
Optimal Time–Space Tradeoff
In Probabilistic Inference

David Allen and Adnan Darwiche

University of California, Los Angeles CA 90025, USA

Abstract. Recursive Conditioning, RC, is an any–space algorithm for exact in-
ference in Bayesian networks, which can trade space for time in increments of the
size of a floating point number. This smooth tradeoff is possible by varying the al-
gorithm’s cache size. When RC is run with a constrained cache size, an important
problem arises: Which specific results should be cached in order to minimize the
running time of the algorithm? RC is driven by a decomposition structure (a dtree
or dgraph). In this research we examine the problem of searching for an optimal
caching scheme for a given decomposition structure and present several time–space
tradeoff curves for published Bayesian networks. Our results show that the memory
requirements of these networks can be significantly reduced with only a minimal
cost in time, allowing for exact inference in situations previously impractical. They
also show that probabilistic reasoning systems can be efficiently designed to run
under varying amounts of memory.

1 Introduction

Recursive Conditioning, RC, was recently proposed as an any–space algo-
rithm for exact inference in Bayesian networks [5]. The algorithm works by
using conditioning to decompose a network into smaller subnetworks that
are then solved independently and recursively using RC. It turns out that
many of the subnetworks generated by this decomposition process need to
be solved multiple times redundantly, allowing the results to be stored in a
cache after the first computation and then subsequently fetched during fur-
ther computations. This gives the algorithm its any–space behavior since any
number of results may be cached. This also leads to an important question,
which is the subject of this research: “Given a limited amount of memory,
which results should be cached in order to minimize the running time of the
recursive conditioning algorithm?”

We approach this problem by formulating it as a systematic search prob-
lem. We then use the developed method to construct time–space tradeoff
curves for some real–world Bayesian networks, and put these curves in per-
spective by comparing them to the memory requirements of state–of–the–art
methods based on jointrees [11,15]. The curves produced illustrate that a sig-
nificant amount of memory can be reduced with only a minimal cost in time.
In fact, for much of their domains, the time–space curves we produce appear
close to linear, with exponential behavior appearing only near the extreme

2 David Allen and Adnan Darwiche

case of no caching. This dramatic space reduction, without a significant time
penalty, allows one to practically reason with Bayesian networks that would
otherwise be impractical to handle or in situations where the system memory
is constrained.

This chapter is structured as follows. We start in Sect. 2 by providing
some background on recursive conditioning and the cache allocation problem.
We then formulate this problem in Sect. 3 as a systematic search problem.
Time–space tradeoff curves for several published Bayesian networks are then
presented in Sect. 4. Finally, in Sect. 5, we provide some concluding remarks.

2 Any–Space Inference

The RC algorithm for exact inference in Bayesian networks works by using
conditioning and case analysis to decompose a network into smaller subnet-
works that are solved independently and recursively. The algorithm is driven
by a structure known as a decomposition tree (dtree), which controls the
decomposition process at each level of the recursion. The RC algorithm has
also been extended to work on a decomposition graph (dgraph), which has
the ability to answer more queries than the dtree version [6,3]. RC can also
be augmented to take advantage of determinism in networks by dynamically
using logical techniques in the context of conditioning, which in some cases
can significantly speedup the inference [2]. We will begin with a review of the
dtree structure and then discuss RC.

2.1 Dtrees

Definition 1 [5] A dtree for a Bayesian network is a full binary tree, the
leaves of which correspond to the network conditional probability tables (CPTs).
If a leaf node t corresponds to a CPT φ, then vars(t) is defined as the variables
appearing in CPT φ.

Figure 1 depicts a simple dtree. The root node t of the dtree represents
the entire network. To decompose this network, the dtree instructs us to
condition on variable B, called the cutset of root node t. Conditioning on a
set of variables leads to removing edges outgoing from these variables, which
for a cutset is guaranteed to disconnect the network into two subnetworks,
one corresponding to the left child of node t and another corresponding to the
right child of node t; see Fig. 1. This decomposition process continues until
a boundary condition is reached, which is a subnetwork that has a single
variable.

