
Compiling Bayesian Networks Using Variable Elimination ∗

Mark Chavira and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095-1596

{chavira,darwiche}@cs.ucla.edu

Abstract
Compiling Bayesian networks has proven an ef-
fective approach for inference that can utilize both
global and local network structure. In this pa-
per, we define a new method of compiling based
on variable elimination (VE) and Algebraic Deci-
sion Diagrams (ADDs). The approach is impor-
tant for the following reasons. First, it exploits lo-
cal structure much more effectively than previous
techniques based on VE. Second, the approach al-
lows any of the many VE variants to compute an-
swers to multiple queries simultaneously. Third,
the approach makes a large body of research into
more structured representations of factors relevant
in many more circumstances than it has been pre-
viously. Finally, experimental results demonstrate
that VE can exploit local structure as effectively
as state–of–the–art algorithms based on condition-
ing on the networks considered, and can sometimes
lead to much faster compilation times.

1 Introduction
Variable elimination [Zhang and Poole, 1996; Dechter, 1996]
(VE) is a well–known algorithm for answering probabilistic
queries with respect to a Bayesian network. The algorithm
runs in time and space exponential in the treewidth of the net-
work. Advantages of VE include its generality and simplicity.
In this paper, we consider two aspects of VE. The first is how
to effectively utilize local structure in the form of determin-
ism [Jensen and Andersen, 1990] and context–specific inde-
pendence [Boutilier et al., 1996] to perform inference more
efficiently. The second consideration is how to answer mul-
tiple queries simultaneously. For example, given particular
evidence, we would like to be able to simultaneously com-
pute probability of evidence and a posterior marginal on each
network variable. And we would like to be able to repeat this
process for many different evidence sets.

Many proposals have been extended to utilize local struc-
ture in the context of VE. Although the standard version of the
algorithm uses tables to represent factors, the algorithm can

∗This work has been partially supported by Air Force grant
#FA9550-05-1-0075-P00002 and JPL/NASA grant #1272258.

sometimes run more efficiently by using a more structured
representation like ADDs [R.I. Bahar et al., 1993], affine
ADDs [Sanner and McAllester, 2005], representations com-
posed of confactors [Poole and Zhang, 2003], sparse repre-
sentations [Larkin and Dechter, 2003], and a collection of
others. Such a representation makes use of local structure
to skip certain arithmetic operations and to represent factors
more compactly. However, the effectiveness of these ap-
proaches has been sometimes limited in practice, because the
overhead they incur may very well outweigh any gains.

There has been less work to answer multiple queries si-
multaneously using VE as is done by the jointree algorithm
[Jensen et al., 1990; Lauritzen and Spiegelhalter, 1988]; but
see [Cozman, 2000] for an exception. Theoretical results
in [Darwiche, 2000] demonstrate that by keeping a trace,
one can use VE as a basis for compilation. This algorithm,
which we will refer to as tabular compilation, will compile
a Bayesian network offline into an arithmetic circuit (AC).
Tabular compilation runs in time and space exponential in
treewidth; the resulting AC has size exponential in treewidth;
and once offline compilation is complete, the AC can be used
online to answer many queries simultaneously in time lin-
ear in its size. However, the applicability of this approach
is limited, because tabular compilation provides no practical
advantage over jointree.

An important observation is that when compiling using
VE, we need not use tables, but can instead use one of the
more structured representations of factors. This observation
is seemingly innocent, but it has two critical implications.
First, the usual cost incurred when using structured repre-
sentations gets pushed into the offline phase, where it can be
afforded. Second, the usual advantage realized when using
more structured representations means that the size of the re-
sulting AC will not necessarily be exponential in treewidth.
The smaller AC translates directly into more efficient online
inference, where efficiency matters most. We see that the pro-
posed approach is important for four key reasons. First, it
exploits local structure much more effectively than previous
techniques based on VE. Second, the approach allows any of
the many VE variants to compute answers to multiple queries
simultaneously. Third, the approach makes a large body of
research into more structured representations of factors rele-
vant in many more circumstances than it has been previously.
Finally, experimental results demonstrate that on the consid-

ered networks, VE can exploit local structure as effectively as
state–of–the–art algorithms based on conditioning as applied
to a logical encoding of the networks, and can sometimes lead
to much faster compilation times.

