
Solving MAP Exactly by Searching on Compiled Arithmetic Circuits∗

Jinbo Huang
Logic and Computation Program

National ICT Australia
Canberra, ACT 0200 Australia

jinbo.huang@nicta.com.au

Mark Chavira and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095 USA

{chavira, darwiche}@cs.ucla.edu

Abstract

The MAP (maximum a posteriori hypothesis) problem in
Bayesian networks is to find the most likely states of a set
of variables given partial evidence on the complement of that
set. Standard structure-based inference methods for finding
exact solutions to MAP, such as variable elimination and join-
tree algorithms, have complexities that are exponential in the
constrained treewidth of the network. A more recent algo-
rithm, proposed by Park and Darwiche, is exponential only in
the treewidth and has been shown to handle networks whose
constrained treewidth is quite high. In this paper we present a
new algorithm for exact MAP that is not necessarily limited in
scalability even by the treewidth. This is achieved by leverag-
ing recent advances in compilation of Bayesian networks into
arithmetic circuits, which can circumvent treewidth-imposed
limits by exploiting the local structure present in the network.
Specifically, we implement a branch-and-bound search where
the bounds are computed using linear-time operations on the
compiled arithmetic circuit. On networks with local struc-
ture, we observe orders-of-magnitude improvements over the
algorithm of Park and Darwiche. In particular, we are able
to efficiently solve many problems where the latter algorithm
runs out of memory because of high treewidth.

Introduction
The MAP (maximum a posteriori hypothesis) problem in
Bayesian networks is to find the most likely states of a set
of variables (which we call the MAP variables) given par-
tial evidence on the complement of that set. In a diagnostic
setting, for example, one may be interested in knowing the
most likely values of the variables modeling the health of a
system, after observing a certain set of symptoms.

MAP appears to be much more difficult in practice than
other typical tasks in probabilistic inference, such as com-
puting posteriors and MPE (most probable explanation). In
particular, MPE is a special case of MAP where one is in-
terested in finding the most likely states of a set of variables
given full evidence on the complement of that set. MPE is

∗This work has been partially supported by Air Force grant
#FA9550-05-1-0075-P00002 and JPL/NASA grant #1272258. Na-
tional ICT Australia is funded by the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian
Research Council.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

generally easier than MAP for standard structure-based in-
ference methods. In variable elimination (Zhang & Poole
1996; Dechter 1996), for example, one can use any elimina-
tion order to solve the former, but can only choose among or-
ders that put the MAP variables last to solve the latter. Con-
sequently, MPE can be solved in time and space exponen-
tial in the treewidth of the network, while the corresponding
algorithm for MAP requires time and space exponential in
the constrained treewidth, which can be significantly higher.
The same gap exists for other structure-based methods as
well, such as jointree algorithms (Shenoy & Shafer 1986;
Jensen, Lauritzen, & Olesen 1990).

A recent algorithm proposed in (Park & Darwiche 2003)
represents a significant advance of the state of the art in solv-
ing MAP exactly. Instead of directly computing a MAP so-
lution, it runs a depth-first search in the space of all instan-
tiations of the MAP variables to find one with the highest
probability. The key is that the search can be very effec-
tively pruned using upper bounds that can be computed by a
standard jointree algorithm (Shenoy & Shafer 1986), which
is exponential only in the treewidth, not the constrained
treewidth. The overall space requirements are therefore ex-
ponential in the treewidth only, allowing the algorithm to
scale up to problems where standard methods fail because
the constrained treewidth is too high (e.g., over 40).

