
Functional Treewidth: Bounding Complexity in
the Presence of Functional Dependencies

Yuliya Zabiyaka and Adnan Darwiche

Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095-1596, USA,
{yuliaz,darwiche}@cs.ucla.edu

Abstract. Many reasoning problems in logic and constraint satisfaction
have been shown to be exponential only in the treewidth of their inter-
action graph: a graph which captures the structural interactions among
variables in a problem. It has long been observed in both logic and con-
straint satisfaction, however, that problems may be easy even when their
treewidth is quite high. To bridge some of the gap between theoretical
bounds and actual runtime, we propose a complexity parameter, called
functional treewidth, which refines treewidth by being sensitive to non–
structural aspects of a problem: functional dependencies in particular.
This measure dominates treewidth and can be used to bound the size of
CNF compilations, which permit a variety of queries in polytime, includ-
ing clausal implication, existential quantification, and model counting.
We present empirical results which show how the new measure can pre-
dict the complexity of certain benchmarks, that would have been con-
sidered quite difficult based on treewidth alone.

1 Introduction

The complexity of a number of problems in logic, constraint satisfaction, and
probabilistic reasoning is bounded by the treewidth of their interaction graph [8,
3, 9, 12]. The interaction graph is an undirected graph, with nodes representing
variables in the given problem, and edges representing direct interactions be-
tween variables. For example, the interaction graph for a CNF contains an edge
between two variables iff they appear in the same clause. Treewidth is a graph
theoretic parameter, which measures the extent to which the graph resembles a
tree [12].

Treewidth, however, appears to be too loose of a complexity bound in some
cases. In particular, many problem instances that have large treewidth tend to
be solvable in time and space that is much smaller than predicted by treewidth.
The reason for the discrepancy between theoretical bounds and actual runtime
is due to aspects of a problem structure, in particular determinism, which are
not captured in the interaction graph and, hence, do not factor into the notion
of treewidth. For example, for CNFs, treewidth is insensitive to the particular

literals appearing in a clause, being only a function of the variables appearing
in such a clause.

To bridge some of the gap between theoretical bounds based on treewidth
and actual runtime, we propose in this paper a more refined parameter, which we
call functional treewidth, that is sensitive to other aspects of a problem structure,
beyond its interaction graph. In particular, functional treewidth is based on both
the interaction graph and functional dependencies that are known to hold for
the given problem. A functional dependency is a statement of the form V → V ,
where V is a set of variables and V is a single variable, indicating that each
assignment of values to V implies a particular value for V .

Functional treewidth dominates treewidth and is therefore no easier to com-
pute than treewidth, which is known to be NP–complete [1]. However, we show
in this paper that if a CNF has functional treewidth wf , then it has a compilation
which is exponential only in wf . This compilation is in the form of a determin-
istic, decomposable negation normal form (d-DNNF), which allows a number of
queries to be answered in polytime, including clausal entailment, model count-
ing and existential quantification [7]. In fact, we show that one of the simplest
algorithms for compiling CNFs into d-DNNFs is capable of producing compila-
tions that are only exponential in the functional treewidth. We note here that
these results apply to the compilation of Bayesian networks as well, which can
be reduced to the problem of compiling CNFs into d-DNNFs [5].

This paper is structured as follows. Section 2 introduces the new parame-
ter of functional treewidth. Section 3 discusses the compilation of CNFs into
d-DNNFs, showing the existence of d-DNNFs that are only exponential in func-
tional treewidth. Section 4 presents a method for approximating functional
treewidth, together with experimental results. Section 5 presents further ex-
perimental results, showing how functional treewidth can be used to bound the
size of d-DNNF compilations. Finally, Section 6 closes with some concluding
remarks.

2 Functional Treewidth

The treewidth of an (interaction) graph is usually defined in terms of secondary
structures, such as elimination orders, jointrees1, or dtrees, which can also be
used to drive algorithms whose complexity is only exponential in treewidth.
A number of these definitions are discussed in [6], with polytime transforma-
tions between these structures. We will base our treatment in this paper on
dtrees, since these have been used to drive algorithms for compiling CNFs into
d-DNNFs.

