayesian network, we first have to inter-

pret the inspection of the cloth by candlelight as virtual evidence. In Example 8.4,

we show how we can translate this evidential constraint into one used by Pearl’s

method. The soft evidence can now be recast as virtual event η, with likelihood

ratios λcg : λcb
: λcv = 7 : 2.5 : .375. We can now follow the procedure of incorpo-

rating virtual evidence: we first add an auxiliary variable Z as a child of variable

C, then specify the CPT of Z such that the parameter values are consistent with

the likelihood ratios, and finally assert the observation of the virtual event.

8.5 Interpreting Evidential Statements

We now turn our attention to the investigation of the evidence specification pro-

tocols adopted by Jeffrey’s rule and Pearl’s method in relation to the problem

of formally interpreting evidential statements.2 Consider the following statement

as an example:

“Looking at this evidence, I am willing to bet 2 : 1 that David is not

the killer.”

This statement can be formally interpreted using either protocol. For example, if

α denotes the event that David is not the killer, this statement can be interpreted

in two ways:

1. After accepting the evidence, the probability that David is not the killer

becomes twice the probability that David is the killer: Pr′(α) = 2/3 and

Pr′(ᾱ) = 1/3;

2This section is a summary of Pearl’s discussions on this issue [Pea01], in the context of
the approach we take in this chapter by dividing the belief revision process into an evidence
specification method and a revision principle.

137

2. The probability that I will see this evidence η given that David is not the

killer is twice the probability that I will see it given that David is the killer:

Pr(η | α) : Pr(η | ᾱ) = 2 : 1.

The first interpretation translates directly into a formal piece of evidence, Jef-

frey’s style, and can be characterized as an “all things considered” interpretation

because it is a statement about the agent’s final beliefs, which are functions of

both his prior beliefs and the evidence [Pea01]. On the other hand, the second

interpretation translates directly into a formal piece of evidence, Pearl’s style,

and can be characterized as a “nothing else considered” interpretation because it

is a statement about the evidence only [Pea01].

The two interpretations can lead to contradictory conclusions about the ev-

idence. If we use the “nothing else considered” approach to interpret our pre-

vious statement, we will conclude that the evidence is against David being the

killer. However, if we use the “all things considered” interpretation, it is not clear

whether the evidence is for or against David being the killer, unless we know its

prior probability. For example, if David is one of four suspects who are equally

likely to be the killer, i.e., its prior probability is Pr(α) = 3/4, this evidence has

actually increased the probability that David is the killer! Because of this, Pearl

argued for the “nothing else considered” interpretation, as it provides a sum-

mary of the evidence alone, and discussed how people tend to use betting odds

to quantify their beliefs even when they are based on the evidence only [Pea01].

Example 8.2 provides another opportunity to illustrate the subtlety involved

in interpreting evidential statements. The evidential statement in this case is

“Mr. Holmes concludes that there is an 80% chance that Mrs. Gibbons did hear

the alarm triggered.” Interpreting this statement using the “all things consid-

ered” approach gives us the conclusion that Pr′(a) : Pr′(ā) = 4 : 1, where a

138

denotes the event that the alarm has been triggered. This interpretation assumes

that the 4 : 1 ratio applies to the posterior beliefs in a and ā, after Mr. Holmes has

accommodated the evidence provided by Mrs. Gibson. However, in Example 8.2,

this statement was given a “nothing else considered” interpretation, as by Pearl

[Pea88, pp. 44–47], where the 4 : 1 ratio is taken as a quantification of the evi-

dence strength, i.e., the statement is interpreted as Pr(η | a) : Pr(η | ā) = 4 : 1,

where η is the evidence. In fact, the two interpretations lead to two different prob-

ability distributions, and hence, give us different results for probabilistic queries.

For example, if we use the “all things considered” approach in interpreting this

evidential statement, the probability of having a burglary is Pr′(b) = 7.53×10−3,

which is much larger than the probability we get using the “nothing else consid-

ered” approach in Example 8.2, which is Pr(b | η) = 3.74× 10−4.

From the discussions above, the formal interpretation of evidential statements

appears to be a non-trivial task, which can be sensitive to context and commu-

nication protocols. Regardless of how this is accomplished though, we need to

stress that the process of mapping an informal evidential statement into a revised

probability distribution involves three distinct elements:

1. Adopting a formal method of specifying evidence;

2. Interpreting the informal evidential statement as a formal piece of evidence,

according to the evidence specification method;

3. Applying a revision, by mapping the initial probability distribution and the

formal piece of evidence into a new probability distribution, according to a

belief revision principle.

As we have shown previously, Jeffrey’s rule and Pearl’s method both employ

the same belief revision principle, i.e., the principle of probability kinematics.

139

Moreover, although they adopt different formal methods of specifying evidence,

we can translate between the two methods, as shown in Section 8.3.

8.6 Virtual Evidence and Bayes Factors

In this section, we will aim to clarify the virtual evidence method by relating it

to some classical concepts in probability theory.

First of all, when quantifying the strength of some evidence η on a hypotheses

γ, we often compute the ratio of the odds of γ before and after accepting the

evidence, O(γ | η)/O(γ). This ratio is called the odds factor in favor of γ by η

[Goo83], and its logarithm is called the weight of evidence η in favor of γ [Goo83].

The odds factor is given by [Goo50, Goo83]:

O(γ | η)

O(γ)
=

Pr(η | γ)

Pr(η | γ̄)
.

Therefore, if we are given virtual evidence η on events γ and γ̄, the likelihood ratio

Pr(η | γ)/Pr(η | γ̄) serves as a measure of the strength of the virtual evidence η

on the hypotheses γ. The virtual evidence η argues for γ if the likelihood ratio

is greater than 1, and argues against γ if the likelihood ratio is less than 1.

If we are given the general case where we have soft evidence on a set of

mutually exclusive and exhaustive events γ1, . . . , γn, where n > 2, we need to

expand the notion of odds factor, by defining the odds of γi against γj given η as

the following probability ratio:

O(γi : γj | η)
def
=

Pr(γi | η)

Pr(γj | η)
.

We can now in turn define the odds factor in favor of γi against γj by η as the

ratio O(γi : γj | η)/O(γi : γj). This ratio of new-to-old odds is actually equivalent

140

to the Bayes factor defined in Definition 4.3:

BPr(·|η),P r(γi : γj) =
O(γi : γj | η)

O(γi : γj)
.

Therefore, the Bayes factor can be used as a measure of how much evidence η is

in favor of γi against γj, and we can revise beliefs using the notion of Bayes fac-

tors. We first specify soft evidence on a set of mutually exclusive and exhaustive

events γ1, . . . , γn by providing the Bayes factor for every pair of events γi and

γj, then commit to the principle of probability kinematics for belief revision. An

interesting property of this method of specification is that Bayes factors do not

constrain the initial probability distribution Pr, i.e., any soft evidence specified

by Bayes factors is compatible with every distribution Pr.3 Therefore, they are

suitable for a “nothing else considered” interpretation of evidential statements.

In fact, we can show that this revision method using Bayes factors corre-

sponds to the virtual evidence method. This has a number of implications. First,

it provides an alternative and more classical semantics for the virtual evidence

method. Second, it again confirms that the virtual evidence method obeys the

principle of probability kinematics. Third, it shows that revisions by the virtual

evidence method are commutative, as we will illustrate later. The following theo-

rem shows how we can easily find the Bayes factors when we specify soft evidence

using virtual evidence.

Theorem 8.6 If Pr(· | η) is obtained from Pr by applying Pearl’s method, given

virtual evidence η specified by likelihood ratios λ1, . . . , λn, we have:

BPr(·|η),P r(γi : γj) =
λi

λj

for i, j = 1, . . . , n.

3This is not true if we use ratios of probabilities instead of ratios of odds. For example, if
Pr′(γ) = 2Pr(γ), we must have Pr(γ) ≤ .5 because Pr′(γ) ≤ 1 [Wag02].

141

Therefore, we can obtain the same distribution as Pr(· | η) if we specify the

soft evidence by the Bayes factor λi/λj for every pair of events γi and γj, and

then revise our beliefs according to the principle of probability kinematics. The

advantage of using the virtual evidence method for specifying soft evidence is

that we only need to specify the n likelihood ratios λ1, . . . , λn in order to define

the n2 Bayes factors that are necessary for belief revision.

8.6.1 Reasoning About Evidence

As we have said before, the virtual evidence method can be interpreted as a

“nothing else considered” revision method, and does not depend on one’s prior

beliefs. In fact, this specification of evidence can be reasoned about and inter-

preted even when we do not have any prior beliefs. We illustrate this by the

following example from Halpern and Pucella [HP03].

Suppose Alice has two coins, a fair one and a double-headed one. If she

non-probabilistically chooses one of them and tosses it repeatedly, what is the

probability of the coin landing heads in a single toss? Without knowing which

coin she chooses, and how she chooses it, the only conclusion that can be drawn

is that the probability is either 1/2 (if the fair coin is chosen) or 1 (if the double-

headed coin is chosen).

Suppose now we know the results of the first 100 tosses, and all of them landed

heads. What is the probability that the next toss lands heads? We can again

conclude that it is still either 1/2 or 1 depending on which coin is used, as either

coin cannot be ruled out from our observation. This is hardly useful because no

matter how many of these consecutive tosses that landed heads we witness, the

conclusion we can make on the probability that the next toss will land heads

remains unchanged, when in fact the probability of the coin being double-headed

142

should increase from before the tosses were made.