In this paper we present a new algorithm for solving MAP
exactly that is not necessarily limited in scalability even by
the (unconstrained) treewidth. This is achieved by leverag-
ing the latest advances in compilation of Bayesian networks
into arithmetic circuits (Chavira & Darwiche 2005), which
can circumvent treewidth-imposed limits by exploiting the
local structure present in the network. Specifically, we im-
plement a depth-first search as in (Park & Darwiche 2003),
but compute upper bounds for pruning using linear-time op-
erations on the arithmetic circuit that has been compiled
from the network. The replacement of a jointree by an arith-
metic circuit provides both new opportunities and challenges
with respect to computational efficiency. On the one hand,
many high-treewidth networks for which jointree and other
structure-based inference algorithms are not feasible can be
successfully compiled into arithmetic circuits of tractable
size. On the other hand, one needs a new method for com-
puting upper bounds based on circuits. Moreover, some of
the techniques employed by (Park & Darwiche 2003) for

computing multiple upper bounds simultaneously on join-
trees, in order to enable effective dynamic variable ordering,
fail to carry over to arithmetic circuits, calling for new inno-
vations in this regard. We address all of these issues in this
paper, and provide empirical evidence of our ability to solve
problems beyond the reach of previous methods.

In what follows, we review some background and pre-
vious work on MAP; describe the compilation of Bayesian
networks into arithmetic circuits; present our new algorithm
for finding exact solutions to MAP; present and discuss ex-
perimental results; and finally present our conclusions.

Background and Previous Work
We start with some notation and a formal definition of MAP.
Given a Bayesian network that induces a joint probability
distribution Pr, let the network variables be partitioned into
three sets: E, S, and M (we refer to M as the MAP vari-
ables). Given some evidence e, which is an instantiation of
variables E, the MAP problem MAP(M, e) is to find an in-
stantiation m of variables M that maximizes Pr(m, e) (or
Pr(m|e), equivalently). Note that the S variables here are
those whose values we neither know nor care about.

Let Φ denote the set of CPTs (conditional probability ta-
bles) of the network, and for each CPT φ ∈ Φ, let φe denote
its restriction under evidence e. Pr(m, e) for all m is then
given by the following potential ψ over variables M:

ψ =
∑
S

∏
φ∈Φ

φe. (1)

Hence the probability of a MAP solution is given by:

ψ∗ = max
M

∑
S

∏
φ∈Φ

φe. (2)

Note that when S is empty, we have an MPE problem, as
a special case of MAP, where we only have maximizations;
in the general case, we have both maximizations and sum-
mations, which cannot be swapped or mixed. Consequently,
to solve MPE we can use any elimination order, the ones
with lower widths in particular, but to solve MAP we can
use only those orders that put the MAP variables last. The
complexity of solving MAP by variable elimination is thus
exponential in the constrained treewidth of the network, that
is, the minimum width among all elimination orders satisfy-
ing the constraint that the MAP variables come last.

One way to avoid the complexity of MAP is to use an ap-
proximate algorithm. For example, one can solve the MPE
problem for M ∪ S and project the solution on M, or as-
semble the most likely state of each individual variable in M
into an approximate MAP solution. Other methods include
a genetic algorithm (de Campos, Gámez, & Moral 1999),
hill climbing and taboo search (Park & Darwiche 2001), and
simulated annealing (Yuan, Lu, & Druzdzel 2004).

For finding exact solutions to MAP, the most recent ad-
vance has been the depth-first branch-and-bound search al-
gorithm of (Park & Darwiche 2003). As discussed ear-
lier, the significance of this algorithm lies in that it ex-
pands the range of MAP problems for which exact solu-
tions can be computed. Specifically, it allows problems to

*

λc1 θc1|a2b2λc2
θc2|a2b2

λc3 θc3|a2b2
θc1|a2b1

θc3|a2b1
θc2|a2b1θc3|a1b2

θc1|a1b2

θc2|a1b2
θc3|a1b1

θc1|a1b1
θc2|a1b1

+λa2θa2+ λa1θa1

λb2θb2 ***λb1θb1 ***

+* +* ++

**

+

A B

C

Compile

Figure 1: A Bayesian network and a corresponding AC.

be solved where the treewidth is manageable but the con-
strained treewidth is too high for structure-based methods.