To demonstrate these ideas, we propose a new method
of compiling based on VE and algebraic decision diagrams
(ADDs). We will refer to this method of compiling as ADD
compilation. It is well known that ADDs can represent
the initial conditional probability distributions (factors) of a
Bayesian network more compactly than tables. However, it is
not clear whether ADDs will retain this advantage when pro-
ducing intermediate factors during the elimination process,
especially in the process of compilation which involves no
evidence. Note that the more evidence we have, the smaller
the ADDs for intermediate factors.

Experimental results will demonstrate several important
points with respect to ADD compilation. The first point deals
with AC sizes. ADD elimination (no compilation) can out-
perform tabular elimination (no compilation) when there are
massive amounts of local structure, but can dramatically un-
derperform tabular elimination otherwise. However, ADD
compilation produces ACs that are much smaller than those
produced by tabular compilation, even in many cases where
there are lesser amounts of local structure. Second, because
of the smaller AC size, online inference time is capable of
outperforming jointree by orders of magnitude. Finally, ADD
compilation can be much faster in some cases than a state–of–
the–art compilation technique, which reduces the problem to
logical inference [Darwiche, 2002].

This paper is organized as follows. We begin in Section 2
by reviewing VE, elimination using ADDs, and compilation
into ACs. Next, Section 3 shows how a trace can be kept dur-
ing elimination employing ADDs to compile a network into
an AC. We then discuss in Section 4 implications for com-
piling using structured representations of factors. We present
experimental results in Section 5 and conclude in Section 6.

2 Background
In this section, we briefly review VE, elimination using
ADDs, and compilation into ACs.

2.1 Variable Elimination
Variable elimination is a standard algorithm for computing
probability of evidence with respect to a given a Bayesian
network [Zhang and Poole, 1996; Dechter, 1996]. For space
reasons, we mention only a few points with regard to this al-
gorithm. First, the algorithm acts on a set of factors. Each
factor involves a set of variables and maps instantiations of
those variables to real–numbers. The initial set of factors
are the network’s conditional probability distributions (usu-
ally tables). Elimination is driven by an ordering on the vari-
ables called an elimination order. During the algorithm, two
factor operations are performed many times: factors are mul-
tiplied and a variable is summed out of a factor. These factor
operations reduce to performing many multiplication and ad-
dition operations on real–numbers. Although tables are the
most common representation for factors, any representation
that supports multiplication and summing–out can be used.

X

Z

.1 .9

Y

.5

Z

X Y Z f(.)
x1 y1 z1 0.9
x1 y1 z2 0.1
x1 y2 z1 0.9
x1 y2 z2 0.1
x2 y1 z1 0.1
x2 y1 z2 0.9
x2 y2 z1 0.5
x2 y2 z2 0.5

Figure 1: An ADD over variables X, Y, Z and the corre-
sponding table it represents. Dotted edges point to low–
children and solid edges point to high–children.

2.2 Elimination using ADDs
An ADD is a graph representation of a function that maps in-
stantiations of Boolean variables to real–numbers [R.I. Bahar
et al., 1993]. Figure 1 depicts an ADD and the corresponding
table (function) it represents. In the worst case, an ADD has
the same space complexity as a table representing the same
function. Moreover, the factor operations of multiplication
and summing–out are implemented on ADDs in polynomial
time. There are four points that are important with respect
to ADDs. First, because multiplication and summing–out are
available for ADDs, we can use ADDs during VE instead of
tables. Second, because ADDs can leverage local structure,
an ADD can be much smaller than the corresponding table.
Third, for the same reason, when applied to ADDs, the fac-
tor operations of multiplication and summing–out can result
in far fewer arithmetic operations on numbers than the same
factor operations acting on tables. Finally, the constants in-
volved in using ADDs are much larger than those involved
in using tables, so much so that elimination using ADDs will
often take much longer than elimination using tables, even
when the ADD performs fewer arithmetic operations on num-
bers, and so much so that we may run out of memory when
using ADDs, even in cases where tabular elimination does
not. We will discuss later how we can deal with many–valued
variables within an ADD.

