
Node Splitting: A Scheme for Generating Upper Bounds in
Bayesian Networks

Arthur Choi, Mark Chavira and Adnan Darwiche

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095
{aychoi,chavira,darwiche}@cs.ucla.edu

Abstract

We formulate in this paper the mini-bucket
algorithm for approximate inference in terms
of exact inference on an approximate model
produced by splitting nodes in a Bayesian
network. The new formulation leads to
a number of theoretical and practical im-
plications. First, we show that branch-
and-bound search algorithms that use mini-
bucket bounds may operate in a drastically
reduced search space. Second, we show that
the proposed formulation inspires new mini-
bucket heuristics and allows us to analyze ex-
isting heuristics from a new perspective. Fi-
nally, we show that this new formulation al-
lows mini-bucket approximations to benefit
from recent advances in exact inference, al-
lowing one to significantly increase the reach
of these approximations.

1 INTRODUCTION

Probabilistic reasoning tasks in Bayesian networks are
typically NP–hard, and approximation algorithms are
often sought to address this apparent intractability.
One approach to approximate inference is based on
mini-buckets, a scheme that has been successfully em-
ployed by branch-and-bound algorithms for computing
MPEs (Most Probable Explanations) (Dechter & Rish,
2003; Marinescu, Kask, & Dechter, 2003). Roughly
speaking, mini-buckets is a greedy approach to ap-
proximate inference that applies the variable elimina-
tion algorithm to a problem, but only as long as com-
putational resources allow it. When time and space
constraints keep us from progressing, a mini-buckets
approach will heuristically ignore certain problem de-
pendencies, permitting the process of variable elim-
ination to continue (Zhang & Poole, 1996; Dechter,
1996). Mini-buckets will therefore give rise to a family

of approximations that, in particular, are guaranteed
to produce upper bounds on the value we seek, and
further whose quality depends on the heuristic used to
ignore dependencies.

In this paper, we make explicit in the most funda-
mental terms the dependencies that mini-bucket ap-
proximations ignore. In particular, we reformulate the
mini-bucket approximation using exact inference on an
approximate model, produced by removing dependen-
cies from the original model. We refer to this process
of removing dependencies as node splitting, and show
that any mini-bucket heuristic can be formulated as a
node splitting heuristic.

This perspective on mini-buckets has a number of
implications, both theoretical and practical. First,
it shows how one can significantly reduce the search
space of brand-and-bound algorithms that make use
of mini-bucket approximations for generating upper
bounds. Second, it provides a new basis for designing
mini-bucket heuristics, a process which is now reduced
to specifying an approximate model that results from
node splitting. We will indeed propose a new heuris-
tic and compare it to an existing heuristic, which we
reformulate in terms of node splitting. Third, it al-
lows one to embed the mini-bucket approximation in
the context of any exact inference algorithm—for ex-
ample, ones that exploits local structure (Chavira &
Darwiche, 2006)—which could speed up the process of
generating mini-bucket bounds, without affecting the
quality of the approximation. We will illustrate this
ability in some of the experiments we present later.

This paper is organized as follows. In Section 2, we
review the MPE task, as well as algorithms for finding
MPEs. In Section 3, we define node splitting oper-
ations for Bayesian networks, and show in Section 4
how mini-bucket elimination is subsumed by splitting
nodes. In Section 5, we examine mini-buckets as a
node splitting strategy, and introduce a new strategy
based on jointrees. In Section 6, we consider branch-
and-bound search for finding MPEs, and show how

we can exploit node splitting to improve the efficiency
of search. In Section 7, we provide empirical support
for the claims in Section 6, and conclude in Section 8.
Proofs and other results appear in the Appendix.

2 MOST PROBABLE

EXPLANATION

We will ground our discussions in this paper using the
problem of computing MPEs, which we define formally
next. Let N be a Bayesian network with variables X,
inducing distribution Pr . The most probable explana-

tion (MPE) for evidence e is then defined as:

MPE (N, e)
def
= arg max

x∼e
Pr(x),

where x ∼ e means that instantiations x and e are
compatible: they agree on every common variable.
Note that the MPE solution may not be unique, in
which case MPE (N, e) denotes a set of MPEs. One
can also define the MPE probability :

MPEp(N, e)
def
= max

x∼e
Pr(x).

