
Encoding CNFs to Empower
Component Analysis?

Mark Chavira and Adnan Darwiche

Computer Science Department
University of California, Los Angeles
chavira,darwiche@cs.ucla.edu

Abstract. Recent algorithms for model counting and compilation work
by decomposing a CNF into syntactically independent components through
variable splitting, and then solving the components recursively and in-
dependently. In this paper, we observe that syntactic component analy-
sis can miss decomposition opportunities because the syntax may hide
existing semantic independence, leading to unnecessary variable split-
ting. Moreover, we show that by applying a limited resolution strategy
to the CNF prior to inference, one can transform the CNF to syntacti-
cally reveal such semantic independence. We describe a general resolution
strategy for this purpose, and a more specific one that utilizes problem–
specific structure. We apply our proposed techniques to CNF encodings
of Bayesian networks, which can be used to answer probabilistic queries
through weighted model counting and/or knowledge compilation. Ex-
perimental results demonstrate that our proposed techniques can have
a large effect on the efficiency of inference, reducing time and space re-
quirements significantly, and allowing inference to be performed on many
CNFs that exhausted resources previously.

1 Introduction

Recent algorithms for model counting [17, 6] and compilation [13] work by de-
composing a CNF into syntactically independent components through variable
splitting, and then solving the components recursively and independently. Crit-
ical to the efficiency of these search with decomposition algorithms is the early
identification of independent components, which would minimize the amount of
variable splitting required (a typical source of exponential behavior).

Search–with–decomposition algorithms consider two CNFs independent when
they do not have variables in common, a condition which we call syntactic in-
dependence. Note, however, that even though two CNFs α and β may share
variables (and are hence syntactically dependent), they may still be capable of
being solved separately in two circumstances. First, there may exist CNFs α′

and β′ that encode the same semantics as α and β, respectively, and which do

? This work has been partially supported by Air Force grant #FA9550-05-1-0075-
P00002 and JPL/NASA grant #1272258.

2

not have variables in common. This happens when one of the the CNFs α or
β mentions irrelevant variables. Second, it may be that values of shared vari-
ables are implied by α and β, but removing subsumed clauses and performing
unit resolution is insufficient to recognize this situation. If the information were
known, then the variables could be set accordingly and the CNFs would thus
become syntactically independent. Both of these situations cause decomposition
algorithms to perform unnecessary splitting on the variables common to α and β.
The phenomenon is not only present at the first level of decomposition, but can
be exhibited at any level in the search tree, leading to compounded inefficiencies.
As we demonstrate in this paper, the gap between syntactic independence and
what we will call semantic independence can be bridged considerably by apply-
ing limited forms of resolution to the CNF, leading to major improvements to
search–with–decomposition algorithms. In fact, the effect of such pre–processing
can be much more dramatic if one pays attention to where the CNF originated.

Resolution
Syntax 1 Syntax 2 Improvement Strategy 1 Improvement

Circuit Time (s) Time (s) Time (s)

s510 0.09 0.06 1.55 0.06 1.50
s444 0.12 0.07 1.69 0.07 1.74
s382 0.12 0.07 1.78 0.07 1.73
s400 0.12 0.07 1.80 0.07 1.78
s420 0.21 0.07 3.19 0.07 3.19
s344 0.25 0.07 3.44 0.07 3.31
s349 0.25 0.07 3.47 0.08 3.29
s386 0.29 0.07 4.26 0.07 4.26
s838 0.86 0.19 4.55 0.14 6.22
s1238 7.48 0.99 7.59 1.03 7.29
s713 4.66 0.50 9.37 0.40 11.61
s526n 2.28 0.18 12.73 0.18 12.32
s1196 11.89 0.93 12.81 0.97 12.29
s526 2.27 0.18 12.82 0.18 12.61
s953 5.34 0.34 15.48 0.33 16.13
s641 5.20 0.32 16.30 0.33 15.67
s1488 2.78 0.13 21.24 0.13 21.24
s1494 2.89 0.13 22.43 0.13 22.25
s832 3.15 0.10 31.21 0.11 29.19
s838.1 2.95 0.08 38.80 0.08 38.80
s1423 timeout 63.78 n/a 49.94 n/a
s13207.1 timeout 186.61 n/a 199.49 n/a
s35932 timeout 2.83 n/a 3.09 n/a

Table 1. Cachet model count times for ISCAS89 circuits using three different CNF
encodings. Timeout was four hours on a 2.40 GHz Intel Xeon CPU with 4GB of memory.

To demonstrate the effect of initial CNF syntax on the performance of search–
with–decomposition algorithms, consider Table 1 which depicts the result of run-

3

ning a state–of–the–art model counter Cachet [17, 1] on two CNF encodings of
ISCAS89 benchmark circuits (e.g., [2]).1 We will have more to say about the two
encodings later, but for now, suffice it to say that Syntax 1 is chosen carefully
to worsen the gap between syntactic and semantic independence, and that Syn-
tax 2 is chosen to bridge this gap. The first four columns (other columns will be
discussed in Section 3) of Table 1 illustrate the dramatic performance difference
between these two encodings, where Syntax 2 model count times range from
1.5 times faster on easy problems to over 38 times faster on harder ones, and
where three networks could not be processed in four hours using Syntax 1 but
required only minutes or less using Syntax 2.