2.3 Compiling into ACs
The notion of using arithmetic circuits (ACs) to perform
probabilistic inference was introduced in [Darwiche, 2000;
2003]. With each Bayesian network, we associate a cor-
responding multi-linear function (MLF) that computes the
probability of evidence. For example, the network in Fig-
ure 2—in which variables A and B are Boolean, and C has
three values—induces the following MLF:

λa1λb1λc1θa1θb1θc1|a1,b1 + λa1λb1λc2θa1θb1θc2|a1,b1+
. . .
λa2λb2λc2θa2θb2θc2|a2,b2 + λa2λb2λc3θa2θb2θc3|a2,b2

The terms in the MLF are in one-to-one correspondence
with the rows of the network’s joint distribution. Assume
that all indicator variables λx have value 1 and all parameter
variables θx|u have value Pr(x|u). Each term will then be a

*

λc1
θc1|a2b2

λc2
θc2|a2b2λc3

θc3|a2b2

θc1|a2b1
θc3|a2b1

θc2|a2b1
θc3|a1b2

θc1|a1b2

θc2|a1b2
θc3|a1b1

θc1|a1b1
θc2|a1b1

+
λa2

θa2+
λa1

θa1

***λb2
θb2 ***λb1

θb1 ******

+* +* ++

**
+A B

C
Compile

Figure 2: A Bayesian network and a corresponding AC.

product of probabilities which evaluates to the probability of
the corresponding row from the joint. The MLF will add all
probabilities from the joint, for a sum of 1.0. To compute the
probability Pr(e) of evidence e, we need a way to exclude
certain terms from the sum. This removal of terms is accom-
plished by carefully setting certain indicators to 0 instead of
1, according to the evidence.

The fact that a network’s MLF computes the probability of
evidence is interesting, but the network MLF has exponential
size. However, if we can factor the MLF into something small
enough to fit within memory, then we can compute Pr(e) in
time that is linear in the size of the factorization. The factor-
ization will take the form of an AC, which is a rooted DAG
(directed acyclic graph), where an internal node represents
the sum or product of its children, and a leaf represents a con-
stant or variable. In this context, those variables will be indi-
cator and parameter variables. An example AC is depicted in
Figure 2. We refer to this process of producing an AC from a
network as compiling the network.

Once we have an AC for a network, we can compute Pr(e)
by assigning appropriate values to leaves and then comput-
ing a value for each internal node in bottom-up fashion. The
value for the root is then the answer to the query. We can
also compute a posterior marginal for each variable in the
network by performing a second downward pass [Darwiche,
2003]. Hence, many queries can be computed simultaneously
in time linear in the size of the AC. Another main point is that
this process may then be repeated for as many evidence sets
as desired, without recompiling.

3 ADD Compilation
We have seen how ADDs can be used in place of tables during
VE and how compilation produces an AC from a network. In
this section, we combine the two methods to compile an AC
using a VE algorithm that employs ADDs to represent factors.

The core technique behind our approach is to work with
ADDs whose sinks point to ACs (their roots) instead of point-
ing to constants. We will refer to these ADDs as symbolic
ADDs. Given a Bayesian network, we convert each condi-
tional probability table (CPT) into a symbolic ADD called
a CPT ADD. To do so, we first convert the CPT into a nor-
mal ADD and then replace each constant n within a sink by a
pointer to an AC consisting of a single node labeled with con-

Algorithm 1 Multiply(α1 : SymADD, α2 : SymADD):
returns SymADD.
1: swap α1 and α2 if Pos(α1) > Pos(α2)
2: if cache(α1, α2) 6= null then
3: return cache(α1, α2)
4: else if α1 and α2 are leaf nodes then
5: α← new ADD leaf node
6: Ac(α)← new AC ∗ node with children Ac(α1) and Ac(α2)
7: else if Pos(α1) = Pos(α2) then
8: α← new internal node
9: V ar(α)← V ar(α1)

10: Lo(α)←Multiply(Lo(α1), Lo(α2))
11: Hi(α)←Multiply(Hi(α1), Hi(α2))
12: else
13: α← new internal node
14: V ar(α)← V ar(α1)
15: Lo(α)←Multiply(Lo(α1), α2)
16: Hi(α)←Multiply(Hi(α1), α2)
17: end if
18: cache(α1, α2)← α
19: return α

stant n. For each variable X in the network, we also construct
an indicator ADD, which acts as a placeholder for evidence
to be entered during the online inference phase. Assuming
that variable X is binary with values x1 and x2, the indicator
ADD for X will consist of one internal node, labeled with
variable X , and having two sink children. The child corre-
sponding to x1(x2) will be a sink labeled with a pointer to a
single–node AC that is itself labeled with indicator λx1(λx2).
Figure 3(a) shows a simple Bayesian network and Figure 3(b)
shows the corresponding symbolic ADDs.