A dtree (decomposition tree) for a CNF ∆ is a full binary tree whose leaves
are in one–to–one correspondence with the CNF clauses; see Figure 1. We will
now define the width of a dtree, where the treewidth of CNF ∆ is the width of

1 Jointrees correspond to tree decompositions as known in the graph theoretic litera-
ture.

Fig. 1. A dtree (left) for the CNF equivalent to (a∨ b ≡ c)∧ (a∧ b ≡ e) and its clusters
(right). The width of this dtree is 3.

its best dtree (the one with smallest width). This will also correspond to the
treewidth of the interaction graph for CNF ∆.

Before we define the width of a dtree, we need some additional notation.
First, as is common with binary trees, we will identify a dtree with its root
node. And for a dtree node T , we will use T l and T r to denote the left and
right children of T , respectively. Moreover, for a leaf node T , the variables of T ,
vars(T), are just the variables appearing the clause associated with T . For an
internal node T , vars(T) = vars(T l) ∪ vars(T r). We will also use vars↑(T) to
denote

⋃
T ′ vars(T ′), where T ′ is a leaf node that is not a descendant of T .

The width of a dtree is defined in terms of the clusters of its nodes T ,
cluster(T). The cluster for a leaf node T is vars(T). The cluster for an in-
ternal node T is (vars(T l) ∩ vars(T r)) ∪ (vars(T) ∩ vars↑(T)). The width of a
dtree is then the size of its largest cluster minus one. Figure 1 depicts a dtree
with its clusters, leading to a width of 3.

We will next define functional treewidth for a given CNF and a set of func-
tional dependencies that are known to hold in the CNF. A functional dependency
is a statement indicating that a variable, say, c, is functionally determined by
a set of other variables, say, {a, b}. The functional dependency is denoted by
{a, b}→c in this case. We will also find it useful to define the closure of a set of
variables V under some functional dependencies FD, denoted V+ [11]. This set
includes V and other variable that can be derived using the dependencies FD.
Consider the following dependencies for example:

{a, b} → c,
{b, c} → d,
{d} → e

We then have {a, b}+ = {a, b, c, d, e}, {a}+ = {a} and {d}+ = {d, e}.
The basic intuition behind functional treewidth is that not all instantiations

of a cluster in a dtree are indeed consistent with the given CNF, and that
complexity can be linear in the number of consistent instantiations instead of
all instantiations. Moreover, by reasoning about the functional dependencies
that are known to hold in the CNF, one can bound the number of consistent
instantiations for a given cluster. To provide such a bound, we need the notion
of a (functional) implicant.

Definition 1. Let FD be a set of functional dependencies over variables V, and
let X be a subset of V. We will say that variables I are a minimal implicant for

Fig. 2. Dtree (left) and functional clusters (right).

variables X under FD iff X ⊆ I+ and for any other set of variables J where
X ⊆ J+, we have |I + | ≤ |J + |.
The importance of minimal implicants is this: if a cluster has a minimal implicant
of size m, then it has no more than 2m instantiations which are consistent with
the given CNF. Note that the identity of the minimal implicant is not essential
for this bound, only its size is.2 Note also that this notion is different from the
notion of a key as employed in database theory in the context of functional
dependencies, where a key for X is an implicant for X that is also a subset of
X.

We are now ready to define functional treewidth.

Definition 2. Let T be a node in a dtree for CNF ∆ with functional depen-
dencies FD. A functional cluster for node T , denoted clusterf (T), is a minimal
implicant for cluster(T) under dependencies FD.

Figure 2 depicts functional clusters for the dtree introduced in Figure 1.

Definition 3. Let T be a dtree for CNF ∆ with functional dependencies FD.
The functional width of dtree T is the size of its maximal functional cluster
minus 1. The functional treewidth of CNF ∆ is the functional width of its best
dtree (the one with the smallest functional cluster).

It should be clear that functional treewidth can be no greater than treewidth,
with equality in case the set of functional dependencies is empty. We will show
constructively in the following section that if a CNF ∆ has functional treewidth
wf , it must then have a d-DNNF compilation exponential only in wf .

3 The Compilability of CNFs

We will consider in this section the compilability of CNFs into d-DNNFs, which
is a tractable form that supports in polytime queries such as clausal entailment,
model counting, and existential quantification [7]. This tractable form is also
closed under conditioning (the setting of variable values), allowing an exponential
number of queries to be answered each in polytime.
2 If an algorithm is to take advantage of functional dependencies to improve its running

time, the identity of the minimal implicant may matter then.

Fig. 3. A d-DNNF.