We will now present some notation needed to define additional concepts
with regard to a dtree. The notation tl and tr will be used for the left child
and right child of node t, and the function vars will be extended to internal
nodes t: vars(t)

def
= vars(tl) ∪ vars(tr). Each node in a dtree has three more

Optimal Time–Space Tradeoff In Probabilistic Inference 3

.40.60

a’a

a’

a

b’b

.80.20

.10.90

c’

c

d’d

.60.40

.50.50

.10.90b’d

.95.05b’d’

bd’

bd

e’e

.75.25

.75.25

b’

b

c’c

.85.15

.30.70

A C

B

D

A B C D

E

A B C D

E

D

EB B

BC

Fig. 1. An example dtree with the cutset labeled below each node and the context
next to each node

sets of variables associated with it. The first two of these sets are used by the
RC algorithm, while the third set is used to analyze the complexity of the
algorithm.

Definition 2 The cutset of internal node t in a dtree is: cutset(t)
def
= vars(tl)∩

vars(tr) − acutset(t), where acutset(t) is the union of cutsets associated with
ancestors of node t in the dtree.

Definition 3 The context of node t in a dtree is: context(t)
def
= vars(t) ∩

acutset(t).

Definition 4 The cluster of node t in a dtree is: cluster(t)
def
= cutset(t) ∪

context(t) if t is a non-leaf, and as vars(t) if t is a leaf.

The width of a dtree is the size of its maximal cluster −1. Figure 1 labels
the cutset variables under each dtree node and the context variables beside
them.

The cutset of a dtree node t is used to decompose the network associated
with node t into the smaller networks associated with the children of t. That
is, by conditioning on variables in cutset(t), one is guaranteed to disconnect
the network associated with node t. The context of dtree node t is used to
cache results: Any two computations on the network associated with node
t will yield the same result if these computations occur under the same in-
stantiation of variables in context(t). Hence, a cache is associated with each
dtree node t, which stores the results of such computations (probabilities)

4 David Allen and Adnan Darwiche

Algorithm 1 RC(t): Returns the probability of evidence e recorded on the
dtree rooted at t
1: if t is a leaf node then
2: return LOOKUP(t)
3: else
4: y ← recorded instantiation of context(t)
5: if cache?(t) and cachet[y] 6= nil then
6: return cachet[y]
7: else
8: p ← 0
9: for instantiations c of uninstantiated vars in cutset(t) do

10: record instantiation c
11: p ← p + RC(tl)RC(tr)
12: un–record instantiation c
13: when cache?(t), cachet[y] ← p
14: return p

Algorithm 2 LOOKUP(t)
φ ← CPT of variable X associated with leaf t
if X is instantiated then

x ← recorded instantiation of X
u ← recorded instantiation of X’s parents
return φ(x|u) // φ(x|u) = Pr(x|u)

else
return 1

indexed by instantiations of context(t). This means that the size of a cache
associated with dtree node t can grow as large as the number of instantiations
of context(t).

For a given Bayesian network, many different dtrees exist and the quality
of the dtree significantly affects the resource requirements of RC. The width
is one important measure of this, as RC’s time complexity is exponential in
this value. The construction of dtrees is beyond the scope of this chapter, but
in [5,7] it was shown how to create them from elimination orders, jointrees,
or directly by using the hMeTiS [12] hypergraph partitioning program. It
should also be pointed out that the clusters of a dtree actually form a binary
jointree, which was shown to be more efficient than standard jointrees for the
Shenoy–Shafer algorithm, at the expense of additional memory [16].

2.2 Recursive Conditioning

Given a Bayesian network and a corresponding dtree with root t, the RC
algorithm given in Algorithms 1 and 2 can be used to compute the probability
of evidence e by first “recording” the instantiation e and then calling RC(t),
which returns the probability of e.