Working with symbolic ADDs requires a modification to
the standard ADD operations, but in a minimal way. We first
point out that ADD operations are typically implemented re-
cursively, reducing an operation over two ADDs into opera-
tions over smaller ADDs, until we reach boundary conditions:
ADDs that correspond to sinks. It is these boundary condi-
tions that need to be modified in order to produce symbolic
ADD operations. For example, Algorithm 1 specifies how
to multiply two symbolic ADDs. When applied to an internal
ADD node, the functions Pos, Lo, and Hi return the position
of the variable labeling the node in the ADD variable order,
the low–child (corresponding to false), and the high–child
(corresponding to true), respectively. When applied to an
ADD sink, the functions Pos and Ac return ∞ and a pointer
to the AC that labels the sink, respectively. Finally, cache is
the standard computed table used in ADD operations. The
main observation is that the algorithm is identical to that for
multiplying normal ADDs (see [R.I. Bahar et al., 1993]), ex-
cept for Line 6. When multiplying normal ADDs, this line
would label the newly created sink with a constant that is the
product of the constants labeling α1 and α2. When multi-
plying symbolic ADDs, we instead label the new sink with a
pointer to an AC that represents an analogous multiplication.
This AC will consist of a new multiply node having children
that are the ACs pointed to by α1 and α2. The algorithm for
summing–out a variable from a symbolic ADD is constructed
from the algorithm for summing–out a variable from a normal

X Pr(x)
x1 0.1
x2 0.9

X

Y

X Y Pr(y|x)
x1 y1 0.0
x1 y2 1.0
x2 y1 0.5
x2 y2 0.5

X

.1 .9

X

Y

0 1 .5

X

!x1 !x2

Y

!y1 !y2

CPT ADD

for X

CPT ADD

for Y

Indicator

ADD for X

Indicator

ADD for Y

(a) (b)

Figure 3: (a) A simple Bayesian network and (b) symbolic ADDs representing the network.

Algorithm 2 Compile(N : Bayesian Network): returns AC.

1: Ψ← the set of indicator and CPT ADDs for N
2: π ← ordering on the variables (π(i) is ith variable in order)
3: for i in 1 . . . number of variables in N do
4: P ← {α ∈ Ψ : α mentions variable π(i)}
5: Ψ← (Ψ− P) ∪ {Σπ(i)

∏
α∈P

α}
6: end for
7: β ←

∏
α∈Ψ

α

8: return Ac(β)

ADD in an analogous way, by modifying the code that labels
newly created sinks. In this case, instead of labeling with a
constant representing a sum, we instead label with a pointer
to an new addition node.

We now describe the compilation process in Algorithm 2.
Line 1 begins by representing the Bayesian network using
symbolic ADDs as described previously. We then gener-
ate an ordering on the variables using a minfill heuristic on
Line 2. Lines 3–7 perform variable elimination in the stan-
dard way, using the multiply and sum–out operations of sym-
bolic ADDs. Afterward, we are left with a trivial symbolic
ADD: a sink labeled with a pointer to an AC. This AC is a
factorization of the network MLF and a compilation of the
given network! Each internal node of the AC is labeled with
a multiplication or addition operation, and each leaf is labeled
with a constant or an indicator variable. The AC represents a
history or trace of all arithmetic operations performed during
the elimination process.

For the above procedure to scale and produce the results
we report later, it has to be augmented by a number of key
techniques that we describe next.

ADD variable order: ADDs require a fixed variable order
which is independent of the elimination order we have dis-
cussed. For that, we use the reverse order used in the elimina-
tion process. This ensures that when a variable is eliminated
from an ADD, it appears at the bottom of the ADD. The sum–
out operation on ADDs is known to be much more efficient
when the summed out variable appears at the bottom.

Unique table: We maintain a cache, called a unique table
in the ADD literature, to ensure that we do not generate re-

dundant AC nodes. Each entry is an AC node that has been
constructed, indexed the node’s label and its children. Before
we ever construct a new AC node, we first consult the unique
table to see if a similar node has been constructed before. If
this is the case, we simply point to the existing node instead
of constructing a duplicate node. As is standard practice, we
also use a unique table for the ADD nodes.

Multi–valued variables: When a network variable X has
more than two values, we define its ADD variables as follows.
For each value xi of X , we create ADD variable Vxi

. We
translate instantiations of X in the straightforward way. For
example, we translate X = x2 as Vx2 = true and Vxi

=
false for i 6= 2. Moreover, we construct an ADD over Vxi

which enforces the constraint that exactly one Vxi
can be true.