The key observation underlying this search algorithm is
that if we commute and mix the maximizations and summa-
tions in Equation 2, we will obtain a value that, although not
the exact probability of a MAP solution, cannot be less than
it. Since these values can be computed without any con-
straint on the elimination order, the space complexity of the
algorithm drops down to exponential in the treewidth (we
note that the search itself, being depth-first, uses only linear
space). Moreover, with the help of several optimizations,
these upper bounds have been shown to be very effective
in pruning the search, allowing it to complete in reasonable
time for many otherwise challenging problems.

In the present paper we aim to further expand the range of
MAP problems accessible to exact methods. In particular,
we aim to solve problems whose treewidth is too high for
existing methods including that of (Park & Darwiche 2003),
but which have local structure that allows the networks to be
compiled into an arithmetic circuit of tractable size (Chavira
& Darwiche 2005). We briefly review the compilation pro-
cess next, followed by our proposed new algorithm.

Compiling Networks into Arithmetic Circuits
The notion of using arithmetic circuits (ACs) to perform
probabilistic inference was introduced in (Darwiche 2003).
With each Bayesian network, we associate a corresponding
multi-linear function (MLF) that computes the probability
of evidence. For example, the network in Figure 1, in which
all variables are binary, induces the following MLF:

λa1λb1λc1θa1θb1θc1|a1,b1 + λa1λb1λc2θa1θb1θc2|a1,b1+
. . .
λa2λb2λc2θa2θb2θc2|a2,b2 + λa2λb2λc3θa2θb2θc3|a2,b2

The terms in the MLF are in one-to-one correspondence
with the rows of the network’s joint distribution. Assume
that all indicator variables λx have value 1. Each term will
then be a product of parameter variables θx|u which eval-
uates to the probability of the corresponding row from the
joint. The MLF will add all probabilities from the joint, for
a sum of 1.0. To compute the probability of evidence, we
need a way to exclude the certain terms from the sum. This
removal of terms is accomplished by carefully setting cer-
tain indicators to 0 instead of 1, according to the evidence.

The fact that a network’s MLF computes the probability
of evidence is interesting, but the network MLF has expo-
nential size. However, if we can factor the MLF into some-

thing small enough to fit within memory, then we can com-
pute Pr(e) in time that is linear in the size of the factoriza-
tion. The factorization will take the form of an AC, which
is a rooted DAG (directed acyclic graph), where an internal
node represents the sum or product of its children, and a leaf
represents a constant or variable. In this context, those vari-
ables will be indicator and parameter variables. An example
AC is depicted in Figure 1. We refer to this process of pro-
ducing an AC from a network as compiling the network.

Once we have an AC for a network, we can compute
Pr(e) by assigning appropriate values to leaves and then
computing a value for each internal node in bottom-up fash-
ion. The value for the root is then the answer to the query.
A main point is that this process may then be repeated for
as many probability of evidence queries as desired. Because
computing Pr(e) is linear in the size of the AC, if we are
able to generate an AC that is sufficiently small, computing
answers to many Pr(e) queries will be extremely efficient.

For compiling networks into an ACs, we use the publicly
available ACE system (http://reasoning.cs.ucla.edu/ace).
ACE works by encoding the MLF into a propositional the-
ory, compiling the theory into a logical form called d-DNNF,
and then extracting the AC from the d-DNNF (Chavira &
Darwiche 2005). There are several advantages to the ap-
proach. The most important of these is the ability to capture
and effectively utilize local structure in the form of deter-
minism and context-specific independence (CSI) (Boutilier
et al. 1996). This ability is the key feature that allows some
networks to be compiled in spite of large treewidth.

ACEMAP: A New Algorithm for Exact MAP
Given an arithmetic circuit C for the Bayesian network in
question and a MAP query MAP(M, e), the top-level pro-
cedure of our new algorithm, called ACEMAP, is a depth-
first branch-and-bound search in the space of all instan-
tiations of M, as shown in Algorithm 1. After calling
ACEMAP(C|e,M, {}), we will find a MAP solution stored
in the global variable m and its probability stored in the
global variable lb. Note that we write C|e to denote the in-
corporation of evidence e into the arithmetic circuit C (by
setting appropriate leaves of C to constants).