Algorithm 1 cnf2ddnnf(T : dtree, α: instantiation): returns a d-DNNF.
1: γ = project(α, context(T))
2: result = CACHET (γ)
3: if result 6= NIL then
4: return result
5: if T is a leaf then
6: result = clause2ddnnf(cnf(T), α)
7: else
8: result = ∨βcnf2ddnnf(T l, α ∧ β) ∧ cnf2ddnnf(T r, α ∧ β) ∧ β
9: where β ranges over all instantiations of cutset(T)

10: insert CACHET (γ, result)
11: return result

A d-DNNF is a rooted directed acyclic graph in which each leaf node is
labeled with a literal, true or false, and each internal node is labeled with a
conjunction or disjunction; see Figure 3. For any node N in a d-DNNF graph,
vars(N) denotes all propositional variables that appear in the subgraph rooted
at N , and ∆(N) denotes the formula represented by N and its descendants. The
nodes in a d-DNNF have the following two properties:

– Decomposability: vars(Ni) ∩ vars(Nj) = ∅ for any two children Ni and
Nj of an and-node N .

– Determinism: ∆(Ni) is inconsistent with ∆(Nj) for any two children Ni

and Nj of an or-node N .

Algorithm 1 provides a procedure for compiling a CNF into a d-DNNF,
adapted from [4]. We will explain the intuition behind the algorithm shortly,
but we first point out its complexity. If the algorithm is passed a dtree with n
nodes and width w, it will generate a d-DNNF for the corresponding CNF in

Algorithm 2 clause2ddnnf(l1 ∨ . . . ∨ lm: clause, α: instantiation): returns a
d-DNNF for clause (l1 ∨ . . . ∨ lm)|α
1: if m = 1 then
2: return l1|α
3: else if α |= ¬l1 then
4: return clause2ddnnf(l2 ∨ . . . ∨ lm, α)
5: else if α |= l1 then
6: return true
7: else
8: return l1 ∨ (¬l1 ∧ clause2ddnnf(l2 ∨ . . . ∨ lm, α))

O(nw2w) time. The algorithm must initially be called with α being the empty
instantiation.

The main technique in Algorithm 1 is that of recursive decomposition. Specif-
ically, given a CNF ∆, we partition its clauses into ∆l and ∆r. If ∆l and ∆r

share no variables, we can then compile them independently and simply conjoin
the results. Suppose, however, that the two sets turn out to share a variable v.
We will then use what is known as Boole’s or Shannon’s expansion:

∆ = (v ∧∆l|v ∧∆r|v) ∨ (¬v ∧∆l|¬v ∧∆r|¬v),

where ∆|v (∆|¬v) denotes the process of conditioning, which consists of replacing
the occurrences of variable v by true (false) in ∆. This recursive decomposition
process is then governed by the given dtree, since each dtree node can be viewed
as inducting a binary partition on the clauses below that node.

The algorithm makes use of two sets of variables at each node T . First, is
cutset(T) which is the set of variables that we must condition on so we can
decompose the clauses below node T , ∆(T), into those below child T l, ∆(T l),
and those below child T r, ∆(T r). Note that by the time we reach node T in the
recursive decomposition process, the cutsets of all ancestors of node T must be
instantiated. These variables are called acutset(T), for ancestoral cutset of node
T . Hence, cutset(T) is defined as vars(T l) ∩ vars(T r)− acutset(T).

The second set of variables used at node T is context(T) = acutset(T) ∩
vars(T). These are variables that are guaranteed to be set when we recurse on
node T , and that also appear in clauses below T . Any two recursive calls to
node T which agree on the value of variables context(T) must return equivalent
answers. Hence, the algorithm maintains a cache at each node indexed by the
instantiations of context(T) to avoid recursing multiple times on the same sub-
problem. We note here that for an internal dtree node T , cutset(T)∪context(T)
is actually the cluster of node T as defined in the previous section.

Before we present the central result in this section, we point out the follow-
ing about Algorithm 1. Figure 4 depicts the d-DNNF substructure that a call
cnnf2dnnf(T,) will contribute to the final d-DNNF. In particular, for every
instantiation γ of context(T), Algorithm 1 will produce an OR–node, and for
each instantiation β of cutset(T) (under a given context instantiation γ), it will

Fig. 4. The d-DNNF substructure constructed by cnf2ddnnf(T, α) at node T .

produce an AND–node. In fact, the contributed substructures can be exponen-
tial in the size of cluster(T). In particular, the call will contribute 2|context(T)|

OR–nodes, and for each such node, it will contribute 2|cutset(T)| AND–nodes as
children. Since cutset(T) and context(T) share no variables by definition, the
size of the contributed structure is then

2|cutset(T)∪context(T)| = 2|cluster(T)|.