The primary goal of this paper is to demonstrate that CNFs can be pre–
processed, or carefully encoded, to better bridge the gap between syntactic and
semantic independence. The approach we propose is to apply a limited resolution
strategy to the CNF prior to execution of search. We first identify a general reso-
lution strategy that can be applied to any CNF. As we shall see, for example, this
strategy matches the performance of Syntax 2 when applied to CNFs encoded
according to Syntax 1 from Table 1. We also show that by paying attention to
where a CNF originates, and by bringing to bear structure that exists in the sys-
tem being modeled, it is possible to define a more effective structured resolution
strategy. We demonstrate this on CNF encodings of Bayesian networks, which
have been used as inputs to both model counters [18] and knowledge compilers
[12]. Using this structured strategy, we achieve significant improvements in the
time and space efficiency of inference compared to unprocessed CNFs. More-
over, we are able to perform inference on some models that proved too difficult
without applying the resolution strategy.

This paper is organized as follows. In Section 2, we review search with de-
composition and demonstrate the importance of syntax. In Section 3, we define
semantic independence, and describe a resolution strategy that is meant to bridge
the gap between syntactic and semantic independence. Section 4 then reviews
CNF encodings of Bayesian networks. Section 5 presents a technique that uti-
lizes structure in a Bayesian network to guide the encoding of the corresponding
CNF. In Section 6, we provide experimental results that show the benefits of
this strategy. Finally, we conclude with a few remarks in Section 7.

2 The Effect of Syntax on the Syntactic Identification of
Components

In this section, we review how search with decomposition works and then demon-
strate the effect that syntax can have on the ability of the algorithm to identify
components. Consider the problem of counting the models in the CNF at the
top of Figure 1. Because all of the clauses in this CNF contain variable A, we

1 Sequential circuits have been converted into combinational circuits in a standard
way, by cutting feedback loops into flip-flops, treating a flip-flop’s input as a circuit
output and its output as a circuit input.

4

A ∨ B ∨ C ¬A ∨ ¬B ∨ C
A ∨ D ∨ E ¬A ∨ ¬D ∨ E

B ∨ C
D ∨ E

A

3 3

9 case

D ∨ EB ∨ C

decompose

3 3

9
¬ B ∨ C
¬ D ∨ E

case

¬ D ∨ E¬ B ∨ C

decompose

18

CNF

A¬A

Fig. 1. An example of a search algorithm (with decomposition) that performs model
counting.

cannot syntactically decompose the CNF, and so we must split on some variable.
Splitting on variable A and performing unit resolution generates the two CNFs
at the middle of Figure 1. At this point, we solve each of the two subproblems
recursively and independently. We see that each subproblem decomposes into
two sets of syntactically independent clauses. The four resulting sets are shown
at the bottom of the figure. The CNFs at the bottom represent base cases in
the recursion, each having a count of 3, as indicated. From these counts, we
can compute counts for the CNFs in the middle, both 9 in this case. And from
the middle counts, we compute the count for the CNF at the top of the figure,
18, which is the answer to the original problem. Although we have illustrated
the search in a breadth first–fashion, it is normally performed depth–first [6]. In
addition, advanced techniques such as clause learning, component caching and
non–chronological backtracking, are used to improve efficiency, but we do not
detail them here; see [17, 11, 13, 5].

We next present an example which reveals the effect that syntax can have
on the identification of components. Consider Figure 2(a) which depicts two
fragments of a CNF: fragment α which includes, among other things, an encoding
of an AND gate g with output D and inputs A, B, and C, and fragment β which
includes clauses that mention variables A,B and C. Suppose further that the
clauses for gate g are the only ones that mention variables A,B and C within
α. These two fragments are then syntactically dependent as they share common
variables, and cannot be solved in isolation. Suppose now that we decide to
split on variable A by setting it to false. Under this setting, the output D of
the gate must become false, and the inputs B and C are no longer relevant
to fragment α. Semantically, fragments α and β are now independent and can
be solved in isolation. However, depending on how we encode the gate g, this
semantic independence may or may not be revealed syntactically! In particular,
Figures 2(b) and 2(c) depict two different encodings of g, which we shall call
Syntax 1 and Syntax 2, respectively. Either of these encodings could form
the part of fragment α pertaining to gate g. The figures also show the result
of simplifying (by performing unit resolution and removing subsumed clauses)
these encodings when setting variable A to false. As is clear from this example,
variables B and C continue to appear in the clauses of Syntax 1 even though

5

they are irrelevant. These variables, however, cease to appear in the clauses of
Syntax 2. Therefore, Syntax 2 enables decomposition, but Syntax 1 will
probably require splitting on variables B and C.