The depth-first search part of the algorithm works as fol-
lows: At each search node, it selects a MAP variableX from
M (Line 2), and recursively searches each branch that is cre-
ated by setting X to each of of its values (Lines 3–5). When
all MAP variables have been set (Line 6), the probability of
the instantiation is computed (Line 7), and compared with
the current best probability (Line 8). In case the former wins,
the latter is updated (Line 9) and the instantiation is stored
as the current best (Line 10).

The key to making ACEMAP efficient is the prun-
ing method employed on Line 4, whereby the algo-
rithm will skip branches without sacrificing optimal-
ity. This is achieved by means of a function call
eval(C|X=x,M\{X}), to be defined later, which is guar-
anteed to return an upper bound on the probability of any
instantiation of the global MAP variables that completes the
current partial instantiation (which is path). Unless this up-
per bound is greater than the current best probability (lb), the

Algorithm 1 ACEMAP(C,M,path)
global variables: lb (lower bound on probability of MAP solu-
tion); m (best instantiation of MAP variables so far). return value:
none. parameters to top-level call: C (with evidence incorpo-
rated); M (set of MAP variables); path (empty set). precondi-
tion for top-level call: lb < 0. postcondition for top-level call: m
is a MAP solution; lb = Pr(m).
1: if M is not empty then
2: select variable X ∈ M
3: for each value x of variable X do
4: if eval(C|X=x,M\{X}) > lb then
5: ACEMAP(C|X=x,M\{X},path ∪ {X = x})
6: else
7: p = eval(C, ∅)
8: if p > lb then
9: lb = p

10: m = path

Algorithm 2 eval(C,M)

parameters: C is the root of the AC with original evidence and
partial MAP instantiation incorporated. M is the set of uninstanti-
ated MAP variables.

k, if C is leaf node representing constant k
1, if C is a leaf node representing a variable∏

i

eval(Ci,M), if C =
∏

i

Ci;

max
i

eval(Ci,M), if C =
∑

i

Ci and C is

associated with a MAP variable∑
i

eval(Ci,M), if C =
∑

i

Ci and C is not

associated with a MAP variable.

branch cannot contain an improvement over the current best
instantiation (m) and can therefore be pruned.

Computing Upper Bounds Using ACs
We now describe the key component of this algorithm, the
eval(C|e,M) function given in Algorithm 2, which serves
two purposes:

• When M is nonempty, computes an upper bound on
Pr(e,m′), where e is the evidence asserted into the AC
so far (including original evidence and partial MAP in-
stantiation) and m′ is the best completion of the MAP in-
stantiation. This enables pruning (Line 4 of Algorithm 1).

• When M is empty, computes the probability of the evi-
dence that has been set in the AC, which is effectively the
probability of the original evidence and the instantiation
of the MAP variables at a leaf of the search tree (Line 7).

Algorithm 2 performs standard circuit evaluation when
the set of MAP variables M is empty. It is known that the
circuit value in this case is simply the probability of evi-
dence on which the circuit is conditioned (Darwiche 2003),
which allows us to efficiently compute the probability of an
instantiation of the MAP variables (Line 7 of Algorithm 1).
When the set of MAP variables is not empty, Algorithm 2

will perform a maximization (instead of addition) on some
of the addition nodes which correspond to MAP variables.
Therefore, Algorithm 2 requires a labeled arithmetic circuit
in the sense that some of its addition nodes are associated
with MAP variables. Indeed, the arithmetic circuits gen-
erated by ACE have the following property: every addition
node is of the form α + β, where the two sub–circuits α
and β correspond to different values of some variable X .
Moreover, ACE can provide information on the identity of
variables associated with addition nodes and we use this in-
formation to label nodes as required by Algorithm 2. Here
is the guarantee provided by this algorithm.