Optimal Time–Space Tradeoff In Probabilistic Inference 5

Our main concern here is with Line 5 and Line 13 of the algorithm. On
Line 5, the algorithm checks whether it has performed and cached this compu-
tation with respect to the subnetwork associated with node t. A computation
is characterized by the instantiation of t’s context, which also serves as an in-
dex into the cache attached to node t. If the computation has been performed
and cached before, its result is simply fetched. Otherwise, the computation
is performed and its result is possibly cached on Line 13.

When every computation is cached, RC uses O(n exp(w)) space and
O(n exp(w)) time, where n is the number of nodes in the network and w is the
width of the dtree. This corresponds to the complexity of jointree algorithm,
assuming that the dtree is generated from a jointree [5]. When no compu-
tations are cached, the memory requirement of RC is reduced to O(n), in
which case the time requirement increases to O(n exp(w log n)). Any amount
of memory between these two extremes can also be used in increments of the
size of a floating point number, a cache value.

Suppose now that the available memory is limited and we can only cache
a subset of the computations performed by RC. The specific subset that we
cache can have a dramatic effect on the algorithm’s running time. A key
question is then to choose that subset which minimizes the running time,
which is the main objective of this research. We refer to this as the sec-
ondary optimization problem, with the first optimization problem being that
of constructing an optimal dtree.

Most of our results in this chapter are based on a version of RC which
not only computes the probability of evidence e, but also posterior marginals
over families and, hence, posterior marginals over individual variables. This
version of RC uses a decomposition graph (dgraph), which is basically a set
of dtrees that share structure.

2.3 DGraphs

A dgraph can be constructed from a dtree by orienting the dtree with respect
to each of its root nodes [6]. This can be done while maintaining the width,
as each of the oriented dtrees will have a width no greater than the original.
Figure 2 graphically depicts this process, beginning with the Bayesian net-
work and constructing a dtree, a dtree oriented with respect to leaf φ(D|B),
and finally a complete dgraph. It should be noted that each of the four root
nodes in the dgraph corresponds to a valid dtree, so this dgraph actually
contains four dtrees which share a significant portion of their structure.

The code in Algorithms 1 and 2 is also used in the dgraph version of RC,
where RC(t) is called once on each root t of the dgraph. As a side effect
to computing the probability of evidence, RC using a dgraph also computes
the posterior marginal of each family in the network [6]. This version of RC
uses more memory as it maintains more caches, but it is more meaningful
when it comes to comparing our time–space tradeoff curves with the memory

6 David Allen and Adnan Darwiche

A

B

C D

a) Bayesian Network

)(Aφ)|(BDφ)|(BCφ)|(ABφ

b) Dtree

)|(BDφ)|(BCφ)(Aφ)|(ABφ

c) Oriented Dtree

)(Aφ)|(BDφ)|(BCφ)|(ABφ

d) Dgraph

Fig. 2. A Bayesian network and some decomposition structures

requirements of jointree algorithms, as this version of RC is equally powerful
to these algorithms.

3 The Cache Allocation Problem

The total number of computations that a dgraph (or dtree) node t needs
to cache equals the number of instantiations of context(t). Given a memory
constraint, however, one may not be able to cache all these computations,
and we need a way to specify which results in particular to cache. A cache
factor cf for a dgraph is a function which maps each internal node t in the
dgraph into a number cf (t) between 0 and 1. Hence, if cf (t) = .75, then
node t can only cache 75% of these total computations. A discrete cache
factor is one which maps every internal dgraph node into either 1 or 0: all
of the node’s computations are cached, or none are cached. The RC code in
Algorithms 1 and 2 assumes a discrete cache factor, which is captured by the
flag cache?(t), indicating whether caching will take place at dgraph node t.