Our central result is then as follows.

Theorem 1. If Algorithm 1 is passed a dtree with n nodes, m variables and
functional treewidth wf , it will return a d-DNNF of size O((n + m)2wf

).3

This basically shows that if a CNF ∆ has a functional treewidth of wf , then it
must have a d-DNNF compilation of size O((n+m)2wf

). In fact, for cluster(T),
only instantiations which are consistent with the CNF will contribute structures
to the final d-DNNF compilations, as shown in Figure 4. The proof of Theorem 1
is given in the Appendix.

4 Approximating Functional Treewidth

Determining the functional width of a dtree requires the computation of minimal
implicants, which includes the computation of minimal keys as a special case (a
problem known to be NP-complete [10]). We consider in this section a method
for approximating functional width of a given dtree and present a number of
empirical results, showing its effectiveness.

3 Alternatively, we can bound the size of produced d-DNNF by O(nw2wf

), where w
is the width of a dtree.

Our basic method for computing minimal implicants for cluster(T) is based
on an exhaustive procedure which searches for implicants of increasing sizes, up
to size k = |cluster(T)|. This procedure is not practical though given the number
of candidate implicants we need to consider, which is a function of both k and
the number of CNF variables (from which we need to compute an implicant).
We improve this procedure by not involving all CNF variables in the analysis,
but only those that can be reached by traversing the functional dependencies
backward, starting from variables in cluster(T). We also approximate the pro-
cedure if this is not sufficient by restricting the set of variables from which the
implicant is computed. In particular, we restrict our implicants to the following
sets, with decreasing size: (acutset(T)∪vars(T))+, (acutset(T)∪ cluster(T))+,
and cluster(T). Our method will switch from one approximation to the next
if it examines more than a certain number of candidates, finally giving up and
returning cluster(T) as the approximation if none of the tried approximations
yield a smaller set. Another approximation technique is to try to find implicants
for cutset(T) and context(T) separately, instead of cluster(T), as that provides
more specific choices for reducing the set of variables from which to draw an
implicant from.

To evaluate the effectiveness of proposed approximations, we experimented
with many benchmarks with abundance of (easily recognizable) functional de-
pendencies. This included various digital circuits from the LGSynth93 suite
(http://www.bdd-portal.org/benchmarks.html), and grid CNFs from [13] which
come with varying degrees of functional dependencies. Table 1 depicts results for
the LGSynth93 suite, showing exponential improvements in the bounds based
on (approximated) functional treewidth compared to those based on (approx-
imated) treewidth. This basically allows us to prove the compilability of cor-
responding CNFs using (approximate) functional treewidth, even though the
CNFs have very large (approximate) treewidths.

Grid networks were defined in [13]. They are N × N Bayesian networks
with variables denoted Xi,j for 1 ≤ i, j ≤ N , where each variable Xi,j has
parents Xi−1,j and Xi,j−1 when the corresponding indices are greater than zero.
A fraction of the nodes, equal to d ratio, is determined by their parents (half of
those nodes determined by both parents and another half by a single parent).
Table 2 depicts results on CNF encodings of grid networks, showing how the
(approximated) functional treewidth gets smaller as we increase the amount of
determinism.

5 Bounding the Size of CNF Compilations

We have evaluated in the previous section the quality of our approximations
for functional treewidth by comparing them to treewidth. In this section, we do
another comparison with the actual size of d-DNNFs computed by cnf2ddnnf.
To be able to perform this comparison, we had to restrict ourselves to problems
whose (approximate) treewidth is manageable (≤ 20) since the time complexity
of cnf2ddnnf is exponential in this treewidth. Hence, our results in this section

cnf w wf dtree nodes m n a time (min)