A different situation occurs when we set the output D to true. In this case,
all gate inputs must be true. Setting them accordingly is sufficient to sever the
dependency between the two fragments. In the case of Syntax 1, simplifying is
insufficient to discover that the inputs can be set, but in the case of Syntax 2,
simplifying does indeed tell us the values of the inputs. As a result, Syntax 2
once again enables decomposition, but Syntax 1 requires more splitting (or a
more powerful inference than unit resolution). In fact, the two different encodings
of Table 1 are based on the encodings of gates shown in Figure 2, which encode
each gate in isolation, in the two ways described. We have seen the significant
discrepancy in performance that search with decomposition can have on these
two different encodings.

Depends on
A,B,C

β

g
A

B

C

α

D

¬A ∧ ¬B ∧ ¬C ⇒ ¬D

¬A ∧ ¬B ∧ C ⇒ ¬D

¬A ∧ B ∧ ¬C ⇒ ¬D

¬A ∧ B ∧ C ⇒ ¬D

A ∧ ¬B ∧ ¬C ⇒ ¬D

A ∧ ¬B ∧ C ⇒ ¬D

A ∧ B ∧ ¬C ⇒ ¬D

A ∧ B ∧ C ⇒ D

¬A

¬B ∧ ¬C ⇒ ¬D

¬B ∧ C ⇒ ¬D

B ∧ ¬C ⇒ ¬D

B ∧ C ⇒ ¬D

A ∧ B ∧ C ⇒ D

¬A ⇒ ¬D

¬B ⇒ ¬D

¬C ⇒ ¬D

¬D¬A

(a) (b) (c)

Fig. 2. (a) A depiction of two sets of clauses; (b) the AND gate encoded according to
Syntax 1; and (c) the AND gate encoded according to Syntax 2.

3 Semantic Independence

In this section, we define the notions of syntactic and semantic independence
and discuss the encoding of CNFs to reduce the gap between them. Two CNFs
are syntactically independent if they do not have variables in common. Two
CNFs are semantically independent if each variable is irrelevant to either CNF
(or both). More formally, two CNFs α and β are semantically independent iff
for every variable V , α|V ≡ α|¬V or β|V ≡ β|¬V , where α|V is the result of
setting variable V to true in α, and α|¬V is the result of setting V to false.

Given a logical theory ∆ on which we must perform inference, there are many
CNFs that specify ∆, any one of which may be supplied to the search with
decomposition to obtain a correct answer. However, to make inference efficient,
the goal will be to supply a CNF that makes semantic independence visible
syntactically throughout the search. That is, whenever two subsets of the clauses
are semantically independent, one should strive to also make them syntactically
independent.

Given a CNF for ∆, we now describe a general method that produces an-
other CNF for ∆ that may better reveal semantic independence. The idea is to

6

perform a limited type of resolution on the CNF prior to invoking the search. In
particular, the strategy, which we will call Resolution Strategy 1, specifies
that whenever there are two clauses of the form α ∨ β ∨X and α ∨ ¬X, where
α and β are clauses and X is a variable, replace the former clause with α ∨ β.
Resolution Strategy 1 makes semantic independence more visible within
the CNF, as demonstrated by the following example. Consider again the AND
gate with inputs A, B, and C and output D. As we have seen, encoding this
gate into CNF according to Syntax 1 results in the following clauses:

¬A ∧ ¬B ∧ ¬C ⇒ ¬D A ∧ ¬B ∧ ¬C ⇒ ¬D
¬A ∧ ¬B ∧ C ⇒ ¬D A ∧ ¬B ∧ C ⇒ ¬D
¬A ∧B ∧ ¬C ⇒ ¬D A ∧B ∧ ¬C ⇒ ¬D
¬A ∧B ∧ C ⇒ ¬D A ∧B ∧ C ⇒ D

Applying Resolution Strategy 1 transforms the clauses as follows:

A ∧B ∧ C ⇒ D ¬A ⇒ ¬D ¬B ⇒ ¬D ¬C ⇒ ¬D

These reduced clauses correspond to Syntax 2’s encoding of the AND gate.
For ISCAS89 circuits, applying Resolution Strategy 1 to Syntax 1 is

very efficient. The last two columns of Table 1 demonstrate what happens to
model count times using Cachet [1]. The most important point is that Resolu-
tion Strategy 1 matches Syntax 2’s performance, even though Syntax 2
had the advantage of utilizing structure from the source domain (gate types),
which was unavailable to Resolution Strategy 1.

It will help at this point to describe two types of structure that can exist in
a circuit: local and global. One approach to encoding a circuit is to construct a
truth table over all variables in the circuit, and for each term that corresponds
to falsehood, generate a clause that outlaws the term. This approach utilizes
no structure and is clearly impractical in most cases. Syntax 1 described ear-
lier represents an improvement that makes use of structure that can be inferred
from the topology of the circuit. In particular, the topology implies a factor-
ization of the global truth table into many smaller truth tables, one for each
gate, that allows us to encode each smaller truth table in isolation. We refer to
this type of structure as global structure. Utilizing global structure makes many
problems practical that would not be otherwise. Syntax 2 goes even further,
paying attention to gate type during the encoding of a specific gate. We refer to
this type of structure as local structure. As we have seen, harnessing local struc-
ture can uncover additional semantic independence, making a large difference in
how efficiently search with decomposition runs. Benefits that arise from exploit-
ing global and local structure have long been realized in the domain of logical
circuits, as Syntax 2 is the standard way of encoding such circuits. However,
these benefits may also exist in other domains, where they are not always fully
exploited. To demonstrate further how both global and local structure can be
utilized to reveal semantic independence, we now turn to a specific application
where CNFs correspond to encodings of Bayesian networks. Although Resolu-
tion Strategy 1 is very efficient when applied to logical circuits, when dealing

7

with Bayesian networks, more can be gained by paying attention to where the
CNF originated.