One can count the number of recursive calls made by RC (and, hence,
compute its running time) given any discrete cache factor. Specifically, if
tp denotes a parent of node t in a dgraph, and S# denotes the number of
instantiations of variables S, the number of recursive calls made to node t is
[5,6]:

calls(t) =
∑
tp

cutset(tp)#[cf(tp)context(tp)# + (1− cf(tp))calls(tp)]. (1)

Optimal Time–Space Tradeoff In Probabilistic Inference 7

If the cache factor is not discrete, the above formula gives the average num-
ber of recursive calls, since the actual number of calls will depend on the
specific computations cached. This equation is significant as it can be used
to predict the worst-case expected time requirement of RC under a given
caching scheme. RC runs significantly faster as more evidence is set on the
network. For example, on Munin1 we have seen instances which would require
12 minutes with no evidence run in just 23 seconds with evidence set on the
network.

RC can additionally determine how many times a cache value will be
used. This is important because not every cache is useful, as some are never
looked up; these are referred to as dead caches. Dead caches are those whose
context is a superset of its parents context, and can be determined before
the cache allocation search. On a dtree, each node only has a single parent
and therefore dead caches can be determined by comparing the context of
a node with that of its parent. In dgraphs, which are composed of multiple
dtrees sharing structure, we will differentiate between dtree dead caches and
dgraph dead caches. Dtree dead caches are those caches which for any in-
dividual dtree in the dgraph would not be used. However, when computing
all posterior marginals on dgraphs, where nodes may have multiple parents,
some of these dead caches would not be useful for any single dtree, but can
be useful because one dtree could fill it and another dtree could lookup the
stored values. Therefore, a dgraph dead cache is located at a node with only
one parent in addition to the context for the node being a superset of its
parent.

We focus in this research on searching for an optimal discrete cache fac-
tor, given a limited amount of memory, where optimality is with respect to
minimizing the number of recursive calls. To this end, we will first define
a search problem for finding an optimal discrete cache factor and then de-
velop a depth–first branch–and–bound search algorithm. We will also use
the developed algorithm to construct the time–space tradeoff curves for some
published Bayesian networks from various domains, and compare these curves
to the memory demands and running times of jointree algorithms.

3.1 Cache Allocation as a Search Problem

The cache allocation problem can be phrased as a search problem in which
states in the search space correspond to partial cache factors that do not vi-
olate the given memory constraint, and where an operator extends a partial
cache factor by making a caching decision on one more dgraph node. The
initial state in this problem is the empty cache factor, in which no caching
decisions have been made for any nodes in the dgraph. The goal states corre-
spond to complete cache factors, where a caching decision has been made for
every dgraph node, without violating the given memory constraint. Suppose
for example that we have a dgraph with three internal nodes t1, t2, t3. This
will then lead to the search tree in Fig. 3. In this figure, each node n in the

8 David Allen and Adnan Darwiche

search tree represents a partial cache factor cf . For example, the node in bold
corresponds to the partial cache factor cf (t1) = 0, cf (t2) = 1 and cf (t3) =?.
Moreover, if node n is labeled with a dgraph node ti, then the children of n
represent two possible extensions of the cache factor cf : one in which dgraph
node ti will cache all computations (1–child), and another in which dgraph
node ti will cache no computations (0–child).

0

0 0

1

11

0 1 0 1 0 1 0 1

G0 G1 G2 G3 G4 G5 G6 G7

1t

2t 2t

3t 3t 3t 3t

Fig. 3. Search tree for a dgraph with 3 internal nodes

According to the search tree in Fig. 3, one always makes a decision on
dgraph node t1, followed by a decision on dgraph node t2, and then node t3.
A fixed ordering of dgraph nodes is not necessary, however, as long as the
following condition is met: A decision should be made on a dgraph node ti
only after decisions have been made on all its ancestors in the dgraph. We will
explain the reason for this constraint later on when we discuss cost functions.