However, this piece of evidential information can be easily expressed and used

if we interpret it as virtual evidence. If γ denotes the event of the coin being

double-headed, γ̄ denotes the event of the coin being fair, and η denotes the event

of the coin landing heads in a single toss, we can quantify the evidence strength of

the virtual event η on the hypotheses γ by the likelihood ratio Pr(η | γ)/Pr(η |
γ̄) = 1/(1/2) = 2. Because the likelihood ratio is greater than 1, this piece of

evidence is in favor of the coin being double-headed, no matter what our prior

beliefs are. Moreover, if we witness the coin all landing heads in 100 tosses, the

likelihood ratio of this observation is 2100, which means it is very strongly in favor

of the coin being double-headed. Obviously, it is still not possible to determine

the posterior probability of the coin being double-headed without knowing its

prior probability. For example, we will still believe the coin is unlikely to be

double-headed if its prior probability is 10−100.

The advantage of specifying evidential information using virtual evidence is

that the evidence can be shared among different agents with different prior beliefs

(even those without prior beliefs), and it will be interpreted the same way by the

different agents because the specification depends only on the evidence but not

the prior beliefs. The likelihood ratios specified in the virtual evidence method

capture completely whether the soft evidence is in favor or against a hypotheses,

and also its strength. Recently, Halpern and Pucella proposed a logic for rea-

soning about evidence [HP03], which essentially views evidence as a confirmation

function from the prior beliefs before making the observation, to the posterior

beliefs after making the observation. The measure of evidence they use is the

likelihood ratio, since it is the only function that does not assume that we have

any prior beliefs on the hypotheses.

143

8.6.2 Commutativity of Iterated Revisions

We now proceed to discuss the problem of the commutativity of iterated revisions,

i.e., whether the order in which we accept soft evidence matters.4

It is well known that iterated revisions by Jeffrey’s rule are not commutative

[DZ82]. As a simple example, suppose we are given a piece of soft evidence

that suggests that the probability of event α is .7, followed by another that

suggests that the probability of α is .8. After accepting both pieces of evidence

in this particular order using Jeffrey’s rule, the new probability of α becomes .8.

However, if the reversed order is employed, the new probability of α becomes .7.

In general, even when we are given pieces of soft evidence on different events,

iterated revisions by Jeffrey’s rule are not commutative, i.e., the final states of

belief are different when different orders of incorporating evidence are used.

This was viewed as a problematic aspect of Jeffrey’s rule for a long time, until

clarified recently by Wagner [Wag02]. Wagner observed and stressed that the

evidence specification method adopted by Jeffrey is suitable for the “all things

considered” interpretation of evidential statements. Moreover, he argued con-

vincingly that when evidential statements carry this interpretation, they must

not be commutative to start with. So the lack of commutativity is not a problem

of the revision method, but a property of the evidence specification method.

On the other hand, revisions by the virtual evidence method are commutative,

and this is supported by Wagner, who suggested specifying evidence by Bayes

factors leads to commutativity [Wag02]. Interestingly enough, he showed that

when evidence is specified by Bayes factors and the revision method obeys the

4There is a key distinction between iterated revisions using hard evidence versus soft evi-
dence. In the former case, pieces of evidence may be logically inconsistent, which adds another
dimension of complexity to the problem [DP97], leading to different properties and treatments.

144

principle of probability kinematics, belief revision becomes commutative.5 These

two properties are satisfied by the virtual evidence method, as shown earlier.

8.7 Bounding Belief Changes Due To Belief Revision

An important question relating to belief revision is that of measuring the extent

to which a revision disturbs existing beliefs. In Definition 4.1, we proposed a

distance measure defined between two probability distributions that can be used

to bound the amount of belief change induced by a revision. According to The-

orem 4.2, if we are given a belief revision method, and are able to compute the

distance measure between the initial and revised distributions, we can get a tight

bound on the new probability of any conditional event after the belief revision,

given its initial probability. Moreover, we showed in Section 4.2 that compared

with other popular measures such as KL-divergence and Euclidean distance, this

distance measure is the only one that can bound belief changes in the precise

sense of providing a tight bound on the new probability of any conditional event.

We now compute the distance measure for belief revision methods based on

the principle of probability kinematics.

Theorem 8.7 If Pr′ is obtained from Pr by probability kinematics on γ1, . . . , γn,

the distance measure between Pr and Pr′ is given by:

D(Pr, Pr′) = ln
n

max
i=1

Pr′(γi)

Pr(γi)
− ln

n
min
i=1

Pr′(γi)

Pr(γi)
.

Using Theorem 8.7, we can easily compute the distance measure for revisions

based on Jeffrey’s rule and Pearl’s method.

5Wagner showed not only that the representation of soft evidence using Bayes factors is
sufficient for commutativity, but in a large number of cases, necessary.

145

Corollary 8.1 If Pr′ is obtained from Pr by applying Jeffrey’s rule, given soft

evidence specified by the set of posterior probabilities Pr′(γi) = ρi for i = 1, . . . , n,

the distance measure between Pr and Pr′ is given by:

D(Pr, Pr′) = ln
n

max
i=1

ρi

Pr(γi)
− ln

n
min
i=1

ρi

Pr(γi)
.

Corollary 8.2 If Pr(· | η) is obtained from Pr by applying Pearl’s method, given

virtual evidence η specified by likelihood ratios λ1, . . . , λn, the distance measure

between Pr and Pr(· | η) is given by:

D(Pr, Pr(· | η)) = ln
n

max
i=1

λi − ln
n

min
i=1

λi.

The significance of Corollaries 8.1 and 8.2 is that we can compute the distance

measure easily in both cases. For Jeffrey’s rule, we can compute the distance

measure by knowing only the prior and posterior probabilities of events γ1, . . . , γn.

For Pearl’s method, we can compute the distance measure by knowing only the

likelihood ratios λ1, . . . , λn. For both revision methods, the distance measure

can be computed in constant time from the soft evidence, and we can guarantee

a bound on amount of the belief change due to the fact that they both obey

the principle of probability kinematics, without explicitly knowing the initial and

revised distributions.

We close this section by showing that the principle of probability kinematics

is optimal in a very precise sense: it commits to a probability distribution that

minimizes the distance measure.

Theorem 8.8 The distribution Pr′ obtained from Pr by probability kinematics

on γ1, . . . , γn is optimal in the following sense. Among all possible distributions

that agree with Pr′ on the probabilities of events γ1, . . . , γn, Pr′ is the closest to

Pr according to the distance measure defined in Definition 4.1.

146

CHAPTER 9

Conclusion

We have studied many different aspects of sensitivity analysis of probabilistic

graphical models throughout this work. As a conclusion, we provide a summary

of the contributions of this work:

• We introduced procedures and complexity results for changing network pa-

rameters to ensure certain query constraints, such as Pr(y | e) ≥ κ, for cases

of single Bayesian network parameters (Chapter 2), multiple Bayesian net-

work parameters (Chapter 5), and Markov network parameters (Chapter 7).

We found that computing solutions for single parameter changes, or for pa-

rameter changes in a single table (CPTs for Bayesian networks, clique tables

for Markov networks), requires complexity that is asymptotically the same

as performing basic inference. For the case of multiple parameter changes,

we also developed a numerical procedure to find a near-optimal parameter

change in the solution space which minimizes model disturbance. These

procedures are integral to building and debugging networks by allowing

experts to focus on relevant parameters when enforcing sanity checks on

certain query results.

• We provided network-independent bounds on changes in queries due to ar-

bitrary changes in network parameters, for both Bayesian networks (Chap-

ter 3) and Markov networks (Chapter 7). We obtained the bounds by in-

147

vestigating the sensitivity of a query with respect to a parameter, and the

bounds allowed us to provide guarantees on the amount of change in a query

given the change in a parameter even if we do not know any information

about the network. These results can help characterize conditions where

parameter changes do or do not matter, and provide bounds on permissible

parameter changes that can assure query robustness, such as limiting the

absolute change in a certain query to a certain amount.

• We proposed a new distance measure for quantifying probabilistic belief

changes (Chapter 4), which can be used to bound the amount of query

change between two probability distributions. We did an extensive study

of this distance measure by comparing it with existing measures such as

KL-divergence, and found that they cannot provide a similar guarantee.

We showed that this distance measure can also be easily computed for dis-

tributions induced by Bayesian networks (Chapter 4) and Markov networks

(Chapter 7), where the distributions differ on only the parameters of a sin-

gle table (CPTs for Bayesian networks, clique tables for Markov networks).

We also applied this distance measure to belief revision.

• We provided algorithms and complexity results on the sensitivity of de-

cisions made by naive Bayes classifiers (Chapter 6). We developed an

algorithm that converts a naive Bayes classifier into an ordered decision

diagram, which is a logical representation allowing us to perform reasoning

for the purposes of sensitivity analysis in time polynomial in its size. Our

theoretical results showed that the upper bound on the size of the ordered

decision diagram is much less than the number of instances that we need

to enumerate if we use a brute-force approach of reasoning, while our ex-

perimental results showed that for many networks, the actual sizes of the

148

ordered decision diagrams are much less than the theoretical upper bound.

• We discussed the topic of belief revision, where we analyzed the sensitivity

of global beliefs to local belief changes in terms of soft evidence (Chap-

ter 8). We looked at how a state of belief should be revised when given

soft evidence, by dividing the process into different aspects, and compared

two popular methods, Jeffrey’s rule and Pearl’s method of virtual evidence,

in terms of these aspects, and identified their similarities and differences.

We also used the distance measure we proposed to bound the global belief

change due to soft evidence once we commit to the belief revision princi-

ple of probability kinematics, which are obeyed by both Jeffrey’s rule and

Pearl’s method of virtual evidence, where the measure can be computed

from information about the soft evidence only.

Finally, we also point out some possible future directions for the research of

sensitivity analysis of probabilistic graphical models:

• The general bounds on query changes due to parameter changes, given in

Chapters 3 and 7, are useful when no information about the Bayesian or

Markov network is given. However, when some partial information about

the network is given, such as certain properties of the current state of belief,

or the class of queries we are interested in, we may be able to find tighter

bounds on the amount of query change as a result.