4 CNF Encodings of Bayesian Networks

The encoding of Bayesian networks into CNFs was proposed in [12], which called
for compiling these CNFs into a tractable form, d-DNNF, allowing probabilistic
inference to be performed in time linear in the size of resulting compilation
(through weighted model counting on the compiled form [10]). More recently, [18]
proposed a similar approach, but using a different CNF encoding and applying
a model counter directly on the CNF, instead of compiling the CNF first. Both
approaches, however, use search with decomposition as the core algorithm, yet
the compilation approach keeps a trace of the search [15].

We will now review the CNF encoding of a Bayesian network as given in [12]
as the specific encoding will play a role in the remainder of the paper. A Bayesian
network is a directed acyclic graph (DAG) and a set of tables called conditional
probability tables (CPTs), one table for each node in the DAG. The CPTs
are analogous to the truth tables of gates in a circuit. Two major differences
are that variables in a CPT can be multi–valued and instead of mapping each
row to truth or falsehood, a CPT maps each row to a real–number called a
parameter.2 Figure 3(a) depicts an example CPT, where variable A and B each
have two values and variable C has three values. When encoding gates of a
circuit, global structure allowed Syntax 1 to encode each gate separately. In a
similar way, each CPT in a network can be encoded in isolation. When encoding
a truth table for a particular logic gate, local structure allowed Syntax 2 to
tailor its encoding to the particular gate type. It can be more difficult to utilize
local structure in a Bayesian network. Tables are not normally associated with
a type, so local structure must be inferred from parameter values.

The encoding that will serve as our starting point, which we will refer to
as Baseline Encoding, captures a large amount of local structure and was
consequently shown in [8] to vastly improve compilation performance on many
benchmark networks. This encoding begins by looking at the network variables.
For each value x of each network variable X, we create in the CNF an indicator
variable λx. For example, for network variable C with values c1, c2, and c3, the
encoding would generate CNF variables λc1 , λc2 , and λc3 . Next, for each network
variable, we generate indicator clauses, which assert that in each model, exactly
one of the corresponding indicator variables is true. For variable C, these clauses
are as follows: λc1 ∨ λc2 ∨ λc3 , ¬λc1 ∨ ¬λc2 , ¬λc1 ∨ ¬λc2 , and ¬λc1 ∨ ¬λc1 . The
encoding then looks at each CPT in isolation. For each non–zero parameter value
that is unique within its CPT, the encoding generates a CNF parameter variable.
For example, the parameters in rows 7–9 in the CPT in Figure 3(a), all equal to
0.333, might generate parameter variable θ4. Finally, for each row in the CPT,
the encoding generates a parameter clause. A parameter clause asserts that the
2 There are other restrictions on the CPTs of a Bayesian network that are not impor-

tant to the current discussion.

8

A B C Pr(c|a, b)

a1 b1 c1 0.7 (θ1)
a1 b1 c2 0.0 (false)
a1 b1 c3 0.3 (θ2)
a1 b2 c1 0.4 (θ3)
a1 b2 c2 0.3 (θ2)
a1 b2 c3 0.3 (θ2)
a2 b1 c1 0.333 (θ4)
a2 b1 c2 0.333 (θ4)
a2 b1 c3 0.333 (θ4)
a2 b2 c1 0.2 (θ5)
a2 b2 c2 0.3 (θ2)
a2 b2 c3 0.5 (θ6)

λa1 ∧ λb1 ∧ λc1 → θ1

¬λa1 ∨ ¬λb1 ∨ ¬λc2

λa1 ∧ λb1 ∧ λc3 → θ2

λa1 ∧ λb2 ∧ λc1 → θ3

λa1 ∧ λb2 ∧ λc2 → θ2

λa1 ∧ λb2 ∧ λc3 → θ2

λa2 ∧ λb1 ∧ λc1 → θ4

λa2 ∧ λb1 ∧ λc2 → θ4

λa2 ∧ λb1 ∧ λc3 → θ4

λa2 ∧ λb2 ∧ λc1 → θ5

λa2 ∧ λb2 ∧ λc2 → θ2

λa2 ∧ λb2 ∧ λc3 → θ6

λa1 ∧ λb1 ∧ λc1 → θ1

¬λa1 ∨ ¬λb1 ∨ ¬λc2

λa1 ∧ λc3 → θ2

λb2 ∧ λc2 → θ2

λa1 ∧ λb2 ∧ λc1 → θ3

λa2 ∧ λb1 → θ4

λa2 ∧ λb2 ∧ λc1 → θ5

λa2 ∧ λb2 ∧ λc3 → θ6

(a) (b) (c)