Theorem 1 (Upper Bound) Algorithm 2 computes an up-
per bound on the probability of the best instantiation of vari-
ables M: eval(C|e,M) ≥ max

m
Pr(m, e).

Note that the AC passed to eval is not the initial AC for
the Bayesian network, but that restricted under the initial
evidence e and any partial instantiation of the initial MAP
variables that has been made prior to the call to eval. The
value computed by eval is hence effectively an upper bound
on the probability of the best instantiation of the initial MAP
variables that extends the current partial instantiation, serv-
ing the purposes of pruning nicely.

While we omit a formal proof, the intuition behind The-
orem 1 is as follows. Suppose that we replace every addi-
tion node in an arithmetic circuit by a maximization node
instead. It is well known that the value of the circuit in this
case will represent the probability of the most likely variable
instantiation. That is, it will represent the value of MAP as-
suming that all network variables are MAP variables. Sup-
pose now that only a subset of network variables are MAP
variables. The algorithm will also compute the probability
of MAP in this case, assuming that no addition node which
is associated with a MAP variable can be a descendent of
an addition node that is not associated with a MAP variable.
One can indeed construct circuits that satisfy this property,
but their construction can no longer be guaranteed to be ex-
ponential only in network treewidth. By relaxing this re-
quirement, one can construct circuits bounded in the worst
case by treewidth, while allowing some maximizations to
be performed too early, leading to a final value that can be
greater (but never less) than the exact MAP value.

Static vs. Dynamic Variable Ordering
It is well known that variable ordering (Line 2 of Algo-
rithm 1) can have a great effect on the efficiency of a search
algorithm. We experimented with both static and dynamic
ordering heuristics, with a view to increasing the tightness
of the upper bounds and hence the amount of pruning.

The static ordering heuristic we found to have the best
overall performance works as follows: For each MAP vari-
able X and each of its values x, we locate the leaf λx of the
AC that corresponds to X = x (which is unique if it exists
in the AC at all), and count the AC nodes that are ancestors
of this leaf—we will refer to this set of nodes as the cone of
λx. Each variable is thus associated with multiple cones cor-
responding to its different values. We then select variables
in decreasing order of their average cone size.

The intuition is that a larger cone represents a greater con-
tribution to the looseness of the bound when the correspond-
ing MAP variable is left uninstantiated. In this case, maxi-
mizations over the variable inflate the bound through more
nodes up the circuit. Variables with larger cones should
therefore be set earlier to help produce tighter bounds for
subsequent search.

Our investigation into dynamic ordering revealed an in-
teresting trade-off between the effectiveness of a variable
ordering heuristic on tightening the bounds and the cost of
its computation. In particular, we found that the amount
of pruning could be greatly increased and the number of
search nodes greatly reduced if the variable was chosen dy-
namically, on Line 2 of Algorithm 1, in the following way:
For each variable X , compute eval(AC|X=x,M\{X}) for
each value x of X and call the highest result the score of X;
select a variable with the lowest score.

The intuition here is that the score of a variable is an up-
per bound on the best probability that can be achieved after
setting that variable, and hence picking a variable that has
the lowest score represents an attempt to minimize (tighten)
this upper bound and hence increase the amount of subse-
quent pruning. Our experiments indicate that this dynamic
ordering heuristic almost always leads to significantly fewer
search nodes than the static ordering heuristic described
above. However, the actual search time increases in most
cases owing to the large number of calls to eval() required.

We note that with a jointree algorithm, as has been em-
ployed in (Park & Darwiche 2003), all these calls to eval()
at each search node can be replaced by a single run of
jointree propagation, which makes dynamic ordering a very
good choice for the MAP algorithm of (Park & Darwiche
2003). We view our current inability to achieve the same
efficiency in this regard a potential opportunity to further
enhance our AC-based approach in future work. Our current
experimental results are based on using the static ordering.