• The tuning of network parameters to enforce a query constraint was dis-

cussed in Chapter 2, where we introduced a procedure that finds single

parameter changes, and in Chapter 5, where we introduced a local search

procedure that finds optimal single CPT changes, and also the underlying

theory of finding such changes involving multiple CPTs. However, due to

149

the many combinations of multiple CPTs, we need an automated procedure

that identifies relevant CPTs to check for solutions. Moreover, we need a

local search procedure that finds an optimal solution in the solution space

of multiple CPT changes.

• We introduced a distance measure in Chapter 4 that can be considered as a

worst-case bound, compared with KL-divergence that can be considered as

an average-case bound. This distance measure can potentially be applied

in fields where KL-divergence is commonly used, such as approximate rea-

soning and machine learning, where it can provide worse-case bounds on

the query results.

• We focused our study on the sensitivity of decisions to the domain of naive

Bayes classifiers in Chapter 6, by converting them into ordered decision

diagrams. In the future, we would like to expand beyond naive Bayes

classifiers. In particular, classifiers induced from Tree Augmented Naive

Bayes networks (TANs) and Augmented Naive Bayes networks (ANBs),

which are both derivatives of naive Bayes networks where directed edges are

added between attributes, are good candidates because they are commonly

used. Ultimately, we would like to provide an algorithm to convert a general

Bayesian network classifier into a logical representation.

• Sensitivity analysis of networks with continuous variables, and sensitivity

analysis of other probabilistic graphical models such as influence diagrams,

are natural next steps for this research.

150

APPENDIX A

Proofs of Theorems

A.1 Proofs of Theorems in Chapter 2

Proof of Theorem 2.1 The partial derivative of Pr(e) with respect to the

network parameter θx|u is given by [RBK95]:1

∂Pr(e)

∂θx|u
=

Pr(e, x,u)

θx|u
,

if θx|u 6= 0, and:
∂Pr(e)

∂θx̄|u
=

Pr(e, x̄,u)

θx̄|u
,

if θx̄|u 6= 0. Because θx|u = τx|u and θx̄|u = 1− τx|u, we have:

∂Pr(e)

∂τx|u
=

∂Pr(e)

∂θx|u
− ∂Pr(e)

∂θx̄|u

=
Pr(e, x,u)

θx|u
− Pr(e, x̄,u)

θx̄|u
,

if θx|u 6= 0 and θx̄|u 6= 0.

A.2 Proofs of Theorems in Chapter 3

Proof of Theorem 3.1 We assume that X is a binary variable. The case

where X is multi-valued can be easily dealt with by grouping all values x∗ 6= x

1We allow the notations ∂Pr(e)/∂θx|u and ∂Pr(e)/∂θx̄|u by assuming Pr(e) as a function
of θx|u and θx̄|u, even though it is not allowed in Bayesian networks to change only θx|u or θx̄|u.

151

into the pseudo-value x̄. The partial derivative of Pr(y | e) with respect to the

parameter θx|u is equal to [Dar03]:2

∂Pr(y | e)

∂θx|u
=

Pr(y, x,u | e)− Pr(x,u | e)Pr(y | e)

Pr(x | u)
.

Since Pr(y, x,u | e) ≤ Pr(y | e) and Pr(y, x,u | e) ≤ Pr(x,u | e), we have:

∂Pr(y | e)

∂θx|u
≤ Pr(y, x,u | e)− Pr(y, x,u | e)Pr(y | e)

Pr(x | u)

=
Pr(y, x,u | e) (1− Pr(y | e))

Pr(x | u)

≤ Pr(y | e) (1− Pr(y | e))

Pr(x | u)
.

Therefore, the partial derivative of Pr(y | e) with respect to the meta-parameter

τx|u is upper-bounded by:

∂Pr(y | e)

∂τx|u
=

∂Pr(y | e)

∂θx|u
− ∂Pr(y | e)

∂θx̄|u

≤ Pr(y | e) (1− Pr(y | e))

Pr(x | u)
+

Pr(y | e) (1− Pr(y | e))

1− Pr(x | u)

= Pr(y | e) (1− Pr(y | e))

(
1

Pr(x | u)
+

1

1− Pr(x | u)

)

=
Pr(y | e) (1− Pr(y | e))

Pr(x | u) (1− Pr(x | u))
.

To find the lower bound on the derivative, we note that Pr(y | e) = 1−Pr(ȳ |
e), and thus:

∂Pr(y | e)

∂τx|u
= −∂Pr(ȳ | e)

∂τx|u

≥ − Pr(ȳ | e) (1− Pr(ȳ | e))

Pr(x | u) (1− Pr(x | u))

= − Pr(y | e) (1− Pr(y | e))

Pr(x | u) (1− Pr(x | u))
.

2We again allow the notations ∂Pr(y | e)/∂θx|u and ∂Pr(y | e)/∂θx̄|u by assuming Pr(y | e)
as a function of θx|u and θx̄|u, even though it is not allowed in Bayesian networks to change
only θx|u or θx̄|u.

152

Combining the upper bound and the lower bound, we have:

∣∣∣∣∣
∂Pr(y | e)

∂τx|u

∣∣∣∣∣ ≤
Pr(y | e) (1− Pr(y | e))

Pr(x | u) (1− Pr(x | u))
.

Proof of Theorem 3.2 Because ∆τx|u is infinitesimal, from Theorem 3.1, we

have:

∣∣∣∣∣
∆Pr(y | e)

∆τx|u

∣∣∣∣∣ '
∣∣∣∣∣
∂Pr(y | e)

∂τx|u

∣∣∣∣∣

≤ Pr(y | e) (1− Pr(y | e))

Pr(x | u) (1− Pr(x | u))
.

Arranging the terms, we have:

∣∣∣∣∣
∆Pr(y | e)

Pr(y | e)

∣∣∣∣∣ ≤ 1− Pr(y | e)

1− Pr(x | u)

∣∣∣∣∣
∆τx|u
τx|u

∣∣∣∣∣

≤ 1

.5

∣∣∣∣∣
∆τx|u
τx|u

∣∣∣∣∣

= 2

∣∣∣∣∣
∆τx|u
τx|u

∣∣∣∣∣ ,

since Pr(x | u) = τx|u ≤ .5.

Proof of Theorem 3.3 We obtain this result by integrating the bound on

∂Pr(y | e)/∂τx|u given in Theorem 3.1. In particular, if we change τx|u to τ ′x|u >

τx|u, and consequently Pr(y | e) changes to Pr′(y | e), we can separate the

variables in the upper bound on the derivative in Theorem 3.1, integrate over the

intervals, and yield:

∫ Pr′(y|e)

Pr(y|e)

dPr(y | e)

Pr(y | e) (1− Pr(y | e))
≤

∫ τ ′
x|u

τx|u

dτx|u
τx|u

(
1− τx|u

) .

This gives us the solution:

ln
Pr′(y | e)

1− Pr′(y | e)
− ln

Pr(y | e)

1− Pr(y | e)
≤ ln

τ ′x|u
1− τ ′x|u

− ln
τx|u

1− τx|u
,

153

which is equivalent to:

ln O′(y | e)− ln O(y | e) ≤ ln O′(x | u)− ln O(x | u),

and after taking exponentials, we have:

O′(y | e)

O(y | e)
≤ O′(x | u)

O(x | u)
.

Similarly, we can separate the variables in the lower bound on the derivative in

Theorem 3.1, integrate over the intervals, and yield:

∫ Pr′(y|e)

Pr(y|e)

dPr(y | e)

Pr(y | e) (1− Pr(y | e))
≥ −

∫ τ ′
x|u

τx|u

dτx|u
τx|u

(
1− τx|u

) .

This gives us the solution:

ln
Pr′(y | e)

1− Pr′(y | e)
− ln

Pr(y | e)

1− Pr(y | e)
≥ − ln

τ ′x|u
1− τ ′x|u

+ ln
τx|u

1− τx|u
,

which is equivalent to:

ln O′(y | e)− ln O(y | e) ≤ − ln O′(x | u) + ln O(x | u),

and after taking exponentials, we have:

O′(y | e)

O(y | e)
≥ O(x | u)

O′(x | u)
.

Therefore, we have the following inequality if τ ′x|u > τx|u:

O(x | u)

O′(x | u)
≤ O′(y | e)

O(y | e)
≤ O′(x | u)

O(x | u)
.

On the other hand, if we change τx|u to τ ′x|u < τx|u, we can instead integrate

from τ ′x|u to τx|u. The integrals satisfy these two inequalities:

∫ Pr(y|e)

Pr′(y|e)

dPr(y | e)

Pr(y | e) (1− Pr(y | e))
≤

∫ τx|u

τ ′
x|u

dτx|u
τx|u

(
1− τx|u

) ;

∫ Pr(y|e)

Pr′(y|e)

dPr(y | e)

Pr(y | e) (1− Pr(y | e))
≥ −

∫ τx|u

τ ′
x|u

dτx|u
τx|u

(
1− τx|u

) .

154

We can solve for them similarly and get the following result:

O′(x | u)

O(x | u)
≤ O′(y | e)

O(y | e)
≤ O(x | u)

O′(x | u)
.

Combining the results for both τ ′x|u > τx|u and τ ′x|u < τx|u, we have:

|ln O′(y | e)− ln O(y | e)| ≤ |ln O′(x | u)− ln O(x | u)| .

A.3 Proofs of Theorems in Chapter 4

Proof of Theorem 4.1 The distance measure defined in Definition 4.1 satisfies

these three properties:

Positiveness Obviously, we have D(Pr, Pr′) ≥ 0 and D(Pr, Pr) = 0. Since
∑

ω Pr(ω) =
∑

ω Pr′(ω) = 1, we have maxω (Pr′(ω)/Pr(ω)) ≥ 1 and

minω (Pr′(ω)/Pr(ω)) ≤ 1. Moreover, when D(Pr, Pr′) = 0, we must have

maxω (Pr′(ω)/Pr(ω)) = minω (Pr′(ω)/Pr(ω)) = 1. Therefore, Pr(ω) =

Pr′(ω) for all ω, and thus Pr = Pr′.