In the search tree depicted in Fig. 3, the leftmost leaf (G0) represents
no caching, while the rightmost leaf (G7) represents full caching. The search
trees for this problem have a maximum depth of d, where d is the number of
internal nodes in the dgraph. Given this property, depth–first branch–and–
bound search is a good choice given its optimality and linear space complexity
[14]. It is also an anytime algorithm, meaning that it can always return its best
result so far if interrupted, and if run to completion will return the optimal
solution. Hence, we will focus on developing a depth–first branch–and–bound
search algorithm.

Optimal Time–Space Tradeoff In Probabilistic Inference 9

It should be noted that this search for a cache allocation only needs to
be done once, while the user will usually be interested in running multiple
probability calculations based on the results.

3.2 Cost Functions

The depth–first branch–and–bound (DFBnB) algorithm requires a cost func-
tion f which assigns a cost f(n) to every node n in the search tree. The
function f(n) estimates the cost of an optimal solution that passes through
n. The key here is that f(n) must not overestimate that cost; otherwise, one
loses the optimality guarantee offered by the search algorithm. We will now
develop such a cost function f(n) based on the following observations. Since
each node n represents a partial cache factor cf , function f(n) must estimate
the number of recursive calls made to RC based on an optimal completion
of cache factor cf . Consider now the completion cf ′ of cf in which we decide
to cache at each dgraph node that cf did not make a decision on. This cache
factor cf ′ is the best completion of cf from the viewpoint of running time,
but it may violate the constraint given on total memory. Yet, we will use it
to compute f(n) as it guarantees that f(n) will never overestimate the cost
of an optimal completion of cf .

One important observation in this regard is that once the caching decision
is made on the ancestors of dgraph node t, we can compute exactly the
number of recursive calls that will be made to dgraph node t (see Equation 1).
Therefore, when extending a partial cache factor, we will always insist on
making a decision regarding a dgraph node t for which decisions have been
made on all its ancestors. This improves the quality of the estimate f(n) as
n gets deeper in the tree. It also allows us to incrementally compute this
estimate based on the estimate of n’s parent in the search tree.

3.3 Pruning

As depicted by the search tree in Fig. 3, there is potentially an exponential
number of goal nodes in the search tree and the combinatorial explosion of
exhaustive search can become unmanageable very quickly. Hence the search
algorithm must eliminate portions of the search space while still being able
to guarantee an optimal result. One of the key methods of doing this is by
pruning parts of the search tree which are known to contain non-optimal re-
sults. The DFBnB algorithm does this by pruning search tree nodes when the
cost function f(n) is larger than or equal to the current best solution. Hence,
more accurate cost functions will allow more pruning. Another major source
of pruning is the given constraint on total memory. This is accomplished by
pruning a search tree node and all its descendants once it attempts to assign
more memory to caches than is permitted by the memory constraint.

10 David Allen and Adnan Darwiche

3.4 Search Decisions

Now that we have chosen a cost function, we are still left with two impor-
tant choices in our search algorithm: (1) which child of a search tree node to
expanded first, and (2) in what order to visit dgraph nodes during search.
Expanding the 1–child first is a greedy approach, as it attempts to fully cache
at a dgraph node whenever possible. Results on many different networks have
shown that in many cases, expanding the 1–child before the 0–child appears
to be equal to or better than the opposite [1], and it is this choice that we
adopt in our experiments. The specific order in which we visit dgraph nodes
in the search tree turns out to have an even more dramatic effect on the ef-
ficiency of search. Even though we make caching decisions on parent dgraph
nodes before their children, there is still a lot of flexibility. Our experimen-
tation on many networks has shown that choosing the dgraph node t with
the largest context(t)# is orders of magnitude more efficient than some other
basic ordering heuristics [1]. This choice corresponds to choosing the dgraph
node with the largest cache, and it is the one we use in our search algorithm.