Initialization
We initialize the search with an “educated guess” of a good
approximate MAP solution, as follows: for each MAP vari-
able in the order determined by the static ordering heuristic
described above, we choose the value that has the highest
partial derivative (for space constraints we refer the reader
to (Darwiche 2003) for details on the semantics of AC dif-
ferentiation); the variable is then set to the chosen value and
the AC differentiated again so that all the partial derivatives
are updated before the next variable is processed.

It is known that the partial derivative of the AC with re-
spect to a leaf λx of the AC gives the updated probability of
evidence when X is set to x (Darwiche 2003). Our heuristic
for an initial approximate solution can therefore be viewed
as attempting to greedily maximize its probability. Note also
that differentiation of an AC is a linear-time operation and
hence our initialization heuristic is generally very efficient.

Experimental Results
Table 1 shows the networks with which we experimented.
The blockmap, mastermind, and student networks represent

Table 1: Performance of ACEMAP vs. PD03 (“−” indicates failure to solve all instances using available memory).

Network MAP Instances Approximate PD03 Compilation into Arithmetic Circuit ACEMAP
Vars TW Cons. TW Time Vars Nodes Edges Time Time

blockmap-5-1 26 10 19 36 186.42 1411 2479 4793 0.33 0.01
blockmap-5-2 27 10 19 37 306.25 1738 3251 11789 0.48 0.12
blockmap-5-3 28 10 22 38 357.18 2055 4550 22209 0.64 0.14
blockmap-10-1 100 10 51 122 − 11326 20214 69078 14.22 0.34
blockmap-10-2 100 10 48 122 − 12558 23183 264933 18.05 0.52
blockmap-10-3 100 10 50 122 − 13786 30115 586379 23.72 0.84
mastermind-3-8-3 27 10 21 33 2088.19 2494 24207 461060 1.70 44.45
students-3-2 14 10 23 29 212.79 1004 5925 53352 0.28 0.09
students-3-6 14 10 40 45 − 2260 387883 1596976 10.00 4.47
students-3-12 14 10 53 55 − 4144 10494185 54725407 368.25 128.01
grid-50-10-1 99 10 15 15 99.32 600 59298 309948 0.63 54.52
grid-50-10-2 99 10 15 15 80.91 636 49660 243306 0.53 10.98
grid-50-10-3 99 10 15 15 72.80 592 115465 562329 1.17 29.42
grid-50-12-1 100 10 18 23 1419.62 756 54295 274787 0.61 305.33
grid-50-12-2 100 10 18 35 2098.53 808 275020 1614714 3.41 72143.73
grid-50-12-3 100 10 18 27 1511.30 836 152067 733874 1.67 18499.28
grid-75-10-1 99 10 15 15 34.34 364 2052 6684 0.08 0.19
grid-75-10-2 99 10 15 14 41.47 400 2778 9371 0.09 0.11
grid-75-10-3 99 10 15 15 56.44 396 5207 20705 0.11 1.16
grid-75-12-1 100 10 18 29 609.28 560 13486 60889 0.23 11.63
grid-75-12-2 100 10 18 33 255.91 548 9190 44764 0.17 1.00
grid-75-12-3 100 10 18 31 595.36 600 15673 67132 0.30 3.33
grid-75-14-1 100 10 21 79 2197.01 652 6396 31843 0.19 1.48
grid-75-14-2 100 10 21 64 6317.88 708 21139 107317 0.36 25.70
grid-75-14-3 100 10 21 84 − 732 31493 169774 0.50 33.11
grid-75-16-1 100 10 25 99 − 1000 228585 1155910 3.06 16811.04
grid-75-16-2 100 10 24 102 − 1056 79401 355094 1.16 25437.23
grid-75-16-3 100 10 25 101 − 992 120859 592151 1.70 1534.51
grid-90-10-1 99 10 15 15 26.69 300 1794 6387 0.06 0.09
grid-90-10-2 99 10 15 15 25.67 276 788 2241 0.05 0.05
grid-90-10-3 99 10 15 15 17.70 300 1060 4107 0.05 0.06
grid-90-12-1 100 10 18 29 124.95 404 1666 5569 0.08 0.09
grid-90-12-2 100 10 18 34 168.02 408 1116 2377 0.05 0.05
grid-90-12-3 100 10 18 29 203.22 436 1437 3830 0.08 0.08
grid-90-14-1 100 10 22 73 1666.81 520 2080 7318 0.11 0.22
grid-90-14-2 100 10 21 88 2701.21 540 1885 6260 0.09 0.34
grid-90-14-3 100 10 22 92 1422.71 520 1432 4186 0.20 0.13
grid-90-16-1 100 10 25 101 − 736 10022 54785 0.39 5.08
grid-90-16-2 100 10 25 102 − 620 1985 8517 0.12 0.16
grid-90-16-3 100 10 25 103 − 728 2415 7600 0.16 0.16
grid-90-18-1 100 10 28 107 − 912 7612 49639 0.31 3.69
grid-90-18-2 100 10 29 107 − 896 7824 41192 0.30 4.06
grid-90-18-3 100 10 28 106 − 904 5664 24771 0.25 9.31
grid-90-22-1 100 10 35 113 − 1304 16397 59780 0.72 23.91
grid-90-22-2 100 10 36 113 − 1324 21997 111851 0.92 138.21
grid-90-22-3 100 10 36 115 − 1320 6544 23426 0.36 1.63
grid-90-26-1 100 10 43 119 − 1832 24830 103103 1.44 108.08
grid-90-26-2 100 10 44 120 − 1918 139143 628461 7.06 7462.13
grid-90-26-3 100 10 42 120 − 1828 44109 218879 1.72 368.22
alarm 12 10 7 16 5.84 264 3026 8551 0.06 0.19
hailfinder 17 10 12 36 41.67 1030 18513 109385 0.38 681.55
pathfinder 1 10 15 15 22.97 2679 33082 207207 7.83 1.00
pigs 20 10 16 33 12.90 2211 1154490 6136011 30.69 7905.22
tcc4f.obfuscated 36 10 10 10 7.67 1290 17499 192859 0.55 0.55
water 8 10 21 21 324.132 3659 108164 1242839 3.47 4.94