We multiply this ADD into every CPT and indicator ADD
that mentions X . Finally, when eliminating (summing–out) a
multi–valued variable X , we sum out all corresponding ADD
variables Vxi simultaneously.

Converting a CPT into an ADD: The straightforward
way to construct the ADD of a CPT is to construct an ADD
for each row of the CPT and then add the resulting ADDs.
This method was extremely inefficient for large CPTs (over a
thousand parameters). Instead, we construct a tree–structured
ADD whose terminals correspond to the CPT rows, and then
use the standard reduce operation of ADDs to produce a DAG
structure.

Simplifications: In certain cases, simplifications are pos-
sible. For example, when multiplying two ADD nodes, if one
of the nodes α is a sink labeled with a pointer to an AC node
which which is itself labeled constant 0, then we can simply
return α without doing more work. Similar simplifications
exist for constant 1 and for the summing–out operation.

Figure 4 depicts the elimination process when applied to
the symbolic ADDs of Figure 3(b) using elimination order
Y, X . The first step is to multiply the set of symbolic ADDs
involving Y , which consists of Y ’s CPT ADD and Y ’s indi-
cator ADD. Figure 4(a) shows the result. Observe that each
ADD sink points to an AC that represents the multiplication
of two ACs, one pointed to by a sink from Y ’s CPT ADD and
one pointed to by a sink from Y ’s indicator ADD. Also ob-
serve that when one of the ACs involved in the multiplication

is a sink labeled with 0 or 1, the resulting AC is simplified.
Figure 4(b) next shows the result of summing–out Y from the
symbolic ADD in Figure 4(a). Here, each ADD node labeled
with Y and its children have been replaced with a sink which
points to an addition node. A simplification has also occurred.
Figure 4(c) shows the result of multiplying symbolic ADDs
involving variable X in two steps: first Figure 4(b) by X’s
indicator ADD and then the result by X’s CPT ADD. Finally,
Figure 4(d) shows the result of summing–out X from Fig-
ure 4(c). At this point, since there is only one remaining sym-
bolic ADD, we have our compilation.

4 Implications
There has been much research into using alternatives to tabu-
lar representations of factors in VE. The motivation for such
research is that tabular elimination makes use only of global
network structure (its topology). It may therefore miss oppor-
tunities afforded by local structure to make inference more ef-
ficient. Structured representations of factors typically exploit
local structure to lessen the space requirements required for
inference and to skip arithmetic operations on numbers (mul-
tiplications and additions) required for inference. In some
cases, structured representations of factors have been success-
ful in performing inference when tabular elimination runs out
of memory, and in some cases, structured representations al-
low for faster inference than tabular elimination. However,
the time and space overhead involved in using more struc-
tured representations of factors may very well outweigh the
benefits. This is particularly true when there are not exces-
sive amounts of local structure present in the network. Ta-
ble 1 demonstrates the performance of elimination (no com-
pilation) using both tables and ADDs applied to the set of net-
works we will be considering later in the paper. All ADD op-
erations were performed using the publicly available CUDD
ADD package (http://vlsi.colorado.edu/∼fabio/CUDD). We
see that in only two cases does ADD elimination outperform
tabular elimination. Both of the networks involved, bm-5-
3 and mm-3-8-3, contain massive amounts of determinism.
In the remaining cases, ADD elimination is actually slower
than tabular elimination, often by an order of magnitude or
more. The large number of examples where structured repre-
sentations of factors are slower than tabular elimination have
limited their applicability.

The main observation behind this paper is that even when
elimination using a more structured representation of factors
is slower than tabular elimination, structured representations
become very powerful in the context of compilation. Compi-
lation is an offline process, and so extra time can be afforded.
In fact, the combination of structured representations with
compilation is ideal, since the very purpose of compilation is
to spend time offline in an effort to identify opportunities for
savings that can be used repeatedly during online inference.
Hence, in the context of compilation, the disadvantages of
using structured representations are much less severe (virtu-
ally disappearing) and the advantages are retained.1 Although

1Note that the use of more structured representations of factors
is usually asymptotically no worse than the use of tabular represen-
tations, which is particularly true for ADDs.