4 Time–Space Tradeoff

The main goal of this section is to present time–space tradeoff curves for a
number of benchmark Bayesian networks, some of which are obtained from
[4] and others are included in the distributions of [9,10]. The main points to
observe with respect to each curve is the slope of the curve, which provides
information on the time penalty one pays when reducing space in probabilistic
inference. The second main point is to compare the produced curves with the
time and space requirement of jointree methods, as the version of RC we are
using provides the same functionality as these algorithms (that is, probability
of evidence and posterior marginals over variables and families). This baseline
comparison is important as it places our results in the context of state–of–
the–art inference systems. The results presented here use the same datasets as
those in [3]. This version however ignores only dgraph dead caches, while the
version in [3] ignored dtree dead caches. Ignoring only dgraph dead caches
adds more memory under full caching, but runs faster under constrained
memory.

Time–space tradeoff curves. Figures 4 and 5 depict optimal discrete
time–space tradeoff curves for two networks. These curves were generated
as follows. A jointree was first generated for the network using Hugin.1 The
jointree was then converted into a dtree as described in [5]. The dtree was
finally converted into a dgraph as described in [6]. Two sets of results were
then generated:

1 We used Hugin’s default setting: the minimum fill–in weight heuristic in conjunc-
tion with prime component analysis.

Optimal Time–Space Tradeoff In Probabilistic Inference 11

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

B.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

7.3 MB
2.1 MB

2 sec

Fig. 4. Time–space tradeoff on B

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

water.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

30.2 MB
7.6 MB

7 sec

dtree based on Hugin jointree
alternative dtree

Fig. 5. Time–space tradeoff on Water

12 David Allen and Adnan Darwiche

• We computed the space requirements for jointree algorithms, using both
the Hugin [11] and Shenoy–Shafer [15] architectures (on the non–binary
jointree). For the first architecture, we assumed one table for each clique
and one table for each separator. For the second, we assumed two tables
for each separator (no tables for cliques). We also performed propagation
on the jointree using Netica [13], which implements the Hugin algorithm,
and recorded the running time.

• We then ran our search algorithm to find an optimal cache factor under
different memory constraints, where we generated 100 data points for
each curve. For each caching factor that we identified, we computed the
number of recursive calls that will be made by RC under that factor and
converted the calls to seconds.2

A number of observations are in order here. First, RC is using memory
efficiently, and would use a similar amount of memory as the Shenoy–Shafer
algorithm would if run on the binary jointree determined by the dtree. Sec-
ond, the curves show that a significant amount of memory can sometimes be
reduced from full caching with only a limited increase in the time required; in
fact, the exponential growth appears to be occurring only near the lower ex-
treme of no caching. The space requirement for Water (Fig. 5), for example,
can be reduced to 30% while only increasing the running time by a factor of
2.9. Moreover, the space requirements for B (Fig. 4) can be reduced to about
3% while increasing the running time by a factor of 19. Finally, we note that
each optimal search for the B network took less than a second and for Water
took less than three minutes. We stress though that such searches need to be
done only once for a network, and their results can then be used for many
further queries.

Non–optimal tradeoffs. On some networks, the search space is too
large to solve the cache allocation optimally using our search algorithm, but
the anytime nature of the algorithm allows us to interrupt the search at any
point and ask for the best result obtained thus far. Figures 6, 7, and 8 were
generated by allowing the search to run for ten minutes. Even though these
curves are not optimal, they are useful practically. For example, according to
these curves, the memory requirement of Barley can be reduced from about
54 MB to about 8 MB while only increasing the running time from about
1 to 3 minutes. Moreover, the space requirement of Munin1 can be reduced
from about 450 MB to 180 MB, while increasing the running time from about
13 minutes to about 3.5 hours. Encouraged by such results, we are planning
to investigate other (non–optimal) search methods, such as local search.