ground instances of relational Bayesian networks (Jaeger
1997). These networks have many binary variables, small
CPTs, large amounts of determinism, and large treewidth.
The second set of networks, grid-x-y-z, are similar in that
they all arrange their nodes in a grid-like pattern. Again,
each has a large degree of determinism. They were used
in (Sang, Beame, & Kautz 2005) to demonstrate probabilis-
tic inference using weighted model counting, which shares
much in common with the compilation approach used here.
The last set consists of benchmark networks that have long
been used to evaluate inference algorithms. These networks
do not necessarily exhibit a large amount of determinism,
but the lesser amounts of determinism that exist, along with
any CSI, will be utilized by ACE.

For each network other than the grid networks, we gener-
ated ten problems randomly based on the method in (Yuan,
Lu, & Druzdzel 2004). For each problem, we randomly se-
lected n MAP variables from the roots or all roots if their
number was smaller than n. We then randomly selected
n evidence variables from the leaves or all leaves if their
number was smaller than n. Finally, we generated evidence
randomly, making sure that the probability of evidence was
nonzero. For pigs, n = 20; otherwise, n = 100. The grid
networks each have a single root. As a result, we generated
the ten problems for these networks based on the method
in (Park & Darwiche 2003). For each problem, we made
all leaves into evidence variables and randomly chose 100
MAP variables from non-leaves.

For each network, we compiled the network into an AC
and then used ACEMAP to solve the generated problems.
For comparison, we also solved the problems using the ex-
act MAP algorithm of (Park & Darwiche 2003), which we
refer to as PD03 (as implemented in SAMIAM available at
http://reasoning.cs.ucla.edu/samiam). All experiments were
conducted on a 3.2GHz Pentium 4 with 1GB of RAM run-
ning Windows XP Professional.