Symmetry Since we have maxω (Pr′(ω)/Pr(ω)) = minω (Pr(ω)/Pr′(ω)) and

minω (Pr′(ω)/Pr(ω)) = maxω (Pr(ω)/Pr′(ω)), we can easily prove that

D(Pr, Pr′) = D(Pr′, P r).

Triangle inequality Given two worlds ωi and ωj such that Pr′′(ωi)/Pr(ωi) =

maxω (Pr′′(ω)/Pr(ω)) and Pr′′(ωj)/Pr(ωj) = minω (Pr′′(ω)/Pr(ω)), and

because ln(Pr′′(ω)/Pr(ω)) = ln(Pr′′(ω)/Pr′(ω)) − ln(Pr′(ω)/Pr(ω)), we

have:

D(Pr, Pr′′)

= ln max
ω

Pr′′(ω)

Pr(ω)
− ln min

ω

Pr′′(ω)

Pr(ω)

155

= ln
Pr′′(ωi)

Pr(ωi)
− ln

Pr′′(ωj)

Pr(ωj)

=

(
ln

Pr′′(ωi)

Pr′(ωi)
− ln

Pr′(ωi)

Pr(ωi)

)
−

(
ln

Pr′′(ωj)

Pr′(ωj)
− ln

Pr′(ωj)

Pr(ωj)

)

= ln
Pr′(ωj)

Pr(ωj)
− ln

Pr′(ωi)

Pr(ωi)
+ ln

Pr′′(ωi)

Pr′(ωi)
− ln

Pr′′(ωj)

Pr′(ωj)

≤ ln max
ω

Pr′(ω)

Pr(ω)
− ln min

ω

Pr′(ω)

Pr(ω)
+ ln max

ω

Pr′′(ω)

Pr′(ω)
− ln min

ω

Pr′′(ω)

Pr′(ω)

= D(Pr, Pr′) + D(Pr′, P r′′).

Proof of Theorem 4.2 If distributions Pr and Pr′ do not have the same

support, we have D(Pr, Pr′) = ∞, and thus −∞ = e−D(Pr,Pr′) ≤ O′(α | β)/O(α |
β) ≤ eD(Pr,Pr′) = ∞. Otherwise, the odds ratio O′(α | β)/O(α | β) can be

expressed as:

O′(α | β)

O(α | β)
=

Pr′(α|β)
Pr′(ᾱ|β)

Pr(α|β)
Pr(ᾱ|β)

=

Pr′(α,β)
Pr′(ᾱ,β)

Pr(α,β)
Pr(ᾱ,β)

=

∑
ω|=α,β

Pr′(ω)∑
ω|=ᾱ,β

Pr′(ω)∑
ω|=α,β

Pr(ω)∑
ω|=ᾱ,β

Pr(ω)

=

∑
ω|=α,β

Pr′(ω)∑
ω|=α,β

Pr(ω)∑
ω|=ᾱ,β

Pr′(ω)∑
ω|=ᾱ,β

Pr(ω)

.

We can now obtain the upper bound on the odds ratio:

O′(α | β)

O(α | β)
≤

maxω|=α,β
Pr′(ω)
Pr(ω)

minω|=ᾱ,β
Pr′(ω)
Pr(ω)

≤
maxω

Pr′(ω)
Pr(ω)

minω
Pr′(ω)
Pr(ω)

= eD(Pr,Pr′).

156

Similarly, we can also obtain the lower bound on the odds ratio:

O′(α | β)

O(α | β)
≥

minω|=α,β
Pr′(ω)
Pr(ω)

maxω|=ᾱ,β
Pr′(ω)
Pr(ω)

≥
minω

Pr′(ω)
Pr(ω)

maxω
Pr′(ω)
Pr(ω)

= e−D(Pr,Pr′).

Therefore, we have e−D(Pr,Pr′) ≤ O′(α | β)/O(α | β) ≤ eD(Pr,Pr′). If both O′(α |
β) and O(α | β) take on either 0 or ∞, the theorem still holds because 0/0

def
= 1

and ∞/∞ def
= 1. Finally, to prove the tightness of the bound, we note that for

every pair of distributions Pr and Pr′, there are events α = ωi and β = ωi ∨ ωj,

where ωi = arg maxω (Pr′(ω)/Pr(ω)) and ωj = arg minω (Pr′(ω)/Pr(ω)), such

that:

O′(α | β)

O(α | β)
=

∑
ω|=α,β

Pr′(ω)∑
ω|=α,β

Pr(ω)∑
ω|=ᾱ,β

Pr′(ω)∑
ω|=ᾱ,β

Pr(ω)

=

Pr′(ωi)
Pr(ωi)

Pr′(ωj)

Pr(ωj)

=
maxω

Pr′(ω)
Pr(ω)

minω
Pr′(ω)
Pr(ω)

= eD(Pr,Pr′).

Similarly, we can get O′(ᾱ | β)/O(ᾱ | β) = e−D(Pr,Pr′).

Proof of Theorem 4.3 To obtain the largest probability change for the con-

ditional event α | β given some KL-divergence, the new probability distribution

Pr′ needs to satisfy the following three properties:

• For all ω |= α, β, Pr′(ω) = Pr(ω)(Pr′(α | β)/Pr(α | β));

157

• For all ω |= ᾱ, β, Pr′(ω) = Pr(ω)(Pr′(ᾱ | β)/Pr(ᾱ | β));

• For all ω |= β̄, Pr′(ω) = Pr(ω), i.e., Pr′(β̄) = Pr(β̄).

Under these three conditions, we have the following equality:

KL(Pr, Pr′) = −Pr(α, β) ln
Pr′(α, β)

Pr(α, β)
− Pr(ᾱ, β) ln

Pr′(ᾱ, β)

Pr(ᾱ, β)

= −Pr(β)

(
Pr(α | β) ln

Pr′(α | β)

Pr(α | β)
+ Pr(ᾱ | β) ln

Pr′(ᾱ | β)

Pr(ᾱ | β)

)
.

Since this is the case where we get the largest probability change, the following

inequality must be satisfied:

KL(Pr, Pr′)

≥ −Pr(β)

(
Pr(α | β) ln

Pr′(α | β)

Pr(α | β)
+ (1− Pr(α | β)) ln

1− Pr′(α | β)

1− Pr(α | β)

)
.

We can now substitute in Pr′(α | β) = O′(α | β)/(O′(α | β)+1) and Pr(α | β) =

O(α | β)/(O(α | β) + 1), and after simplifying, we get:

KL(Pr, Pr′) ≥ Pr(β)

(
ln

O′(α | β) + 1

O(α | β) + 1
− O(α | β)

O(α | β) + 1
ln

O′(α | β)

O(α | β)

)
.

Proof of Theorem 4.4 To prove this theorem, we first establish the following

two lemmas.

Lemma A.1 Given two distributions Pr and Pr′, and a set of worlds S>, where

∀ω∈S>Pr′(ω) > Pr(ω), let r> = maxω∈S> (Pr′(ω)/Pr(ω)). We have the following

inequality:

∑

ω∈S>

−Pr(ω) ln
Pr′(ω)

Pr(ω)
≤ −Pr′(S>)− Pr(S>)

r> − 1
ln r>. (A.1)

158

Lemma A.2 Given two distributions Pr and Pr′, and a set of worlds S<, where

∀ω∈S<Pr′(ω) < Pr(ω), let r< = minω∈S< (Pr′(ω)/Pr(ω)). We have the following

inequality:

∑

ω∈S<

−Pr(ω) ln
Pr′(ω)

Pr(ω)
≤ −Pr′(S<)− Pr(S<)

r< − 1
ln r<. (A.2)

Proofs of Lemmas A.1 and A.2 We use induction to prove Lemma A.1.

Let S> = {ω}, where Pr′(ω) > Pr(ω), and r> = Pr′(ω)/Pr(ω). We have:

−Pr(ω) ln
Pr′(ω)

Pr(ω)
= −(r> − 1) Pr(ω)

r> − 1
ln r>

= −Pr′(ω)− Pr(ω)

r> − 1
ln r>.

Therefore, Inequality A.1 is true for S> = {ω}. Assume that we are now given

mutually exclusive sets S>
1 , . . . , S>

n , where for all i, ∀ω∈S>
i
Pr′(ω) > Pr(ω), and

Inequality A.1 is true, i.e., if r>
i = maxω∈S>

i
(Pr′(ω)/Pr(ω)), we have:

∑

ω∈S>
i

−Pr(ω) ln
Pr′(ω)

Pr(ω)
≤ −Pr′(S>

i)− Pr(S>
i)

r>
i − 1

ln r>
i .

We want to prove that Inequality A.1 is also true for S> =
⋃n

i=1 S>
i . Let r> =

maxω∈S> (Pr′(ω)/Pr(ω)). For all i, Pr′(S>
i)−Pr(S>

i) > 0, and also r> ≥ r>
i > 1,

which gives us:

− ln r>

r> − 1
≥ − ln r>

i

r>
i − 1

.

Therefore, we have:

∑

ω∈S>

−Pr(ω) ln
Pr′(ω)

Pr(ω)
=

n∑

i=1

∑

ω∈S>
i

−Pr(ω) ln
Pr′(ω)

Pr(ω)

≤
n∑

i=1

−Pr′(S>
i)− Pr(S>

i)

r>
i − 1

ln r>
i

≤
n∑

i=1

−Pr′(S>
i)− Pr(S>

i)

r> − 1
ln r>

= −Pr′(S>)− Pr(S>)

r> − 1
ln r>,

159

which proves that Inequality A.1 is also true for S> =
⋃n

i=1 S>
i . Therefore,

Lemma A.1 is true by induction. Lemma A.2 can be proved similarly.