Dtrees vs dgraphs. Running RC on a dtree takes less space than run-
ning it on a dgraph, but produces much less information (probability of evi-
dence instead of posterior marginals). To illustrate this difference concretely,
2 Our Java implementation of RC on a Sun Ultra 10, 440 MHz computer with

256 MB of RAM, makes an average number of three million recursive calls per
second.

Optimal Time–Space Tradeoff In Probabilistic Inference 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

alarm.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

9.8 KB
3.7 KB

0 sec

Fig. 6. Time–space tradeoff on Alarm

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

barley.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

151.1 MB
21.0 MB

29 sec

Fig. 7. Time–space tradeoff on Barley

14 David Allen and Adnan Darwiche

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 50 100 150 200 250 300 350 400 450

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

munin1.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

3,111.3 MB
353.7 MB

 Failed

Fig. 8. Time–space tradeoff on Munin1

we present in Fig. 9 two tradeoff curves for the Water network, assuming
a dtree version of RC, which require much less memory compared to the
curves in Fig. 5. Suppose now that we only have 1 MB of memory, instead
of the 7.6 MB or 30.2 MB required by jointree algorithms, and we want to
compute the posterior marginals for all variables. According to Fig. 5, we
can do this in 693 seconds using the dgraph version of RC. The dtree version
takes 16.3 seconds to compute the probability of evidence under this amount
of memory, and we would have to run it 85 times to produce all posterior
marginals for the Water network (given variable cardinalities in Water).

Effect of dtree/dgraph on tradeoff. Our notion of optimality for
tradeoff is based on a given dtree/dgraph; hence, generating different decom-
position structures could possibly lead to better time–space tradeoff curves.
To illustrate this point, we generated tradeoff curves for the Water network
based on multiple dtrees/graphs, as shown in Figs. 5 and 9. One observation
that we came across is that dtrees/graphs that are based on jointrees tend to
require less time under full caching, but are not necessarily best for tradeoff
towards the no caching region; see Fig. 9 for an example. Yet, we used such
dtrees/graphs in this chapter in an effort to provide a clear baseline for com-
parison with jointree methods. If we relax this constraint, however, we can
obtain better tradeoff curves than is generally reported here, as illustrated
by Figs. 5 and 9. The specific way in which properties of a dtree/dgraph
influence the quality of corresponding time–space tradeoff curves is not very

Optimal Time–Space Tradeoff In Probabilistic Inference 15

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3 3.5 4

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

water.net DTree - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

30.2 MB
7.6 MB

7 sec

dtree based on Hugin jointree
alternative dtree

Fig. 9. Time–space tradeoff on Water for computing probability of evidence

well understood, however, and we hope to shed more light on this in future
work.

Size of search space. It should be noted that the difficulty of obtaining
an optimal time–space tradeoff curve on some networks is not due to a large
space requirement, but is due mostly to the number of nodes in the Bayesian
network as that is what decides the size of search space. To further illustrate
this point, we generated a network randomly with 40 nodes (many of them
non–binary), 86 edges, and a width of 14. This network requires extensive
memory but has a relatively small number of variables. In fact, both Netica
and Hugin were unable to compile the network requiring about 6 GB and 11
GB respectively. We were able, however, to produce an optimal time–space
tradeoff curve for this network. The curve for the dtree version of RC is
shown in Fig. 10. According to this curve, we can compute the probability of
any evidence on this network in about 2 hours using only about 75 MB.

Related work. We close this section by a note on related work for time–
space tradeoff in probabilistic reasoning, which takes a different approach [8].
In this work, large separators in a jointree are removed by combining their
adjacent clusters, which has the effect of reducing the space requirements of
the Shenoy–Shafer architecture (as we now have fewer separators), but also
increasing its running time (as we now have larger clusters). The tradeoffs
permitted by this approach, however, are coarser than those permitted by RC
as discussed in [5]. Furthermore, the secondary optimization problem of which

16 David Allen and Adnan Darwiche

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300 350 400

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

random.net DTree - RC Calls vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

11,709.0 MB
694.6 MB

 Failed

Fig. 10. Time–space tradeoff on Random for computing probability of evidence

separators to remove in order to minimize running time is not addressed in
[8] for the proposed approach, as we do in this chapter for the RC approach.