Table 1 shows a number of results. The first observation
we make relates to the treewidths and constrained treewidths
of these networks. We computed an approximation of these
metrics by pruning the network according to the evidence
and query, applying a minfill heuristic, and reporting the
largest value obtained across all problems. PD03 is able
to solve many problems where the constrained treewidth is
high, but runs out of memory when treewidth is high. De-
spite high treewidth, ACEMAP was able to solve all of these
problems. Our second observation relates to the compile
times for these networks. The vast majority of networks
compiled in a matter of seconds or less, and compile times
are very small compared to the time for executing PD03.
One prominent exception is pigs. Recall that compilation
needs to be performed only once per network, no matter
how many map problems need to be solved. Compilation
sizes are measured in number of AC edges. Most of these
sizes are very small compared to what will fit within avail-
able RAM, and the largest of them correspond to networks
on which PD03 failed. Finally, we report total search times
across all ten problems for both algorithms. ACEMAP out-
performed PD03 on 51 out of the 55 networks with which
we experimented, often by orders of magnitude. For 21 of

these networks, PD03 ran out of memory and failed to solve
the problems. We believe that ACEMAP’s inferior perfor-
mance on the four networks, all of which have relatively low
treewidth, is due to the dynamic variable ordering used by
PD03 being particularly superior to ACEMAP’s static order-
ing for these networks.

Conclusions
We presented a new algorithm for finding exact solutions to
MAP, which significantly expands the range of MAP prob-
lems that can be solved exactly. Moreover, the proposed al-
gorithm is more efficient on problems that can already be
solved by previous methods. The algorithm algorithm is
based on static variable ordering as the implementation of
dynamic variable ordering proved too expensive in the con-
text of ACs. We expect the development of efficient dynamic
variable ordering heuristics to lead to further significant im-
provements in our ability to solve MAP problems exactly.

References
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D. 1996.
Context–specific independence in bayesian networks. In Proceed-
ings of the 12th Conference on Uncertainty in Artificial Intelli-
gence (UAI), 115–123.
Chavira, M., and Darwiche, A. 2005. Compiling Bayesian net-
works with local structure. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 1306–
1312.
Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. Journal of the ACM 50(3):280–305.
de Campos, L. M.; Gámez, J. A.; and Moral, S. 1999. Partial
abductive inference in Bayesian belief networks using a genetic
algorithm. Pattern Recognition Letters 20(11-13):1211–1217.
Dechter, R. 1996. Bucket elimination: A unifying framework for
probabilistic inference. In Proceedings of the 12th Conference on
Uncertainty in Artificial Intelligence (UAI), 211–219.
Jaeger, M. 1997. Relational Bayesian networks. In Proceedings
of the 13th Conference on Uncertainty in Artificial Intelligence
(UAI), 266–273.
Jensen, F. V.; Lauritzen, S.; and Olesen, K. 1990. Bayesian up-
dating in recursive graphical models by local computation. Com-
putational Statistics Quarterly 4:269–282.
Park, J. D., and Darwiche, A. 2001. Approximating MAP using
local search. In Proceedings of the 17th Conference on Uncer-
tainty in Artificial Intelligence (UAI), 403–410.
Park, J. D., and Darwiche, A. 2003. Solving MAP exactly us-
ing systematic search. In Proceedings of the 19th Conference on
Uncertainty in Artificial Intelligence (UAI), 459–468.
Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing Bayesian
inference by weighted model counting. In Proceedings of the 20th
National Conference on Artificial Intelligence (AAAI), 475–482.
Shenoy, P. P., and Shafer, G. 1986. Propagating belief functions
with local computations. IEEE Expert 1(3):43–52.
Yuan, C.; Lu, T.-C.; and Druzdzel, M. 2004. Annealed MAP. In
Proceedings of the 20th Conference on Uncertainty in Artificial
Intelligence (UAI), 628–635.
Zhang, N. L., and Poole, D. 1996. Exploiting causal indepen-
dence in Bayesian network inference. Journal of Artificial Intel-
ligence Research 5:301–328.