Fig. 3. (a) A CPT over three variables, (b) Clauses generated by the encoding from
[8] for the CPT, and (c) an equivalent encoding.

conjunction of the corresponding indicators implies θ, where θ is the parameter
variable for the row, or falsehood if the row’s parameter is zero. For example,
the seventh row in Figure 3(a) generates the clause λa2 ∧λb1 ∧λc1 ⇒ θ4, and the
second row generates the clause ¬λa1 ∨ ¬λb1 ∨ ¬λc2 . The encoding in [8] uses a
few additional optimizations, which are unimportant for the current discussion.
The complete set of clauses for the rows of the CPT in Figure 3(a) is shown in
Figure 3(b).

5 Encoding with Local Structure

Baseline Encoding capitalizes on determinism (zero probabilities) and equal
parameters in the network by omitting the generation of parameter variables for
certain parameters. The effect on inference can be dramatic, as was shown in
[8]. However, Baseline Encoding does not go as far as possible to capitalize
on local structure. In this section, we introduce a new encoding method that
retains the advantages of Baseline Encoding while further harnessing local
structure to uncover semantic independence and improve component analysis.

Consider again Figure 3(a) and observe that given values for certain variables,
other variables sometimes become irrelevant. For example, given A = a2 and B =
b1, the probability no longer depends upon C (C has a uninform probability).
Moreover, given values A = a1 and C = c3, variable B becomes irrelevant to
the probability of variable C. This phenomenon is similar to context–specific–
independence (CSI) [7] and can be very powerful. CSI is normally taken to
mean that given values of certain parents (A or B in this case), some other
parent becomes irrelevant to the probability of the child (C). The phenomenon
described here is a more powerful generalization as it also captures cases where
(1) setting one or more parents causes the distribution on the child to become

9

uniform or (2) when setting the child to a certain value makes a parent irrelevant.
This type of structure allows the clauses in Figure 3(b) to be simplified to the
clauses in Figure 3(c), which will tend to have fewer occurrences of irrelevant
variables as we set variables in search process.

Before defining a general procedure for simplifying the clauses of a given
CPT, we observe that because we are working with multi–valued variables, it
makes sense to use a multi–valued form of resolution. We therefore define a logic
over multi–valued variables X. The syntax of the logic is identical to that of
standard propositional logic, except that an atom is an assignment to a variable
in X of a value in its domain. For example, C = c2 is an atom. The semantics is
also like that of standard propositional logic, except that a world, which consists
of an atom for each variable, satisfies an atom iff it assigns the common variable
the same value. Within this logic, a term over X′ ⊆ X is a conjunction of atoms,
one for each variable in X′. Let Γ be a disjunction of terms over X. An implicant
γ of Γ is a term over X′ ⊆ X that implies Γ . A prime implicant γ of Γ is an
implicant that is minimal in the sense that the removal of any atom would result
in a term that is no longer an implicant of Γ .

Algorithm 1 EncodeCPT(φ: CPT) Generates a set of clauses for φ.
Partition the rows of φ into groups so that all rows with the same parameter are in
the same group
for each encoding group Γ do

M ← terms of Γ
θ ← consequent of Γ
P ← the prime implicants of M
for p in P do

I ← encoding of p
if θ = 0 then

assert clause ¬I
else

assert clause I ⇒ θ
end if

end for
end for

Given these definitions, we can encode the network by generating the same
CNF variables and indicator clauses as in Baseline Encoding and by gener-
ating clauses for each CPT according to Algorithm 1. This algorithm encodes
a CPT φ over variables X by first partitioning the CPT into encoding groups,
which are sets of rows that share the same parameter value. Note that each row
in the CPT induces a term over variables X and so each encoding group induces a
set of terms. Moreover, the terms within an encoding group will share a common
parameter variable or all correspond to falsehood. We refer to this variable (or
falsehood) as the consequent of the encoding group. To process encoding group
Γ , we find the prime implicants of Γ ’s terms, and for each prime implicant p,

10

we assert a clause I ⇒ θ, where I is conjunction of indicators corresponding to
p, and θ is the consequent of the encoding group. If the parameter θ equals 0,
we simply generate the clause ¬I. Figure 4 demonstrates this algorithm for the
CPT in Figure 3(a).

The algorithm we use to find prime implicants is an extension of the vener-
able Quine-McCluskey (QM) algorithm (e.g., [14]). QM works only for binary
variables, so we extend it to multi–valued variables in a straightforward manner.
Extensions of the QM algorithm for multi–valued variables are common, some
of them defining a prime implicant differently (e.g., [16]). The definition given
here was found effective for the purpose at hand.