5xp1 27 8 1563 296 782 35 0.59

5xp1 ok 19 7 1253 255 627 9 0.23

9sym 51 14 2403 442 1202 155 1.89

9sym.scan ok 35 9 2195 439 1098 85 1.44

9symml 31 13 1901 376 951 67 1.03

alu2 55 17 4551 833 2276 686 15.32

apex2.scan ok 47 39 3869 784 1935 322 6.00

C1355 32 26 4775 979 2388 702 11.28

C1908 38 34 3769 770 1885 915 5.80

C2670 29 26 5985 1407 2993 415 11.19

C880 24 24 2949 633 1475 192 1.71

clip 58 12 3881 716 1941 219 6.09

clip ok 29 14 1577 316 789 49 0.49

duke2 66 41 3743 689 1872 375 5.64

e64 83 67 4875 899 2438 633 10.89

ex4p 22 17 4497 1014 2249 197 3.74

f51m 28 12 1853 347 927 49 0.66

frg1 47 25 4541 834 2271 383 11.46

inc 20 7 1483 299 742 14 0.27

rd53 19 10 717 138 359 19 0.15

rd73 37 7 2871 536 1436 168 4.47

rd84 42 22 5331 985 2666 605 12.02

sao2 34 17 1871 346 936 155 1.18

sct 18 11 1293 266 647 45 0.32

sqrt8ml 16 10 1781 363 891 174 1.80

squar5 25 12 885 167 443 62 0.64

term1 45 25 5471 1064 2736 342 8.88

ttt2 22 15 4017 774 2009 192 4.49

vda 101 51 6691 1180 3346 772 31.86

vg2 58 33 4063 748 2032 235 4.72

x4 25 23 5919 1199 2960 281 8.71

z4ml 22 11 1581 294 791 29 0.48

Table 1. LGsynth93 suite: n is number of clauses, m is number of variables, and a
is the number of clusters for which the functional cluster was not necessarily minimal
(approximated).

N× N d-ratio w wf dtree nodes m n a time (min)

10× 10 50 15 13 455 100 228 27 0.01

10× 10 75 15 9 575 100 288 49 0.01

10× 10 100 15 1 627 100 314 0 0.02

14× 14 50 21 18 835 196 418 37 0.02

14× 14 75 21 17 1091 196 546 252 0.06

14× 14 100 21 1 1295 196 648 0 0.13

18× 18 50 27 26 1293 324 647 62 0.07

18× 18 75 27 23 1767 324 884 408 0.19

18× 18 100 27 1 2155 324 1078 0 0.59

22× 22 50 33 32 2073 484 1037 138 0.25

22× 22 75 33 30 2709 484 1355 885 0.63

22× 22 100 33 1 3269 484 1635 0 1.97

26× 26 50 39 36 2927 676 1464 229 0.60

26× 26 75 39 34 3675 676 1838 848 1.74

26× 26 100 40 1 4569 676 2285 89 6.73

30× 30 50 46 42 3940 900 1970 319 2.20

30× 30 75 43 38 5043 900 2522 1682 4.07

30× 30 100 47 3 6125 900 3063 451 13.10

34× 34 50 52 49 5083 1156 2542 361 3.23

34× 34 75 51 47 6536 1156 3268 1950 4.68

34× 34 100 52 27 7855 1156 3928 1447 48.93

Table 2. Grid networks.

are to some extent biased towards problems that are somewhat easy due to the
relatively small clusters involved.

For a set of circuit benchmarks from the suite LGsynth93, we extracted
CNFs together with functional dependencies: for every gate constructing a func-
tional dependency from its inputs to its output. For every CNF we constructed
a dtree using hypergraph partitioning method [6], approximated its treewidth
w and approximated its functional width wf . Next, we bounded the number of
edges that every node T will contribute to the d-DNNF based on on the size
of clusterf (T). Using this procedure we got two bounds on the number of d-
DNNF edges: a bound based on structural clusters s-bound, and a bound based
on functional clusters f-bound. We then ran Algorithm 1 and calculated the true
number of edges in every d-DNNF e-count. Tables 3 and 4 depict the results
of our experiments. To make the assessment of the quality of approximations
easier, we also report s/f = s-bound/f-bound and f/e =f-bound/e-count. As f/e
approaches 1, our functional treewidth bounds get closer to the true size of com-
pilation. The point that is worth noting is that even in the cases where w and
wf are quite close, the bound provided by functional treewidth can still be much
smaller than the one based on treewidth since our bounds are a function of all
clusters in the dtree, not just the largest ones (captured by width).

cnf A n m s-bound f -bound e-count s/f f/e w wf Tc(s) Tw(s)