We now proceed with the proof of Theorem 4.4. Given distributions Pr and

Pr′, we partition all worlds into three subsets:

• S>, where ∀ω∈S>Pr′(ω) > Pr(ω);

• S<, where ∀ω∈S<Pr′(ω) < Pr(ω);

• S=, where ∀ω∈S=Pr′(ω) = Pr(ω).

It is obvious that we must have Pr′(S<) − Pr(S<) = −(Pr′(S>) − Pr(S>)). If

we are given r> = maxω (Pr′(ω)/Pr(ω)) and r< = minω (Pr′(ω)/Pr(ω)), from

Lemmas A.1 and A.2, the KL-divergence between Pr and Pr′ is bounded by:

KL(Pr, Pr′)

=
∑
ω

−Pr(ω) ln
Pr′(ω)

Pr(ω)

=
∑

ω∈S>

−Pr(ω) ln
Pr′(ω)

Pr(ω)
+

∑

ω∈S<

−Pr(ω) ln
Pr′(ω)

Pr(ω)
+

∑

ω∈S=

−Pr(ω) ln
Pr′(ω)

Pr(ω)

≤ −Pr′(S>)− Pr(S>)

r> − 1
ln r> − Pr′(S<)− Pr(S<)

r< − 1
ln r<

= (Pr′(S>)− Pr(S>))

(
− ln r>

r> − 1
+

ln r<

r< − 1

)
.

We first maximize Pr′(S>)−Pr(S>) with respect to r> and r<. The constraints

we have are: Pr′(S>)/Pr(S>) ≤ r>, Pr′(S<)/Pr(S<) ≥ r<, and Pr(S>) +

Pr(S<) = Pr′(S>) + Pr′(S<) ≤ 1. The solution we get is:

Pr′(S>)− Pr(S>) ≤ −(r> − 1) (r< − 1)

r> − r<
.

Therefore, we have:

KL(Pr, Pr′) ≤
(
−(r> − 1) (r< − 1)

r> − r<

) (
− ln r>

r> − 1
+

ln r<

r< − 1

)

=
(r< − 1) ln r> − (r> − 1) ln r<

r> − r<
.

160

We now maximize this term with respect to d = D(Pr, Pr′) = ln r>− ln r<. The

maximum value is attained at r> = edd/(ed− 1) and r< = d/(ed− 1). Therefore,

the KL-divergence is bounded by:

KL(Pr, Pr′) ≤
(

d
ed−1

− 1
)

ln edd
ed−1

−
(

edd
ed−1

− 1
)

ln d
ed−1

edd
ed−1

− d
ed−1

=

(
d−

(
ed − 1

)) (
d + ln d

ed−1

)
−

(
edd−

(
ed − 1

))
ln d

ed−1

(ed − 1) d

=

(
d−

(
ed − 1

))
d−

(
ed − 1

)
d ln d

ed−1

(ed − 1) d

=
d

ed − 1
− 1− ln

d

ed − 1
.

Proof of Theorem 4.5 If γ1, . . . , γn is a set of mutually exclusive and exhaus-

tive events, we have:

∑

i

Pr(γi) ln BPr′,P r(α : γi) =
∑

i

Pr(γi) ln

Pr′(α)
Pr(α)

Pr′(γi)
Pr(γi)

=
∑

i

Pr(γi) ln
Pr′(α)

Pr(α)
−∑

i

Pr(γi) ln
Pr′(γi)

Pr(γi)

= ln
Pr′(α)

Pr(α)

∑

i

Pr(γi)−
∑

i

Pr(γi) ln
Pr′(γi)

Pr(γi)

= ln
Pr′(α)

Pr(α)
−∑

i

Pr(γi) ln
Pr′(γi)

Pr(γi)
.

We also note the following inequality about KL-divergence:

KL(Pr, Pr′) =
∑
ω

−Pr(ω) ln
Pr′(ω)

Pr(ω)

≥ ∑

i

−Pr(γi) ln
Pr′(γi)

Pr(γi)

≥ 0.

Therefore, we have:

ln
Pr′(α)

Pr(α)
≤ ∑

i

Pr(γi) ln BPr′,P r(α : γi) ≤ ln
Pr′(α)

Pr(α)
+ KL(Pr, Pr′),

161

or:

0 ≤ ∑

i

Pr(γi) ln BPr′,P r(α : γi)− ln
Pr′(α)

Pr(α)
≤ KL(Pr, Pr′).

If instead of an arbitrary partition γ1, . . . , γn, we are given the set of worlds ω,

we get the following equality relation:

∑
ω

Pr(ω) ln BPr′,P r(α : ω)− ln
Pr′(α)

Pr(α)
= KL(Pr, Pr′).

Proof of Theorem 4.6 To prove this theorem, we first establish the following

lemma.

Lemma A.3 Assume that we change parameter θx|u to θ′x|u for every value x,

and Pr(u) > 0. For every x where θ′x|u > 0 or θx|u > 0, there must exist some

ω |= x,u such that it satisfies the condition Pr′(ω)/Pr(ω) = θ′x|u/θx|u. For all

other worlds ω that do not satisfy this condition, we must have Pr′(ω) = Pr(ω),

and thus Pr′(ω)/Pr(ω) = 1.3

Proof of Lemma A.3 We first note that Pr′(u) = Pr(u) > 0. For any

world ω, either ω |= ū, or ω |= x,u for some x. We now consider the different

cases of ω.

• If ω |= ū, we must have Pr′(ω) = Pr(ω), since we are only changing

parameters θx|u.

• If ω |= x,u, we consider four cases of x:

– If θ′x|u = θx|u = 0, we must have Pr′(x,u) = Pr(x,u) = 0. Therefore,

for all worlds ω |= x,u, Pr′(ω) = Pr(ω) = 0.

3Either Pr′(ω) = Pr(ω) > 0, and thus Pr′(ω)/Pr(ω) = 1, or Pr′(ω) = Pr(ω) = 0, and
thus Pr′(ω)/Pr(ω) def= 1.

162

– If θ′x|u = 0 and θx|u > 0, we must have Pr′(x,u) = 0 and Pr(x,u) > 0.

Therefore, for all worlds ω |= x,u, either Pr′(ω) = Pr(ω) = 0; or

Pr′(ω) = 0 and Pr(ω) > 0, giving us Pr′(ω)/Pr(ω) = 0 = θ′x|u/θx|u.

Moreover, because Pr(x,u) > 0, there must exist some ω |= x,u such

that Pr(ω) > 0, and thus satisfying the condition Pr′(ω)/Pr(ω) =

θ′x|u/θx|u.

– If θ′x|u > 0 and θx|u = 0, we must have Pr′(x,u) > 0 and Pr(x,u) = 0.

Therefore, for all worlds ω |= x,u, either Pr′(ω) = Pr(ω) = 0; or

Pr′(ω) > 0 and Pr(ω) = 0, giving us Pr′(ω)/Pr(ω) = ∞ = θ′x|u/θx|u.

Moreover, because Pr′(x,u) > 0, there must exist some ω |= x,u such

that Pr′(ω) > 0, and thus satisfying the condition Pr′(ω)/Pr(ω) =

θ′x|u/θx|u.

– If θ′x|u > 0 and θx|u > 0, we must have Pr′(x,u) > 0 and Pr(x,u) > 0.

Therefore, for all worlds ω |= x,u, either Pr′(ω) = Pr(ω) = 0; or

Pr′(ω) > 0 and Pr(ω) > 0, giving us Pr′(ω)/Pr(ω) = θ′x|u/θx|u.

Moreover, because Pr′(x,u) > 0 and Pr(x,u) > 0, there must ex-

ist some ω |= x,u such that Pr′(ω) > 0 and Pr(ω) > 0, and thus

satisfying the condition Pr′(ω)/Pr(ω) = θ′x|u/θx|u.

Therefore Lemma A.3 is correct.

From Lemma A.3, we can prove that maxω (Pr′(ω)/Pr(ω)) = maxx (θ′x|u/θx|u)

and minω (Pr′(ω)/Pr(ω)) = minx (θ′x|u/θx|u). Therefore, we have D(Pr, Pr′) =

D(ΘX,u, Θ′
X,u).

Proof of Theorem 4.7 Let Θ′
X|u be the distribution generated by the propor-

tional scheme defined in Definition 2.1, which sets θ′x∗|u = (1 − θ′x|u)(θx∗|u/(1 −
θx|u)) for all x∗ 6= x, and Θ′′

X|u be an arbitrary distribution with θ′′x|u = θ′x|u. We

163

want to prove that D(ΘX|u, Θ′′
X|u) ≥ D(ΘX|u, Θ′

X|u), by considering the following

cases:

• If θx|u = 1 and θ′′x|u = θ′x|u < 1, we must have D(ΘX|u, Θ′′
X|u) = ∞ ≥

D(ΘX|u, Θ′′
X|u).

• If θx|u = 0 and θ′′x|u = θ′x|u > 0, we must have D(ΘX|u, Θ′′
X|u) = ∞ ≥

D(ΘX|u, Θ′
X|u).

• If θx|u 6= 0 and θx|u 6= 1, we first consider the case where θ′′x|u = θ′x|u > θx|u.