Encoding Param Conse- Prime
Group Value Terms quent Implicants Encoding

Γ1 .7 a1b1c1 θ1 a1b1c1 λa1 ∧ λb1 ∧ λc1 ⇒ θ1

Γ2 0 a1b1c2 false a1b1c2 ¬λa1 ∨ ¬λb1 ∨ ¬λc2

Γ3 .3 a1b1c3, a1b2c2, a1b2c3, a2b2c2 θ2 a1c3, b2c2 λa1 ∧ λc3 ⇒ θ2,
λb2 ∧ λc2 ⇒ θ2

Γ4 .4 a1b2c1 θ3 a1b2c1 λa1 ∧ λb2 ∧ λc1 ⇒ θ3

Γ5 .333 a2b1c1, a2b1c2, a2b1c3 θ4 a2b1 λa2 ∧ λb1∧ ⇒ θ4

Γ6 .2 a2b2c1 θ5 a2b2c1 λa2 ∧ λb2 ∧ λc1 ⇒ θ5

Γ7 .5 a2b2c3 θ6 a2b2c3 λa2 ∧ λb2 ∧ λc3 ⇒ θ6

Fig. 4. Encoding a CPT using prime implicants.

The new encoding method described defines a structured resolution strategy
which we will refer to as Resolution Strategy 2. The strategy is structured
in the sense that rather than working on a set of clauses, the strategy works on a
partition of clauses, and restricts resolution to clauses within the same element
of the partition. Each element in the partition corresponds to clauses belonging
to the same CPT and having the same consequent.

We close this section with a few observations. First, even though computing
prime implicants can be expensive in general, Resolution Strategy 2 adds
little overhead to Baseline Encoding. This efficiency stems from the small
number of variables that are involved in the computation (those appearing in a
CPT). This is to be contrasted with our first resolution strategy, which is ap-
plied to variables in the whole CNF. Second, there is a strong similarity between
the two strategies. In particular, both are capable of removing occurrences of
literals, transforming a set of terms into a more minimal set, and in this way
revealing semantic independence. Third, the main idea presented might be ap-
plied more generally to other domains where a CNF is encoded from a set of
functions over finitely valued variables. As we have seen, two examples are truth
tables and Bayesian networks. Other examples are Markov networks and influ-
ence diagrams. Finally, CNFs created using Resolution Strategy 2 will be
smaller than those created using Baseline Encoing. A natural question is how

11

much of any gains achieved arise from smaller CNFs as opposed to increased de-
composability? It is not clear how one would conduct an analysis to answer this
question, but the magnitude of improvements obtained clearly demonstrate that
reduction in size could not be solely responsible.

6 Experimental Results

In this section, we examine a number of Bayesian networks. For each, we gener-
ate a CNF according to Baseline Encoding and another using Resolution
Strategy 2. We compile the CNFs into d-DNNF using the c2d compiler [3,
13] and compare performance. Table 2 shows five sets of networks. The first set
consists of ISCAS89 circuits converted to Bayesian networks by placing uniform
probability distributions on inputs and encoding other gates with determinis-
tic CPTs (all parameters 0 or 1). The blockmap (bm) networks were generated
from relational probabilistic models and were first used in [9] to demonstrate the
effectiveness of the compilation approach to networks of this type. The OR and
grid (gr) networks were used in [18] to also show the effectiveness of weighted
model counting for probabilistic inference, this time using search rather than
compilation. From the large number of OR and grid networks, which are divided
into sets of ten, we selected sets that provided a challenge for c2d, while still
possible to compile within 2GB of memory using Resolution Strategy 2.
Finally, the last set consists of benchmark networks from various sources that
have long been used to compare probabilistic inference algorithms. Experiments
ran on a 1.6Ghz Pentium M with 2GB of memory. The implementation of the
encoding and compiling algorithms have been packaged in the publicly available
tools Ace 1.1 [4] (Resolution Strategy 2 for encoding Bayesian networks)
and c2d 2.2 [3] (Resolution Strategy 1 for general CNFs).

For each network, Table 2 first lists the maximum cluster size as computed
by a minfill heuristic. This measure is important because inference algorithms
that do not use local structure run in time that is exponential in this number.
We next list encoding times for the two encoding algorithms. The main point
is that the resolution taking place in Resolution Strategy 2 is not adding
significant time to the encoding. Compile times then reveal the extent to which
Resolution Strategy 2 helps. In particular, we see that, except for one case,
compile times improve anywhere from 1.45 times to over 17 times. Moreover,
many of the grid networks and also barley caused the compiler to run out of
memory (as indicated by dashes) when applied to Baseline Encoding but
compiled successfully using Resolution Strategy 2. The last three columns
show the improvement to the size (number of edges) of the resulting compila-
tions. This size is important to demonstrate space requirements and also because
online inference, which may be repeated a great many times for a given appli-
cation, runs in time that is linear in this size. Here, we see that on networks
where Baseline Encoding was successful, sizes were sometimes comparable
and otherwise significantly reduced.