Tabular ADD
Network Time (ms) Time (ms) Improvement
alarm 31 360 0.086
barley 307 14,049 0.022
bm-5-3 4,892 658 7.435
diabetes 949 33,220 0.029
hailfinder 48 515 0.093
link 1,688 2,658 0.635
mm-3-8-3 2,166 843 2.569
mildew 72 92,602 0.001
munin1 155 1,255 0.124
munin2 204 3,170 0.064
munin3 350 5,049 0.069
munin4 406 4,361 0.093
pathfinder 51 5,213 0.010
pigs 69 597 0.116
st-3-2 186 362 0.514
tcc4f 29 153 0.190
water 76 1,015 0.075

Table 1: Time to perform VE (no compilation) using tables
and using ADDs.

overhead is incurred during the offline phase, each arithmetic
operation saved makes the size of the resulting AC smaller,
yielding more efficient online inference. These observations
make research into structured representations of factors ap-
plicable in many more circumstances than it has been pre-
viously. Another major advantage of adding compilation to
elimination is that one can compute online answers to many
queries simultaneously and very quickly as is done by the
jointree algorithm; see [Darwiche, 2003] for details.

5 Experimental Results
In this section, we present experimental results of applying
ADD compilation and compare ADD compilation to tabu-
lar compilation, Ace compilation, and jointree. All ADD
operations were performed using the CUDD ADD package
(http://vlsi.colorado.edu/∼fabio/CUDD), modified to work
with symbolic ADDs. Ace (http://reasoning.cs.ucla.edu/ace)
is a state–of–the–art compiler that encodes Bayesian net-
works as logical knowledge bases and then applies condi-
tioning to the result. Ace has been shown to be extremely
effective on networks having large amounts of local structure
[Chavira et al., May 2006; 2005], able to compile many net-
works with treewidths in excess of one–hundred. Ace was
also shown in [Chavira and Darwiche, 2005] to perform on-
line inference orders of magnitude more efficiently than join-
tree when applied to networks having treewidth small enough
for jointree to work and having lesser amounts of local struc-
ture. On these networks, Ace online inference is very effi-
cient, but some compile times are in excess of one thousand
seconds. The networks with which we experimented are a su-
perset of these networks from [Chavira and Darwiche, 2005].

Experiments ran on a 2GHz Core Duo processor with 2GB
of memory, using the networks in Table 2.2 To make the
experiments as fair as possible, for each network, we first

2Because Ace was not available for the test platform, Ace compi-
lation was carried out on a 1.6GHz Pentium M with 2GB of memory.

Simplify

X

Y Y

0

!y2

*

.5 !y1

*

Simplify

X

+

!y1

*

.5 !y2

*

X

* *

.1 .9

Multiply by X root
* *

!x1 !x2+

!y1

*

.5 !y2

*

+

Sum out x

* *

.1 .9* *

!x1 !x2+

!y1

*

.5 !y2

*

(a) (b) (c) (d)

Figure 4: Symbolic ADDs produced after (a) multiplying factors involving Y , (b) summing–out Y , (c) multiplying factors
involving X , and (d) summing–out X .

generated an elimination order π, and all experiments were
performed with respect to π. The second column in Ta-
ble 2 shows the maximum cluster size of a jointree gener-
ated from π, which gives an indication of difficulty with re-
spect to structure–based methods. We compiled each network
using jointree, Ace 1.2, ADD VE, and tabular VE, in each
case driven by π. We evaluate a compilation algorithm based
on compilation time, compilation size, and online inference
time. We first discuss compilation time, which includes read-
ing the network, compiling, and writing the AC to disk.

Columns 3–5 compare Ace compilation time to ADD com-
pilation time. We see that on these networks, neither algo-
rithm dominates the other. Our experiments show that Ace
compilation often ran faster than ADD compilation in the
following cases: when the networks had very low treewdith
(alarm, hailfinder, tcc4f) and when the networks had massive
amounts of determinism (bm-5-3, mm-3-8-3, and st-3-2). We
also found Ace compilation times to be significantly lower
on networks (not shown) having very high treewidth (e.g.,
the blockmap and mastermind networks from [Chavira et al.,
May 2006]), many of which ADD compilation could not han-
dle. However, ADD compilation times are significantly more
efficient on precisely those networks on which Ace has trou-
ble. In particular, networks with treewidths in the range 14-
30 having lesser amounts of local structure (barley, diabetes,
link, mildew, and the munin networks). On these types of
networks, Ace compilation can require thousands of seconds
and ADD compilation can run an order of magnitude faster.
Perhaps the most striking example is barley, on which Ace
required over two hours while ADD compilation required a
little over two minutes. Ace compilation also ran out of mem-
ory on link, which compiled successfully using ADDs.