5xp1 A 627 255 7066536 26246 21427 269.24 1.22 19 7 4.92 12.30

apex7 A 1147 493 2246904 148576 35994 15.12 4.13 16 11 0.72 48.66

b1 E 66 29 5316 1266 919 4.20 1.38 8 3 0.00 0.05

b12 A 402 174 715024 62318 23887 11.47 2.61 15 11 0.84 2.52

b9 A 551 256 449264 69156 36807 6.50 1.88 15 11 0.20 6.17

bw A 844 337 20659544 25464 19858 811.32 1.28 20 5 37.25 74.20

C17 E 30 17 900 556 355 1.62 1.57 4 3 0.01 0.02

C432 A 946 403 4446852 829182 53043 5.36 15.63 17 15 3.09 51.02

c8 A 1091 444 11843932 431312 98070 27.46 4.40 19 13 16.77 87.19

cc A 302 140 19876 8042 5532 2.47 1.45 8 5 0.05 1.11

cht A 1243 515 310124 44348 32945 6.99 1.35 12 7 0.20 42.72

cm138a A 74 35 3156 1738 1268 1.82 1.37 6 4 0.00 0.06

cm150a A 364 165 28672 8464 6458 3.39 1.31 8 6 0.03 2.55

cm151a A 176 82 12224 4028 3074 3.03 1.31 8 5 0.01 0.48

cm152a A 117 54 14276 5134 2287 2.78 2.24 8 7 0.01 0.19

cm162a A 238 107 15028 6306 4034 2.38 1.56 7 7 0.01 0.80

cm163a A 230 106 13708 5644 3873 2.43 1.46 7 6 0.00 0.75

cm42a E 84 37 4044 1796 1381 2.25 1.30 6 4 0.00 0.08

cm82a A 116 52 5416 2012 1528 2.69 1.32 5 3 0.00 0.17

cm85a A 208 95 16776 6700 3395 2.50 1.97 8 8 0.01 0.64

cmb A 214 97 65912 34124 8020 1.93 4.25 11 11 0.06 0.73

comp A 577 258 50528 21478 10900 2.35 1.97 9 7 0.03 7.45

con1 A 93 45 6812 2678 1608 2.54 1.67 8 6 0.01 0.11

cordic A 533 235 135768 54876 11444 2.47 4.80 12 12 0.11 6.47

count A 641 292 39324 14702 10237 2.67 1.44 7 5 0.03 7.03

cu A 259 110 82200 24388 10918 3.37 2.23 11 10 0.08 0.78

decod E 98 39 8416 2580 1886 3.26 1.37 8 5 0.01 0.09

i1 A 177 95 7289 3733 2559 1.95 1.46 6 5 0.01 0.36

i2 A 1144 657 523620 440606 101623 1.19 4.34 15 15 0.45 38.05

i3 A 774 456 22565 12981 8955 1.74 1.45 5 4 0.02 14.08

i4 A 922 530 42863 25627 16000 1.67 1.60 6 6 0.03 16.81

i5 A 1538 734 171886 69408 45664 2.48 1.52 10 9 0.16 72.16

i6 A 1844 866 285256 97294 25765 2.93 3.78 14 11 0.30 112.70

i7 A 2346 1115 369436 140848 32221 2.62 4.37 13 10 0.30 267.94

inc A 742 299 17985228 37284 27866 482.38 1.34 20 7 15.30 12.98

lal A 643 275 7525122 2263668 68058 3.32 33.26 19 17 3.80 8.98

ldd A 418 162 16931664 1312920 9504 12.90 138.14 20 17 0.63 3.70

majority A 73 33 6300 2280 1709 2.76 1.33 7 5 0.00 0.11

misex1 A 320 135 136812 22928 7852 5.97 2.92 12 10 0.11 1.31

misex2 A 457 194 1153460 294684 36024 3.91 8.18 15 13 0.89 2.95

Table 3. LGsynth93 suite: A stands for approximate and E for exact value of wf (for
given dtree), n is number of clauses, m is number of variables, s-bound is edge bound
based on structural clusters, f-bound is edge bound based on functional clusters, e-count
is true number of edges in d-DNNF compiled by cnf2ddnnf, s/f = s-bound/f-bound and
f/e =f-bound/e-count, Tc is time to run cnf2ddnnf and Tw is time to calculate wf .