If distributions ΘX|u and Θ′′
X|u do not have the same support, we have

D(ΘX|u, Θ′′
X|u) = ∞ ≥ D(ΘX|u, Θ′

X|u). Otherwise, we have the following

inequality:

D(ΘX|u, Θ′′
X|u) ≥ ln

θ′′x|u
θx|u

− ln min
x∗ 6=x

θ′′x|u
θx|u

≥ ln
θ′′x|u
θx|u

− ln

∑
x∗ 6=x θ′′x∗|u∑
x∗ 6=x θx∗|u

= ln
θ′′x|u
θx|u

− ln
1− θ′′x|u
1− θx|u

= ln
θ′x|u
θx|u

− ln
1− θ′x|u
1− θx|u

= D(ΘX|u, Θ′
X|u).

We can prove D(ΘX|u, Θ′′
X|u) ≥ D(ΘX|u, Θ′

X|u) for the case of θ′′x|u = θ′x|u <

θx|u similarly.

Therefore, the proportional scheme defined in Definition 2.1 gives us the small-

est distance measure, which is equal to:

D(ΘX|u, Θ′
X|u) =

∣∣∣∣∣ln
θ′x|u
θx|u

− ln
1− θ′x|u
1− θx|u

∣∣∣∣∣

=

∣∣∣∣∣∣
ln

θ′x|u
1− θ′x|u

− ln
θx|u

1− θx|u

∣∣∣∣∣∣
.

164

A.4 Proofs of Theorems in Chapter 6

Proof of Theorem 6.1 From Equation 6.2, we have ln O′(c | e) = ln O(c |
e) + ∆ ln O(c), where ∆ ln O(c) = ln O′(c) − ln O(c). We investigate both cases

of ∆ ln O(c) being negative and positive:

• If ∆ ln O(c) < 0, for every e such that F σ
B (e) = 0, we must have F σ

B′(e) = 0.

On the other hand, for every e such that F σ
B (e) = 1, we still have F σ

B′(e) = 1

iff ln O(c | e) ≥ σ−∆ ln O(c). Therefore, the classifiers F σ
B and F σ

B′ are the

same iff σ1 = mine:F σ
B (e)=1 ln O(c | e) ≥ σ −∆ ln O(c).

• If ∆ ln O(c) > 0, for every e such that F σ
B (e) = 1, we must have F σ

B′(e) = 1.

On the other hand, for every e such that F σ
B (e) = 0, we still have F σ

B′(e) = 0

iff ln O(c | e) < σ−∆ ln O(c). Therefore, the classifiers F σ
B and F σ

B′ are the

same iff σ0 = maxe:F σ
B (e)=0 ln O(c | e) < σ −∆ ln O(c).

Therefore, the classifiers F σ
B and F σ

B′ are the same iff ∆ ln O(c) ∈ [σ− σ1, σ−
σ0), which is equivalent to ln O′(c) ∈ I(F σ

B) = [ln O(c)+σ−σ1, ln O(c)+σ−σ0).

Proof of Theorem 6.2 When we change the prior log-odds of a naive Bayes

network, we induce a different classifier only when ln O(c | e) for some instance

e passes σ, thereby changing the classification of e from 0 to 1 or from 1 to

0. Therefore, the number of distinct classifiers (including the current classifier)

that can be induced by changing the prior log-odds is at most ‖E‖ + 1, and is

exactly ‖E‖+ 1 if there does not exist two different instances e and e∗ such that

ln O(c | e) = ln O(c | e∗).

Proof of Theorem 6.3 The proof is similar to that of Theorem 6.1. From

Equation 6.2, we have ln O′(c | e) = ln O(c | e) + ∆W (ei, c) if ei ∈ e, where

165

∆W (ei, c) = W (ei, c)−W (ei, c). If ∆W (ei, c) < 0, the classifiers F σ
B and F σ

B′ are

the same iff σ1
ei

= mine:ei∈e,F σ
B (e)=1 ln O(c | e) ≥ σ −∆W (ei, c). If ∆W (ei, c) > 0,

the classifiers F σ
B and F σ

B′ are the same iff σ0
ei

= maxe:ei∈e,F σ
B (e)=0 ln O(c | e) <

σ−∆W (ei, c). Therefore, the classifiers F σ
B and F σ

B′ are the same iff for every ei,

∆W (ei, c) ∈ [σ − σ1
ei
, σ − σ0

ei
), which is equivalent to W (ei, c) ∈ [W (ei, c) + σ −

σ1
ei
, W (ei, c) + σ − σ0

ei
).

Proof of Theorem 6.4 The number of distinct classifiers (including the cur-

rent classifier) that can be induced by changing all weights of evidence of attribute

Ei appears to be (‖E − Ei‖ + 1)‖Ei‖ at first glance, since from Theorem 6.2, we

know that ‖E−Ei‖+ 1 distinct classifiers can be induced by changing the prior

log-odds of the new network Bei
, which is obtained by removing attribute Ei from

B, and for every value ei of Ei, the classifier F σ
Bei

can be equivalent to any of these

distinct classifiers if its prior log-odds ln O(c | ei) can take on any value. However,

this is true only if we can also change ln O(c). This is not true if ln O(c) cannot be

changed because of the restriction that among all weights of evidence W (ei, c), at

least one must be positive and at least one must be negative (unless all are zero),

due to the fact that when going from one probability distribution to another,

at least one probability must increase and at least one must decrease (unless

all probabilities are the same). To find the actual maximum number of distinct

classifiers, we have to solve the following analogous problem with a = ‖E − Ei‖
and b = ‖Ei‖: given S = {0, 1, . . . , a}, and k ∈ S, what is the number of per-

mutations of (k1, . . . , kb) ∈ Sb, if (
∨b

i=1 ki ≥ k) ∧ (
∨b

i=1 ki ≤ k)? The answer is

(a + 1)b − kb − (a − k)b, and its maximum value is (a + 1)b − ba/2cb − da/2eb,
attained when k = ba/2c.

166

Proof of Theorem 6.5 Given instantiations χ and χ∗ of attributes E1, . . . , Ek,

the following statements are equivalent:

1. Classifiers F σ
Bχ

and F σ
Bχ∗ are the same;

2. ln O(c | χ∗) ∈ I(F σ
Bχ

);

3. For every value ek+1 of Ek+1, the classifiers F σ
Bχ,ek+1

and F σ
Bχ∗,ek+1

are the

same;

4. For every value ek+1 of Ek+1, ln O(c | χ∗, ek+1) ∈ I(F σ
Bχ,ek+1

).

Moreover, from Equation 6.1, we have ln O(c | χ∗, ek+1) = ln O(c | χ∗) +

W (ek+1, c). Therefore, the equivalence interval I(F σ
Bχ

) can be computed if we

know the equivalence interval I(F σ
Bχ,ek+1

) for every value ek+1 of Ek+1, by finding

the values of ln O(c | χ∗) such that ln O(c | χ∗, ek+1) ∈ I(F σ
Bχ,ek+1

) for every ek+1,

and we have:

I(F σ
Bχ

) =
⋂

ek+1

{
x : x + W (ek+1, c) ∈ I(F σ

Bχ,ek+1
)
}
.

Proof of Theorem 6.6 Because a node in the k-th cache is reached by some

path e1, . . . , ek, the number of nodes in the k-th cache can be no more than

‖E1, . . . , Ek‖. We also know that a node in the k-th cache is the root of a sub-

ODD that represents a naive Bayes classifier with attributes Ek+1, . . . , En. Theo-

rem 6.2 shows that at most ‖Ek+1, . . . , En‖+1 distinct classifiers can be induced

by changing the prior log-odds, and this number also bounds the number of nodes

in the k-th cache, since Algorithm 6.2 does not create duplicate nodes correspond-

ing to isomorphic sub-ODDs. Therefore, the number of nodes in the k-th cache is

at most min{‖E1, . . . , Ek‖, ‖Ek+1, . . . , En‖+ 1}. This proves that the number of

nodes in the ODD is at most
∑n

k=0 min{‖E1, . . . , Ek‖, ‖Ek+1, . . . , En‖+ 1}, since

167

there are n + 1 caches, with k = 0, . . . , n. We can also easily see that if all

attributes have at most b values, the space complexity is O(bn/2). Moreover, be-

cause the nodes in each cache are indexed by their equivalence intervals, we can

find and store the nodes in each cache using binary search. Therefore, the time

complexity of Algorithm 6.1 is O(nbn/2).

A.5 Proofs of Theorems in Chapter 7

Proof of Theorem 7.1 Given instantiation c such that c ∼ x, the potential

of x is linear in the parameter θc, and the ratio of ψ′(x) and ψ(x) induced by M
and M′ respectively is:

ψ′(x)

ψ(x)
=

θ′c
θc

,

if ∂ψ(x)/∂θc 6= 0. We have:

Pr′(x)

Pr(x)
=

ζ ′ψ′(x)

ζψ(x)
=

ζ ′θ′c
ζθc

.

Note that because the clique parameters have changed, the normalizing constants

ζ and ζ ′ for networks M and M′ respectively are different. Therefore, the dis-

tance measure between Pr and Pr′ is given by:

D(Pr, Pr′) = ln max
x

Pr′(x)

Pr(x)
− ln min

x

Pr′(x)

Pr(x)

= ln max
c

ζ ′θ′c
ζθc

− ln min
c

ζ ′θ′c
ζθc

= ln max
c

θ′c
θc

− ln min
c

θ′c
θc

= D(ΘC, Θ′
C),

if ∂ψ(x)/∂θc 6= 0 for all c ∼ x.

168

A.6 Proofs of Theorems in Chapter 8

Proof of Theorem 8.1 Given the distribution Pr′ in Equation 8.3, because

events γ1, . . . , γn are mutually exclusive, we have:

Pr′(γi) = ρi
Pr(γi)

Pr(γi)

= ρi for i = 1, . . . , n.

satisfying Equation 8.2, and:

Pr′(α, γi) = ρi
Pr(α, γi)

Pr(γi)
for i = 1, . . . , n.