We next discuss compilation sizes, which we measure us-
ing the number of edges of the AC produced. The AC size
is important, because it determines the time and space re-
quirements for online inference, which is linear in this size.
The AC size also provides the main indicator for the extent to
which local structure was exploited. AC sizes produced us-
ing ADDs and using Ace turned out to be very close, showing
that both methods seem to exploit local structure to a similar

extent. Columns 6–8 compare sizes of ACs that would be
produced using tabular compilation to those produced using
ADD compilation (the size of the AC embedded in a jointree
[Park and Darwiche, 2004] would be about equal to the size of
the AC produced by tabular compilation). ADD compilation
sizes can be multiple orders of magnitude smaller than those
produced by tabular compilation. The difference is most pro-
nounced on networks having massive amounts of local struc-
ture (bm-5-3, mm-3-8-3, st-3-2), but is also striking in some
other cases. For example, on munin1, munin4, pathfinder,
and water, ADD compilation sizes were over 40, 11, 17, and
93 times smaller, respectively. We see here the massive ad-
vantage of utilizing more structured representations of factors
when compiling via VE.

Because ACs produced using Ace were about the same size
as those produced using ADDs, online inference times for
the two compilation algorithms were also very similar. The
last three columns in Table 2 compare online inference using
ADD compilations and jointree (tabular compilation online
times would be about equal to jointree online times). For each
network, we generated 16 sets of evidence. For each evidence
set, we then computed probability of evidence and a poste-
rior marginal on each network variable. Note that answering
these queries would be very difficult using standard VE (with-
out compilation), because of the large number of queries in-
volved. Each reported number is the sum of times for all 16
evidence sets. Here we see an online time advantage to ADD
compilation about equal to its large space advantage over tab-
ular compilation, which makes sense, since neither tabular
compilation nor jointree make use of local structure. Once
again we see the massive advantage that can be achieved by
utilizing structured representations of factors during compi-
lation.

6 Conclusion
In this paper, we combined three ideas: variable elimination,
compilation, and structured representations of factors. The
result is an algorithm that retains the advantages of these ap-
proaches while minimizing their shortcomings. The approach
is important for the following reasons: (1) it utilizes local

Table 2: Comparing Ace compilation times to ADD compilation times, tabular compilation size to ADD compilation size, and
jointree online inference time to ADD online inference time. Imp. stands for factor of improvement.

Network Max Offline Compile Time (s) AC Edge Count Online Inference Time (ms)
Clust. Ace ADD-VE Imp. Tabular-VE ADD-VE Imp. Jointree ADD-VE Imp.

alarm 7.2 0.3 3.9 0.1 3,534 3,030 1.2 166 32 5.2
barley 22.8 8,190.2 122.8 66.7 66,467,777 24,653,744 2.7 65,226 35,209 1.9
bm-5-3 19.0 0.8 6.0 0.1 75,591,750 14,836 5095.2 89,593 83 1079.4
diabetes 17.2 1,710.0 110.3 15.5 34,728,957 17,219,042 2.0 29,316 20,421 1.4
hailfinder 11.7 0.7 1.2 0.5 72,755 25,992 2.8 245 70 3.5
link 21.0 - 699.7 - 127,262,777 89,097,450 1.4 223,542 175,769 1.3
mildew 21.4 3,125.2 218.9 14.3 16,094,592 3,352,330 4.8 10,077 4,522 2.2
mm-3-8-3 19.0 1.5 11.9 0.1 36,635,566 108,428 337.9 34,001 198 171.7
munin1 26.2 1,005.1 316.7 3.2 1,260,407,123 31,409,970 40.1 669,915 37,451 17.9
munin2 18.9 198.4 31.7 6.3 20,295,426 5,662,218 3.6 17,857 7,180 2.5
munin3 17.3 188.4 17.6 10.7 16,987,088 3,503,242 4.8 13,351 4,945 2.7
munin4 19.6 205.0 37.8 5.4 76,028,532 6,869,760 11.1 42,754 8,683 4.9
pathfinder 15.0 4.9 5.8 0.9 796,588 44,468 17.9 1,332 102 13.1
pigs 17.4 23.1 10.0 2.3 4,925,388 2,558,680 1.9 3,020 2,814 1.1
st-3-2 21.0 0.5 2.4 0.2 19,374,934 22,070 877.9 17,536 82 213.9
tcc4f 10.0 0.9 1.1 0.8 33,408 22,612 1.5 281 73 3.8
water 20.8 3.0 20.7 0.1 15,996,054 170,428 93.9 16,676 251 66.4