5 Conclusions

The main contribution of this research is a formal framework, and a corre-
sponding working system, for trading space for time when designing proba-
bilistic reasoning systems based on Bayesian networks. The research is based
on the algorithm of recursive conditioning, and is accompanied with a set
of experimental results showing that a significant amount of memory can
sometimes be reduced while only incurring a reasonable penalty in running
time. The proposed framework is then beneficial for designing reasoning sys-
tems with limited memory, as in embedded systems, and for reasoning with
challenging networks on which jointree algorithms can exhaust the system
memory.

Recursive conditioning and the described time–space tradeoff system have
been implemented in JAVA in the SamIam tool, which is available publically
[17].

Acknowledgments

This work has been partially supported by NSF grant IIS-9988543 and MURI
grant N00014-00-1-0617.

Optimal Time–Space Tradeoff In Probabilistic Inference 17

References

1. Allen, D., and Darwiche, A. Optimal time–space tradeoff in probabilis-
tic inference. In Proceedings of the First European Workshop on Probabilistic
Graphical Models (2002), pp. 1–8.

2. Allen, D., and Darwiche, A. New advances in inference by recursive condi-
tioning. To appear in Uncertainty in Artificial Intelligence: Proceedings of the
Nineteenth Conference (UAI) (2003).

3. Allen, D., and Darwiche, A. Optimal time–space tradeoff in probabilistic
inference. To appear in Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI) (2003).

4. Bayesian Network Repository.
http://www.cs.huji.ac.il/labs/compbio/Repository/, URL.

5. Darwiche, A. Recursive conditioning. Artificial Intelligence 126 (February
2001), 5–41.

6. Darwiche, A. Decomposition graphs. Tech. Rep. D-134, UCLA, 2002.
7. Darwiche, A., and Hopkins, M. Using recursive decomposition to con-

struct elimination orders, jointrees, and dtrees. In Proc. 6th European Conf.
on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (EC-
SQARU’01, Toulouse, France) (2001), pp. 180–191.

8. Dechter, R., and Fattah, Y. E. Topological parameters for time-space
tradeoff. Artificial Intelligence 125, 1-2 (2001), 93–118.

9. GeNIe. http://www2.sis.pitt.edu/∼genie/, URL.
10. Hugin Expert. http://www.hugin.com/, URL.
11. Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. Bayesian updating in

causal probabilistic networks by local computations. Computational Statistics
Quarterly 4 (1990), 269–282.

12. Karypis, G., and Kumar, V. Hmetis: A hypergraph partitioning package.
http://www.cs.umn.edu/karypis, 1998.

13. Norsys Software Corp. http://www.norsys.com/, URL.
14. Papadimitriou, C. H., and Steiglitz, K. Combinatorial Optimization.

Dover Publications, Inc., 1998.
15. Shafer, G. R., and Shenoy, P. P. Probability propagation. Annals of

Mathematics and Artificial Intelligence 2 (1990), 327–352.
16. Shenoy, P. P. Binary join trees for computing marginals in the shenoy-shafer

architecture. International Journal of Approximate Reasoning 17 (1997), 239–
263.

17. UCLA Automated Reasoning Group. SamIam: Sensitivity Analysis, Mod-
eling, Inference And More. http://reasoning.cs.ucla.edu/samiam, URL.

Index

Any–Space Inference, 2

Cache Allocation Problem, 6
Cluster, 3
Context, 3
Cutset, 3

DGraph, 5

Dtree, 2

RC Algorithm, 4
RC Time and Space Complexity, 5
Recursive Conditioning, 1, 4

Time–Space Tradeoff, 10