A number of approaches have been proposed to tackle
the MPE problem, when a Bayesian network has a
high treewidth. These include methods based on lo-
cal search (Park, 2002; Hutter, Hoos, & Stützle, 2005)
and max-product belief propagation (e.g., Pearl, 1988;
Weiss, 2000), including generalizations (e.g., Yedidia,
Freeman, & Weiss, 2005; Dechter, Kask, & Mateescu,
2002) and related methods (Wainwright, Jaakkola, &
Willsky, 2005; Kolmogorov & Wainwright., 2005). Al-
though these approaches have been successful them-
selves, and can provide high-quality approximations,
they are in general non-optimal.

An approach based on systematic search can be used to
identify provably optimal MPE solutions, although the
efficiency of a search depends heavily on the problem
formulation as well as the accompanying heuristics.
In particular, it is quite common also to use branch-
and-bound search algorithms for computing MPEs and
their probability (e.g., Marinescu et al., 2003; Mari-
nescu & Dechter, 2005). The use of these search algo-
rithms, however, requires the computation of an upper
bound on the MPE probability to help in pruning the
search space. The mini-buckets method is the state of
the art for computing such bounds (Dechter & Rish,
2003). In fact, the success of mini-buckets is most ap-
parent in this context of computing MPEs, which is
the reason we will use this application to drive our
theoretical analysis and empirical results.

X X
��

Figure 1: When we split a variable X (left), we create
a clone X̂ that inherits some of the children (right).

3 SPLITTING NODES

We will define in this section a method for approximat-
ing Bayesian networks by splitting nodes: An opera-
tion that creates a clone X̂ of some node X, where the
clone inherits some of the children of X; see Figure 1.

Definition 1 Let X be a node in a Bayesian net-

work N with children Y. We say that node X is

split according to children Z ⊆ Y when it results in

a network that is obtained from N as follows:

• The edges outgoing from node X to its children Z

are removed.

• A new root node X̂ with a uniform prior is added

to the network with nodes Z as its children.

A special case of node splitting is edge deletion, where
a node is split according to a single child (i.e., split-
ting also generalizes edge deletion as defined in Choi
& Darwiche, 2006a, 2006b).

Definition 2 Let X → Y be an edge in a Bayesian

network N . We say that node X is split along an edge

X → Y when the node X is split according to child Y .

The following case of node splitting will be the basis of
a splitting strategy that yields a special class of mini-
bucket approximations with implications in search.

Definition 3 Let X be a node in a Bayesian network

N . We say that node X is fully split when X is split

along every outgoing edge X → Y .

Thus, when we fully split a node X, we create one clone
for each of its outgoing edges. Figure 2 illustrates an
example of a network where two nodes have been split.
Node C has been split according to children {D,E},
and Node A has been split along the edge A→ D.

A network N ′ which results from splitting nodes in
network N has some interesting properties. To expli-
cate these properties, however, we need to introduce
a function which, given an instantiation x of variables
in network N , gives us an instantiation of clones in N ′

that agrees with the values given to variables in x.

�

�

�

�

�

�

�

�

�

�

��

��

Figure 2: A Bayesian network N (left) and an approx-
imation N ′ (right) found by splitting C according to
{D,E}, and splitting A according to D.

Definition 4 Let N be a Bayesian network, and let

N ′ be the result of splitting nodes in N . If x is an

instantiation of variables in N , then let −→x be the com-

patible instantiation of the corresponding clones in N ′.

For example, in the split network in Figure 2, an in-
stantiation x = {A=a1, B=b1, C =c2,D=d3, E =e1}
is compatible with instantiation −→x = {Â=a1, Ĉ =c2}.
Moreover, x is not compatible with {Â=a1, Ĉ =c1}.