cnf A n m s-bound f -bound e-count s/f f/e w wf Tc(s) Tw(s)

mux A 501 210 464996 24372 16759 19.08 1.45 13 7 0.31 6.31

o64 A 519 325 20624 10670 7745 1.93 1.38 6 5 0.02 4.89

parity A 257 122 10924 4000 2954 2.73 1.35 5 3 0.00 1.06

pcle A 280 128 16100 6352 4142 2.53 1.53 6 5 0.01 1.06

pcler8 A 344 160 24560 12090 5575 2.03 2.17 7 6 0.03 1.69

pm1 A 270 121 38507 15577 13147 2.47 1.18 10 8 0.03 0.84

rd53 A 279 117 1064492 17360 5431 61.32 3.20 16 10 0.38 1.08

rd73 A 738 300 74425360 34784 26292 2139.64 1.32 22 7 88.98 27.42

sct A 647 266 7146520 364242 60214 19.62 6.05 19 14 4.33 10.19

sqrt8 A 310 131 437540 26908 8566 16.26 3.14 15 10 0.13 1.31

sqrt8ml A 891 363 1389624 62652 14777 22.18 4.24 16 11 1.42 40.03

squar5 A 298 122 275848 8838 6342 31.21 1.39 14 6 0.31 1.31

t481 A 409 172 45598204 7203748 98915 6.33 72.83 21 19 30.67 6.25

tcon E 202 98 9472 3878 2969 2.44 1.31 5 3 0.00 0.41

unreg A 568 264 56284 18402 13415 3.06 1.37 8 6 0.06 4.74

x2 A 223 93 602572 37384 8102 16.12 4.61 15 11 0.41 0.66

xor5 A 115 52 7660 2158 1332 3.55 1.62 6 5 0.00 0.19

z4ml A 791 294 53209456 107650 38650 494.28 2.79 22 11 100.74 31.59
Table 4. LGsynth93 suite. Continuation of Table 3.

6 Discussion

We proposed in this paper the notion of functional treewidth, as a complexity
parameter for bounding the size of certain CNF compilations, which permit
polytime queries, such as clausal entailment, model counting and existential
quantification. We have also presented a method for approximating functional
treewidth and applied it to a number of benchmarks, showing its ability to
provide bounds that are exponentially better than those based on treewidth.

Our current and future work on this subject centers around three direc-
tions. First, the development of better approximation algorithms for functional
treewidth (there is a long tradition of such approximations for treewidth (see,
e.g., [2]). Next, the development of dtree construction methods which are sensi-
tive to functional dependencies. Note that a dtree with larger width may have
a smaller functional width. This means that a method for constructing dtrees
that minimizes width may miss dtrees which are optimal from a functional width
viewpoint. Finally, the use of functional dependencies in improving the time and
space complexity of compilation algorithms, therefore, allowing bounds on the
running time based on functional treewidth.

Proof of Theorem 1

Without loss of generality, we will assume that the original CNF ∆ is consistent,
and that cnf2ddnnf(T, α) is initially called with α = true.

The proof is based on a number of lemmas, which concern a recursive call
cnf2ddnnf(T, α) to dtree node T , with ∆(T) denoting the clauses below node
T :

1. Lemma 1: cnf2ddnnf(T, α) returns false if ∆(T)|α is inconsistent.
2. Lemma 2: If ∆ ∧ α is consistent, and ∆ ∧ α ∧ β is inconsistent for some

instantiation β of cutset(T), then ∆(T)|αβ is inconsistent and, moreover,
either ∆(T l)|αβ or ∆(T r)|αβ is inconsistent.

3. Lemma 3: If ∆∧α is inconsistent, then there is an ancestor T a of node T for
which ∆ ∧ αa is consistent, where αa = project(α, acutset(T a)). Moreover,
∆ ∧ αa ∧ βa is inconsistent for instantiation βa = project(α, cutset(T a)).

The proof is based on the observation that each disjunct on Line 8 of Algo-
rithm 1 corresponds to an instantiation γ ∧ β of cluster(T) (γ is instantiation
of context(T) and β is instantiation of cutset(T)). We will prove that the dis-
juncts corresponding to instantiations γ ∧β of cluster(T) will not be part of the
returned d-DNNF if γ ∧ β is inconsistent with the CNF ∆.

Consider now the call cnf2ddnnf(T, α), and let γ = project(α, context(T)).
If γ∧β is inconsistent with ∆ then α∧β is inconsistent with ∆ as well. We have
two cases:

1. ∆ ∧ α is consistent, but ∆ ∧ α ∧ β is inconsistent.
Note that context(T) contains all variables shared between clauses in ∆(T)
and other clauses. Hence, if ∆ ∧ α ∧ β is inconsistent, then ∆(T) ∧ α ∧ β
is inconsistent. By Lemma 2, ∆(T)|αβ is inconsistent and, moreover, either
∆(T l)|αβ or ∆(T r)|αβ is inconsistent. Hence, by Lemma 1, the correspond-
ing disjunct on Line 8 of Algorithm 1 will evaluate to false and will not be
included in the computed d-DNNF.