12

Max. Baseline RS 2 Baseline RS 2 Imp- Baseline RS 2 Imp-
Clst. Enc. Enc. Comp. Comp. rove- Comp. Comp. rove-

Network Size Time Time Time Time ment Size Size ment

s1238 61.0 0.91 0.86 11.32 1.83 6.19 853,987 263,786 3.24
s713 19.0 0.80 0.79 1.40 0.35 4.00 67,428 37,495 1.80
s526n 18.0 0.73 0.73 0.23 0.12 1.92 10,088 10,355 0.97
s1196 54.0 0.86 0.83 6.16 1.33 4.63 685,254 189,381 3.62
s526 18.0 0.69 0.68 0.22 0.14 1.57 13,352 14,143 0.94
s953 70.0 0.79 0.80 13.88 2.19 6.34 691,220 205,043 3.37
s641 19.0 0.84 0.79 2.54 0.38 6.68 78,071 36,555 2.14
s1488 46.0 0.89 0.88 1.65 0.56 2.95 333,629 125,739 2.65
s1494 48.0 0.88 0.90 1.82 0.44 4.14 419,274 85,469 4.91
s832 27.0 0.75 0.76 1.38 0.24 5.75 62,756 32,715 1.92
s838.1 13.0 0.79 0.80 0.43 0.20 2.15 49,856 30,899 1.61
s1423 24.0 0.91 0.91 56.62 14.54 3.89 3,010,821 994,518 3.03

bm-05-03 19.0 1.04 1.10 0.29 0.20 1.45 19,190 10,957 1.75
bm-10-03 51.0 2.90 3.03 19.57 4.97 3.94 938,371 275,089 3.41
bm-15-03 62.0 7.76 7.39 254.96 44.07 5.79 7,351,823 1,460,842 5.03
bm-20-03 90.0 17.96 17.40 1,505.24 388.65 3.87 37,916,087 6,195,000 6.12
bm-22-03 107.0 26.26 25.62 4,869.64 748.13 6.51 72,169,022 14,405,730 5.01

or-60-20-1 24.0 0.69 0.77 338.48 54.47 6.21 6,968,339 7,777,867 0.90
or-60-20-3 25.0 1.04 0.69 1.40 0.77 1.82 104,275 119,779 0.87
or-60-20-5 27.0 0.74 0.70 728.36 118.17 6.16 17,358,747 14,986,497 1.16
or-60-20-7 26.0 1.08 0.71 250.72 97.13 2.58 11,296,613 12,510,488 0.90
or-60-20-9 25.0 0.73 0.70 19.58 7.17 2.73 1,011,193 1,060,217 0.95

gr-50-16-1 24.0 0.76 0.75 137.25 43.95 3.12 14,692,963 5,739,854 2.56
gr-50-16-2 25.0 0.86 4.52 - 292.42 - - 35,473,955 -
gr-50-16-3 24.0 0.92 0.74 65.03 40.45 1.61 7,755,318 5,280,027 1.47
gr-50-16-4 24.0 1.21 0.80 407.60 46.83 8.70 35,950,912 6,128,859 5.87
gr-50-16-5 25.0 0.88 0.82 - 26.70 - - 3,431,139 -
gr-50-16-6 25.0 0.85 0.79 44.40 22.99 1.93 4,598,373 3,159,007 1.46
gr-50-16-7 24.0 0.85 0.84 51.68 2.99 17.28 6,413,897 421,060 15.23
gr-50-16-8 24.0 0.84 0.81 86.19 32.29 2.67 10,341,755 4,280,261 2.42
gr-50-16-9 24.0 0.84 0.94 - 60.55 - - 7,360,872 -
gr-50-16-10 24.0 0.84 0.83 133.70 287.08 0.47 15,144,602 33,561,672 0.45
gr-50-18-1 27.0 1.02 0.87 411.45 48.36 8.51 39,272,847 6,451,916 6.09
gr-50-18-2 28.0 0.94 0.92 - 172.13 - - 19,037,468 -
gr-50-18-3 27.0 0.91 0.86 362.90 29.18 12.44 32,120,267 2,507,215 12.81
gr-50-18-4 28.0 1.62 0.98 - 139.81 - - 15,933,651 -
gr-50-18-5 27.0 1.26 1.07 - 158.13 - - 18,291,116 -
gr-50-18-6 28.0 1.05 0.86 403.96 52.55 7.69 37,411,619 7,111,893 5.26
gr-50-18-7 27.0 0.98 0.98 - 79.97 - - 9,439,318 -
gr-50-18-8 28.0 0.93 0.89 - 42.17 - - 5,036,670 -
gr-50-18-9 27.0 0.96 0.87 - 68.51 - - 7,890,645 -
gr-50-18-10 28.0 1.00 1.00 - 188.66 - - 22,387,841 -

water 20.8 1.04 0.95 2.81 1.73 1.62 101,009 103,631 0.97
pathfinder 15.0 2.97 1.86 12.45 2.86 4.35 36,024 33,614 1.07
diabetes 18.2 10.76 7.77 6,281.23 3,391.18 1.85 15,426,793 15,751,044 0.98
mildew 20.7 13.37 8.16 6,245.45 1,869.92 3.34 1,693,750 1,696,139 1.00
barley 23.4 4.36 6.75 - 14,722.19 - - 37,321,497 -

Table 2. Results for compiling a number of networks using Baseline Encoding and
the Resolution Strategy 2 encoding. All times are in seconds..