Therefore, Pr′ is obtained from Pr by probability kinematics on γ1, . . . , γn, i.e.,

it satisfies Equation 8.1, since:

Pr′(α | γi) =
Pr′(α, γi)

Pr′(γi)

=
ρi

Pr(α,γi)
Pr(γi)

ρi

=
Pr(α, γi)

Pr(γi)

= Pr(α | γi) for i = 1, . . . , n.

On the other hand, if there is a distribution Pr′ that satisfies both Equations 8.1

and 8.2, the probability of event α under Pr′ must be:

Pr′(α) =
n∑

i=1

Pr′(α | γi)Pr′(γi)

=
n∑

i=1

Pr(α | γi)ρi

=
n∑

i=1

ρi
Pr(α, γi)

Pr(γi)
.

Proof of Theorem 8.2 We want to prove that the distribution given by Equa-

tion 8.6 is the unique distribution Pr(· | η) identified by the virtual evidence

169

method in Definition 8.3. First of all, if there is a distribution Pr(· | η) that

satisfies both Equations 8.4 and 8.5, we have Pr(η | γi) = kλi for i = 1, . . . , n,

where k is a constant, and the probability of event α under distribution Pr(· | η)

must be:

Pr(α | η) =
Pr(α, η)

Pr(η)

=

∑n
i=1 Pr(α, η, γi)

Pr(η)

=

∑n
i=1 Pr(η | γi, α)Pr(α, γi)∑n

j=1 Pr(η | γj)Pr(γj)

=

∑n
i=1 Pr(η | γi)Pr(α, γi)∑n
j=1 Pr(η | γj)Pr(γj)

=

∑n
i=1 kλiPr(α, γi)∑n
j=1 kλjPr(γj)

=

∑n
i=1 λiPr(α, γi)∑n
j=1 λjPr(γj)

.

On the other hand, given a distribution that satisfies Equation 8.6, because events

γ1, . . . , γn are mutually exclusive, we have:

Pr(η | γ1) : . . . : Pr(η | γn) =
Pr(η, γ1)

Pr(γ1)
: . . . :

Pr(η, γn)

Pr(γn)

=
Pr(γ1 | η)Pr(η)

Pr(γ1)
: . . . :

Pr(γn | η)Pr(η)

Pr(γn)

=

λ1Pr(γ1)∑n

j=1
λjPr(γj)

Pr(η)

Pr(γ1)
: . . . :

λnPr(γn)∑n

j=1
λjPr(γj)

Pr(η)

Pr(γn)

= λ1 : . . . : λn,

satisfying Equation 8.4. Therefore, λi = kPr(η | γi) for i = 1, . . . , n, where k is

a constant, and Equation 8.5 is also satisfied because:

Pr(η | γi, α) =
Pr(η, γi, α)

Pr(γi, α)

=
Pr(γi, α | η)Pr(η)

Pr(γi, α)

170

=

λiPr(γi,α)∑n

j=1
λjPr(γj)

Pr(η)

Pr(γi, α)

=
λiPr(η)∑n

j=1 λjPr(γj)

=
kPr(η | γi)Pr(η)∑n

j=1 kPr(η | γj)Pr(γj)

=
Pr(η | γi)Pr(η)∑n

j=1 Pr(η | γj)Pr(γj)

=
Pr(η | γi)Pr(η)

Pr(η)

= Pr(η | γi) for i = 1, . . . , n.

Proof of Theorem 8.3 Given the distribution Pr(· | η) in Equation 8.6,

because events γ1, . . . , γn are mutually exclusive, we have:

Pr(γi | η) =
λiPr(γi)∑n

j=1 λjPr(γj)
for i = 1, . . . , n.

and:

Pr(α, γi | η) =
λiPr(α, γi)∑n
j=1 λjPr(γj)

for i = 1, . . . , n.

Therefore, Pr(· | η) is obtained from Pr by probability kinematics on γ1, . . . , γn,

i.e., it satisfies Equation 8.1, since:

Pr(α | γi, η) =
Pr(α, γi | η)

Pr(γi | η)

=

λiPr(α,γi)∑n

j=1
λjPr(γj)

λiPr(γi)∑n

j=1
λjPr(γj)

=
Pr(α, γi)

Pr(γi)

= Pr(α | γi) for i = 1, . . . , n.

Proof of Theorem 8.4 From Equations 8.6 and 8.7, we have:

Pr′(γi) = ρi =
λiPr(γi)∑n

j=1 λjPr(γj)
for i = 1, . . . , n.

171

We can substitute the set of posterior probabilities into the distribution obtained

by Jeffrey’s rule, given by Equation 8.3, and get:

Pr′(α) =
n∑

i=1

ρi
Pr(α, γi)

Pr(γi)

=
n∑

i=1

λiPr(γi)∑n
j=1 λjPr(γj)

· Pr(α, γi)

Pr(γi)

=

∑n
i=1 λiPr(α, γi)∑n
j=1 λjPr(γj)

.

This is exactly the distribution obtained by the virtual evidence method, given

by Equation 8.6, with likelihood ratios λ1, . . . , λn.

Proof of Theorem 8.5 From Equation 8.8, we have:

λi =
kρi

Pr(γi)
for i = 1, . . . , n,

where k is a constant. We can substitute the likelihood ratios λ1, . . . , λn into the

distribution obtained by Pearl’s method, given by Equation 8.6, and get:

Pr(α | η) =

∑n
i=1 λiPr(α, γi)∑n
j=1 λjPr(γj)

.

=

∑n
i=1

kρi

Pr(γi)
Pr(α, γi)

∑n
j=1

kρj

Pr(γj)
Pr(γj)

.

=

∑n
i=1

ρi

Pr(γi)
Pr(α, γi)

∑n
j=1 ρj

=
n∑

i=1

ρi
Pr(α, γi)

Pr(γi)
,

since
∑n

j=1 ρj =
∑n

j=1 Pr′(γj) = 1. This is exactly the distribution obtained

by Jeffrey’s rule, given by Equation 8.3, with the set of posterior probabilities

Pr′(γi) = ρi for i = 1, . . . , n.

Proof of Theorem 8.6 From Equation 8.6, we have:

Pr(γi | η)

Pr(γi)
=

λiPr(γi)∑n

k=1
λkPr(γk)

Pr(γi)

172

=
λi∑n

k=1 λkPr(γk)
for i = 1, . . . , n.

Therefore, we have:

BPr(·|η),P r(γi : γj) =

Pr(γi|η)
Pr(γj |η)

Pr(γi)
Pr(γj)

=

Pr(γi|η)
Pr(γi)

Pr(γj |η)

Pr(γj)

=

λi∑n

k=1
λkPr(γk)

λj∑n

k=1
λkPr(γk)

=
λi

λj

for i, j = 1, . . . , n.

Proof of Theorem 8.7 If the two sets of probabilities Pr(γ1), . . . , P r(γn)

and Pr′(γ1), . . . , P r′(γn) do not have the same support, there must exist some

world ω where Pr(ω) = 0 and Pr′(ω) 6= 0 or Pr(ω) 6= 0 and Pr′(ω) = 0, and

thus the distributions Pr and Pr′ also do not have the same support, giving

us D(Pr, Pr′) = ∞ = ln maxn
i=1 (Pr′(γi)/Pr(γi)) − ln minn

i=1 (Pr′(γi)/Pr(γi)).

Otherwise, given a world ω where ω |= γi, from Equation 8.1, we have:

Pr′(ω)

Pr(ω)
=

Pr′(ω | γi)Pr′(γi)

Pr(ω | γi)Pr(γi)

=
Pr′(γi)

Pr(γi)
.

Therefore, the distance measure between Pr and Pr′ can be computed by:

D(Pr, Pr′) = ln max
ω

Pr′(ω)

Pr(ω)
− ln min

ω

Pr′(ω)

Pr(ω)

= ln
n

max
i=1

Pr′(γi)

Pr(γi)
− ln

n
min
i=1

Pr′(γi)

Pr(γi)
.

Proof of Theorem 8.8 Let Pr′′ be any distribution such that Pr′′(γi) =

Pr′(γi) for i = 1, . . . , n. We would like to prove that D(Pr, Pr′′) ≥ D(Pr, Pr′),

173

where Pr′ is obtained from Pr by probability kinematics on γ1, . . . , γn. If distri-

butions Pr and Pr′′ do not have the same support, we have D(Pr, Pr′′) = ∞ ≥
D(Pr, Pr′). Otherwise, we can write the following inequalities:

Pr(γi) max
ω

Pr′′(ω)

Pr(ω)
=

∑

ω|=γi

Pr(ω) max
ω

Pr′′(ω)

Pr(ω)

≥ ∑

ω|=γi

Pr(ω)
Pr′′(ω)

Pr(ω)
for i = 1, . . . , n;

Pr(γi) min
ω

Pr′′(ω)

Pr(ω)
=

∑

ω|=γi

Pr(ω) min
ω

Pr′′(ω)

Pr(ω)

≤ ∑

ω|=γi

Pr(ω)
Pr′′(ω)

Pr(ω)
for i = 1, . . . , n.

Since
∑

ω|=γi
Pr(ω)(Pr′′(ω)/Pr(ω)) =

∑
ω|=γi

Pr′′(ω) = Pr′′(γi) = Pr′(γi) for

i = 1, . . . , n, this gives us:

min
ω

Pr′′(ω)

Pr(ω)
≤ Pr′(γi)

Pr(γi)
≤ max

ω

Pr′′(ω)

Pr(ω)
for i = 1, . . . , n.

Therefore, the distance measure between Pr and Pr′′ is bounded by:

D(Pr, Pr′′) = ln max
ω

Pr′′(ω)

Pr(ω)
− ln min

ω

Pr′′(ω)

Pr(ω)

≥ ln
n

max
i=1

Pr′(γi)

Pr(γi)
− ln

n
min
i=1

Pr′(γi)

Pr(γi)

= D(Pr, Pr′).