2. ∆ ∧ α is inconsistent (and, hence,∆ ∧ α ∧ β is inconsistent).
By Lemma 3, there is an ancestor T a of node T for which ∆ ∧ αa is consis-
tent, where αa = project(α, acutset(T a)). Moreover, ∆∧αa∧βa is inconsis-
tent for instantiation βa = project(α, cutset(T a)). By Lemma (1), the call
cnf2ddnnf(T a, αa) will return false and, hence, the disjunct on Line 8 of
Algorithm 1 constructed during the call cnf2ddnnf(T, α) will not be part
of the returned d-DNNF.

We will now bound the size of returned d-DNNF, measured by the number
of edges in the d-DNNF. Let cnf ∆ have n∆ clauses and m variables, then dtree
T∆ will have n∆ leaf nodes and n∆ − 1 internal nodes. Each internal node T
will contribute ≤ 2|clusterf (T)| disjuncts. Each disjunct will have the following
edges: an edge to the parent OR–node; two edges to the solutions produced
by left and right child; |cutset(T)| edges to the literal nodes corresponding to
the instantiation of the cutset(T). Thus the total amount of edges contributed
by internal nodes is (an additional factor of 2 appears when we switch from
|clusterf (T)| to wf due to −1 in the definition of wf):

∑

internal node T

(3 + |cutset(T)|) · 2|clusterf (T)| ≤ 2 · 2wf · (3n∆ + m).

Note that
∑

internal node T |cutset(T)| can be bounded either by the number of
variables m (because all the cutsets are disjoint) or by w · n∆ (because none of
the cutsets have the size greater than w).

Each consistent instantiation of the cluster(T) for leaf T contributes 4 ·
(|var(T) − acutset(T)| − 1) edges: each uninstantiated variable contributes at
most one AND-node, one OR-node and two literal nodes (except for the last one
contributing one literal node). Thus the total number of edges contributed by
leaf nodes is

∑

leaf node T

4 · (|var(T)− acutset(T)| − 1) · 2|clusterf (T)| ≤ 4m · 2 · 2wf

The result is due to the fact that
∑

leaf node T(|var(T)− acutset(T)| − 1) can be
bounded analogous to

∑
internal node T |cutset(T)|.

Noting that the total number of nodes n in dtree T∆ is equal to 2n∆ − 1,
we conclude that the number of edges in the final compilation produced by
Algorithm 1 is bounded by O((n + m)2wf

).

References

1. Stefan Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM J. Algebraic and Discrete Methods, 8:277–284, 1987.

2. H. L. Bodlaender. A tourist guide through treewidth. ACTA CYBERNETICA,
11(1-2):1–22, 1993.

3. Adnan Darwiche. Decomposable negation normal form. Journal of the ACM,
48(4):608–647, 2001.

4. Adnan Darwiche. On the tractability of counting theory models and its application
to belief revision and truth maintenance. Journal of Applied Non-Classical Logics,
11(1-2):11–34, 2001.

5. Adnan Darwiche. A logical approach to factoring belief networks. In Proceedings
of KR, pages 409–420, 2002.

6. Adnan Darwiche and Mark Hopkins. Using recursive decomposition to construct
elimination orders, jointrees and dtrees. In Trends in Artificial Intelligence, Lecture
notes in AI, 2143, pages 180–191. Springer-Verlag, 2001.

7. Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of
Artificial Intelligence Research, 17:229–264, 2002.

8. Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, Inc., San
Mateo, California, 2003.

9. F. V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in recursive
graphical models by local computation. Computational Statistics Quarterly, 4:269–
282, 1990.

10. Claudio L. Lucchesi and Sylvia L. Osborn. Candidate keys for relations. Journal
of Computer and System Sciences, 17:270–279, 1978.

11. David Maier. The Theory of Relational Databases. Computer Science Press,
Rockville, MD, 1983.

12. N. Robertson and P. D. Seymour. Graph minors II: Algorithmic aspects of tree-
width. J. Algorithms, 7:309–322, 1986.

13. T. Sang, P. Beam, and H. Kautz. Solving bayesian networks by weighted model
counting. In Proceedings of AAAI. AAAI, 2005.