13

Before closing this section, we place these results into a broader perspective.
The first critical point is that on many of these networks, inference approaches
that do not utilize local structure would simply fail, because of large cluster sizes.
The second point is that the gains that Resolution Strategy 2 achieves are
particularly noteworthy, since they are being compared to a state–of–the–art
technique for utilizing local structure [8]. The approach described in [18] har-
nesses local structure within the Bayesian network, applies the Cachet model
counter to a different CNF encoding, and has been shown to be successful on
some of the networks considered here. Table 3 repeats some of the results re-
ported in [18] with regards to networks in Table 2. In particular, for each of
several sets of networks, search times running on a dual 2.8GHz processor with
4GB of memory are shown. Each time represents the median over ten networks.
Also shown in the table are median compile times we achieved for the two en-
codings considered in this paper. As can be seen from the table, the times are
comparable for the OR networks, but both Baseline Encoding and Resolu-
tion Strategy 2 allow compilation to run more efficiently on grid networks
(even though compilation would normally require much more overhead than
search). We note here that the grid networks in Table 3 were chosen from a
large number of such networks because they represent some of the hardest of
the group (they contain the least amount of determinism and any larger grids
having the same degree of determinism cause Cachet to fail).

Network Cachet Baseline Encoding Resolution Strategy 2
Set Search Time (s) Compile Time (s) Compile Time (s)

grid-50-16 890 135 42
grid-50-18 13,111 592 74
or-60-5 1.7 3.9 1.9
or-60-10 3.9 24.9 8.7
or-60-20 54 294.6 64.8

Table 3. Median times for Cachet search and for c2d compilation using Baseline
Encoding and Resolution Strategy 2.

7 Conclusion

We observe in this paper that the particular syntax of a CNF can be critical for
the performance of search–with–decomposition algorithms, as it can lead to a gap
between semantic and syntactic independence that can hinder the identification
of semantically independent components. We provide two resolutions strategies,
one general and one more structured, for pre–processing a CNF with the aim of
reducing the gap between syntactic and semantic independence. We apply our
proposed techniques to general CNF encodings, and to more specific ones corre-
sponding to Bayesian networks. Experimental results show large improvements

14

when applying state of the art search–with–decomposition algorithms, includ-
ing the Cachet model counter and the c2d compiler, allowing us to solve some
problems that have previously exhausted available resources.

References

1. The cachet model counter, http://www.cs.washington.edu/homes/kautz/Cachet.
2. ISCAS89 Benchmark Circuits, http://www.cbl.ncsu.edu/www/CBL Docs/iscas89.html.
3. The c2d compiler, http://reasoning.cs.ucla.edu/c2d.
4. The Ace compiler, http://reasoning.cs.ucla.edu/ace.
5. Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Dpll with caching: A new

algorithm for #SAT and Bayesian inference. Electronic Colloquium on Computa-
tional Complexity (ECCC), 10(003), 2003.

6. R. Bayardo and J. Pehoushek. Counting models using connected components. In
AAAI, pages 157–162, 2000.

7. Craig Boutilier, Nir Friedman, Moisés Goldszmidt, and Daphne Koller. Context–
specific independence in Bayesian networks. In Proceedings of the 12th Conference
on Uncertainty in Artificial Intelligence (UAI), pages 115–123, 1996.

8. Mark Chavira and Adnan Darwiche. Compiling Bayesian networks with local
structure. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1306–1312, 2005.

9. Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Compiling relational
Bayesian networks for exact inference. In Proceedings of the Second European
Workshop on Probabilistic Graphical Models (PGM), pages 49–56, 2004.

10. Adnan Darwiche. On the tractability of counting theory models and its application
to belief revision and truth maintenance. Journal of Applied Non-Classical Logics,
11(1-2):11–34, 2001.

11. Adnan Darwiche. A compiler for deterministic, decomposable negation normal
form. In Proceedings of the Eighteenth National Conference on Artificial Intelli-
gence (AAAI), pages 627–634, Menlo Park, California, 2002. AAAI Press.

12. Adnan Darwiche. A logical approach to factoring belief networks. In Proceedings
of KR, pages 409–420, 2002.

13. Adnan Darwiche. New advances in compiling CNF to decomposable negational
normal form. In Proceedings of European Conference on Artificial Intelligence,
pages 328–332, 2004.

14. John P. Hayes. Introduction to Digital Logic Design. Addison Wesley, 1993.
15. Jinbo Huang and Adnan Darwiche. Dpll with a trace: From sat to knowledge

compilation. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI), pages 156–162, 2005.

16. M. M. Mirsalehi and T. K. Gaylord. Logical minimization of multilevel coded
functions. Applied Optics, 25:3078–3088, September 1986.

17. Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi.
Combining component caching and clause learning for effective model counting. In
SAT, 2004.

18. Tian Sang, Paul Beame, and Henry Kautz. Solving Bayesian networks by weighted
model counting. In Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI-05), volume 1, pages 475–482. AAAI Press, 2005.