structure more effectively than previous approaches based on
VE; (2) it allows any variant of VE to answer multiple queries
simultaneously; (3) it makes a large body of research into
structured representations of factors more relevant than it had
been previously; and (4) it demonstrates that variable elim-
ination can utilize local structure as effectively as state–of–
the–art approaches based on conditioning (applied to a log-
ical encoding of the Bayesian network), and can sometimes
lead to much faster compilation times.

References
[Boutilier et al., 1996] Craig Boutilier, Nir Friedman, Moisés

Goldszmidt, and Daphne Koller. Context–specific independence
in Bayesian networks. In UAI, pages 115–123, 1996.

[Chavira and Darwiche, 2005] Mark Chavira and Adnan Darwiche.
Compiling Bayesian networks with local structure. In IJCAI,
pages 1306–1312, 2005.

[Chavira et al., 2005] Mark Chavira, David Allen, and Adnan Dar-
wiche. Exploiting evidence in probabilistic inference. In UAI,
pages 112–119, 2005.

[Chavira et al., May 2006] Mark Chavira, Adnan Darwiche, and
Manfred Jaeger. Compiling relational Bayesian networks for ex-
act inference. IJAR, 42(1–2):4–20, May 2006.

[Cozman, 2000] Fabio Gagliardi Cozman. Generalizing Variable
Elimination in Bayesian Networks. In Workshop on Probabilistic
Reasoning in Artificial Intelligence, Atibaia, Brazil, November
2000.

[Darwiche, 2000] Adnan Darwiche. A differential approach to in-
ference in Bayesian networks. In UAI, pages 123–132, 2000.

[Darwiche, 2002] Adnan Darwiche. A logical approach to factoring
belief networks. In Proceedings of KR, pages 409–420, 2002.

[Darwiche, 2003] Adnan Darwiche. A differential approach to in-
ference in Bayesian networks. Journal of the ACM, 50(3):280–
305, 2003.

[Dechter, 1996] Rina Dechter. Bucket elimination: A unifying
framework for probabilistic inference. In UAI, pages 211–219,
1996.

[Jensen and Andersen, 1990] Frank Jensen and Stig K. Andersen.
Approximations in Bayesian belief universes for knowledge
based systems. In UAI, pages 162–169, Cambridge, MA, July
1990.

[Jensen et al., 1990] F. V. Jensen, S.L. Lauritzen, and K.G. Olesen.
Bayesian updating in recursive graphical models by local com-
putation. Computational Statistics Quarterly, 4:269–282, 1990.

[Larkin and Dechter, 2003] David Larkin and Rina Dechter.
Bayesian inference in the presence of determinism. In C. M.
Bishop and B. J. Frey (eds), editors, AI-STAT, Key West, FL.,
2003.

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and D. J.
Spiegelhalter. Local computations with probabilities on graph-
ical structures and their application to expert systems. Journal of
Royal Statistics Society, Series B, 50(2):157–224, 1988.

[Park and Darwiche, 2004] James Park and Adnan Darwiche. A
differential semantics for jointree algorithms. Artificial Intelli-
gence, 156:197–216, 2004.

[Poole and Zhang, 2003] D. Poole and N.L. Zhang. Exploiting con-
textual independence in probabilistic inference. Journal of Arti-
ficial Intelligence, 18:263–313, 2003.

[R.I. Bahar et al., 1993] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D.
Hachtel, E. Macii, A. Pardo, and F. Somenzi. Algebraic Deci-
sion Diagrams and Their Applications. In IEEE /ACM Interna-
tional Conference on CAD, pages 188–191, Santa Clara, Califor-
nia, 1993. IEEE Computer Society Press.

[Sanner and McAllester, 2005] Scott Sanner and David A.
McAllester. Affine algebraic decision diagrams (aadds) and their
application to structured probabilistic inference. In IJCAI, pages
1384–1390, 2005.

[Zhang and Poole, 1996] Nevin Lianwen Zhang and David Poole.
Exploiting causal independence in Bayesian network inference.
Journal of Artificial Intelligence Research, 5:301–328, 1996.