Therefore, the distribution Pr′ gives us the smallest distance among all possible

distributions that agree with Pr′ on the probabilities of events γ1, . . . , γn.

174

References

[ACC] David Allen, Keith Cascio, Hei Chan, Mark Chavira, James D. Park,
and Adnan Darwiche. “SamIam: Sensitivity Analysis, Modeling, In-
ference and More.” URL: http://reasoning.cs.ucla.edu/samiam/.

[Bry86] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function
Manipulation.” IEEE Transactions on Computers, 35:677–691, 1986.

[CD01] Hei Chan and Adnan Darwiche. “When Do Numbers Really Matter?”
In Proceedings of the Seventeenth Conference on Uncertainty in Ar-
tificial Intelligence (UAI), pp. 65–74. Morgan Kaufmann Publishers,
2001.

[CD02a] Hei Chan and Adnan Darwiche. “A Distance Measure for Bounding
Probabilistic Belief Change.” In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI), pp. 539–545. AAAI Press,
2002.

[CD02b] Hei Chan and Adnan Darwiche. “When Do Numbers Really Matter?”
Journal of Artificial Intelligence Research, 17:265–287, 2002.

[CD03a] Hei Chan and Adnan Darwiche. “On the Revision of Probabilistic
Beliefs Using Uncertain Evidence.” In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI), pp.
99–105. Morgan Kaufmann Publishers, 2003.

[CD03b] Hei Chan and Adnan Darwiche. “Reasoning About Bayesian Network
Classifiers.” In Proceedings of the Nineteenth Conference on Uncer-
tainty in Artificial Intelligence (UAI), pp. 107–115. Morgan Kaufmann
Publishers, 2003.

[CD04] Hei Chan and Adnan Darwiche. “Sensitivity Analysis in Bayesian Net-
works: From Single to Multiple Parameters.” In Proceedings of the
Twentieth Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 67–75. AUAI Press, 2004.

[CD05a] Hei Chan and Adnan Darwiche. “A Distance Measure for Bounding
Probabilistic Belief Change.” International Journal of Approximate
Reasoning, 38:149–174, 2005.

[CD05b] Hei Chan and Adnan Darwiche. “On the Revision of Probabilistic
Beliefs Using Uncertain Evidence.” Artificial Intelligence, 163:67–90,
2005.

175

[CD05c] Hei Chan and Adnan Darwiche. “Sensitivity Analysis in Markov Net-
works.” In Proceedings of the Nineteenth International Joint Con-
ference on Artificial Intelligence (IJCAI), pp. 1300–1305. Professional
Book Center, 2005.

[CGH97] Enrique Castillo, José Manuel Gutiérrez, and Ali S. Hadi. “Sensitivity
Analysis in Discrete Bayesian Networks.” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part A (Systems and Humans), 27:412–
423, 1997.

[CJK00] Veerle M. H. Coupé, Finn V. Jensen, Uffe Kjærulff, and Linda C. van
der Gaag. “A Computational Architecture for N-way Sensitivity Anal-
ysis of Bayesian Networks.” Technical report, 2000.

[CPO99] Veerle M. H. Coupé, Niels Peek, Jaap Ottenkamp, and J. Dik F.
Habbema. “Using Sensitivity Analysis for Efficient Quantification of a
Belief Network.” Artificial Intelligence in Medicine, 17:223–247, 1999.

[Dar03] Adnan Darwiche. “A Differential Approach to Inference in Bayesian
Networks.” Journal of the ACM, 50:280–305, 2003.

[DH73] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene
Analysis. John Wiley & Sons, New York, 1973.

[DM02] Adnan Darwiche and Pierre Marquis. “A Knowledge Compilation
Map.” Journal of Artificial Intelligence Research, 17:229–264, 2002.

[DP97] Adnan Darwiche and Judea Pearl. “On the Logic of Iterated Belief
Revision.” Artificial Intelligence, 87:1–29, 1997.

[DZ82] Persi Diaconis and Sandy L. Zabell. “Updating Subjective Probability.”
Journal of the American Statistical Association, 77:822–830, 1982.

[FGG97] Nir Friedman, Dan Geiger, and Moises Goldszmidt. “Bayesian Network
Classifiers.” Machine Learning, 29:131–163, 1997.

[G88] Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epis-
temic States. MIT Press, Cambridge, 1988.

[GG84] Stuart Geman and Donald Geman. “Stochastic Relaxation, Gibbs Dis-
tributions, and the Bayesian Restoration of Images.” IEEE Transac-
tions in Pattern Analysis and Machine Intelligence, 6:721–741, 1984.

176

[GGS97] Russell Greiner, Adam J. Grove, and Dale Schuurmans. “Learning
Bayesian Nets That Perform Well.” In Proceedings of the Thirteenth
Conference on Uncertainty in Artificial Intelligence (UAI), pp. 198–
207. Morgan Kaufmann Publishers, 1997.

[Goo50] Irving J. Good. Probability and the Weighing of Evidence. Charles
Griffin, London, 1950.

[Goo83] Irving J. Good. Good Thinking: The Foundations of Probability and
Its Applications. University of Minnesota Press, Minneapolis, 1983.

[GR01] Ashutosh Garg and Dan Roth. “Understanding Probabilistic Classi-
fiers.” In Proceedings of the Twelfth European Conference on Machine
Learning (ECML), pp. 179–191. Springer-Verlag, 2001.

[HBM] S. Hettich, C. L. Blake, and C. J. Merz. “UCI
Repository of Machine Learning Databases.” URL:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

[HP03] Joseph Y. Halpern and Riccardo Pucella. “A Logic for Reasoning
About Evidence.” In Proceedings of the Nineteenth Conference on Un-
certainty in Artificial Intelligence (UAI), pp. 297–304. Morgan Kauf-
mann Publishers, 2003.

[Jef65] Richard C. Jeffrey. The Logic of Decision. McGraw-Hill, New York,
1965. 2nd edition, University of Chicago Press, Chicago, 1983; paper-
back correction, 1990.

[Jef92] Richard C. Jeffrey. Probability and the Art of Judgement. Cambridge
University Press, Cambridge, 1992.

[Jen99] Finn V. Jensen. “Gradient Descent Training of Bayesian Networks.” In
Proceedings of the Fifth European Conference on Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty (ECSQARU), pp.
190–200. Springer-Verlag, 1999.

[Jen01] Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer-
Verlag, New York, 2001.

[JLO90] Finn V. Jensen, Steffen L. Lauritzen, and Kristian G. Olesen.
“Bayesian Updating in Causal Probabilistic Networks by Local Com-
putations.” Computational Statistics Quarterly, 5:269–282, 1990.

177

[Kjae94] Uffe Kjærulff. “Reduction of Computational Complexity in Bayesian
Networks Through Removal of Weak Dependences.” In Proceedings of
the Tenth Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 374–382. Morgan Kaufmann Publishers, 1994.

[KL51] S. Kullback and R. A. Leibler. “On Information and Sufficiency.” An-
nals of Mathematical Statistics, 22:79–86, 1951.

[Kv00] Uffe Kjærulff and Linda C. van der Gaag. “Making Sensitivity Analysis
Computationally Efficient.” In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence (UAI), pp. 317–325. Morgan
Kaufmann Publishers, 2000.

[Las95] Kathryn B. Laskey. “Sensitivity Analysis for Probability Assessments
in Bayesian Networks.” IEEE Transactions on Systems, Man, and
Cybernetics, 25:901–909, 1995.

[LIT92] Pat Langley, Wayne Iba, and Kevin Thompson. “An Analysis of
Bayesian Classifiers.” In Proceedings of the Tenth National Conference
on Artificial Intelligence (AAAI), pp. 223–228. AAAI Press, 1992.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers, San Francisco,
1988.

[Pea01] Judea Pearl. “On Two Pseudo-Paradoxes in Bayesian Analysis.” An-
nals of Mathematics and Artificial Intelligence, 32:171–177, 2001.

[PHP96] Malcolm Pradhan, Max Henrion, Gregory Provan, Brendan Del Favero,
and Kurt Huang. “The Sensitivity of Belief Networks to Imprecise
Probabilities: An Experimental Investigation.” Artificial Intelligence,
85:363–397, 1996.

[Poo98] David Poole. “Context-Specific Approximation in Probabilistic Infer-
ence.” In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 447–454. Morgan Kaufmann Publish-
ers, 1998.

[RBK95] Stuart Russell, John Binder, Daphne Koller, and Keiji Kanazawa. “Lo-
cal Learning in Probabilistic Networks with Hidden Variables.” In
Proceedings of the Fourteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI), pp. 1146–1152. Morgan Kaufmann Pub-
lishers, 1995.

178

[Som] Fabio Somenzi. “CU Decision Diagram Package.” URL:
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.

[SS86] Prakash P. Shenoy and Glenn Shafer. “Propagating Belief Functions
with Local Computations.” IEEE Expert, 1:43–52, 1986.

[van97] Robert A. van Engelen. “Approximating Bayesian Belief Networks by
Arc Removal.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19:916–920, 1997.

[vR01] Linda C. van der Gaag and Silja Renooij. “Analysing Sensitivity Data
from Probabilistic Networks.” In Proceedings of the Seventeenth Con-
ference on Uncertainty in Artificial Intelligence (UAI), pp. 530–537.
Morgan Kaufmann Publishers, 2001.

[Wag02] Carl Wagner. “Probability Kinematics and Commutativity.” Philoso-
phy of Science, 69:266–278, 2002.

[WD00] Haiqin Wang and Marek J. Druzdzel. “User Interface Tools for Naviga-
tion in Conditional Probability Tables and Elicitation of Probabilities
in Bayesian Networks.” In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence (UAI), pp. 617–625. Morgan
Kaufmann Publishers, 2000.

179