To see the effect that splitting a node can have on a
network, consider a simple two-node network A → B
with binary variables, where θa1

= .2, θb1|a1
= .1, and

θb1|a2
= .7. After splitting A according to B, we have:

x Pr(x)
a1b1 0.02
a1b2 0.18
a2b1 0.56
a2b2 0.24

x
′ Pr ′(x′)

a1â1b1 0.01
a1â1b2 0.09
a1â2b1 0.07
a1â2b2 0.03
a2â1b1 0.04
a2â1b2 0.36
a2â2b1 0.28
a2â2b2 0.12

x
′ βPr ′(x′)

a1â1b1 0.02
a1â1b2 0.18
a1â2b1 0.14
a1â2b2 0.06
a2â1b1 0.08
a2â1b2 0.72
a2â2b1 0.56
a2â2b2 0.24

where β = |A1| = 2. We see that whenever A1 and its
clone Â1 are set to the same value, we can recover the
original probabilities Pr(x) after splitting, by using
βPr ′(x′). This includes the value of the MPE in N ,
which may no longer be the largest value of βPr ′(x′).

This intuition yields the key property of split networks.

Theorem 1 Let N be a Bayesian network, and let N ′

be the result of splitting nodes in N . We then have

MPEp(N, e) ≤ βMPEp(N
′, e,−→e).

Here, β =
∏

C∈C
|C|, where C is the set of clones in

network N ′.

That is, the MPE probability with respect to a split
network provides an upper bound on the MPE prob-
ability with respect to the original network. We note
that the probability of evidence is also upper bounded
in the split network; see Theorem 3 in the Appendix.

Algorithm 1 ve(N, e): returns MPEp(N, e).

1: i← 0
2: S ← {fe | fe is a CPT (incorporating e) of N}
3: while S contains variables do

4: i← i + 1
5: X ← a variable appearing in S
6: Si ← all factors in S that contain X

7: fi ← max
X

∏

f∈Si

f

8: S ← S − Si ∪ {fi}
9: return product of factors in S

Algorithm 2 mbe(N, e): returns an upper bound on
MPEp(N, e).

{ Identical to Algorithm 1, except for Line 6: }
6: Si ← some factors in S that contain X

The following corollary shows that splitting degrades
the quality of approximations monotonically.

Corollary 1 Let network N2 be obtained by splitting

nodes in network N1, which is obtained by splitting

nodes in network N0. We then have

MPEp(N0, e) ≤ β1MPEp(N1, e,−→e1)

≤ β2MPEp(N2, e,−→e2),

where β1, β2 and −→e1,
−→e2 are as defined by Theorem 1.

4 MINI-BUCKET ELIMINATION

We discuss in this section the relationship between the
approximations returned by split networks and those
computed by the mini-buckets algorithms (Dechter &
Rish, 2003). In particular, we show that every mini-
buckets heuristic corresponds precisely to a node split-
ting strategy, where exact inference on the resulting
split network yields the approximations computed by
mini-buckets. Our discussion here will be restricted to
computing MPEs, yet the correspondence extends to
probability of evidence as well.

We start first by a review of the mini-buckets method,
which is a relaxed version of the variable elimination
method given in Algorithm 1 (Zhang & Poole, 1996;
Dechter, 1996). According to this algorithm, variable
elimination starts with a set of factors corresponding
to the CPTs of a given Bayesian network. It then
iterates over the variables appearing in factors, elim-
inating them one at a time. In particular, to elimi-
nate a variable X, the method multiplies all factors
that contain X and then max-out X from the result.
The bottleneck of this algorithm is the step where the
factors containing X are multiplied, as the resulting

�����������Θ� Θ���� Θ����
�����������Θ� ����
������ ����Θ��� ���
����	� �������

����
	�������

��
���������∅

�����������Θ�Θ����
������ ���� Θ����
�����������Θ� ���
����	� ���� ��� Θ���
����
� ������

������ ���� ���

��	��
���� ��

���
�������∅ �∅

Figure 3: An execution trace of ve on N (left) and
mbe on N (right). The network is defined in Figure 2.

factor may be too big for the computational resources
available. The mini-bucket method deals with this dif-
ficulty by making a simple change to the variable elimi-
nation algorithm (also known as the bucket elimination
algorithm).1 This change concerns Line 6 in which all
factors containing variable X are selected. In mini-
buckets, given in Algorithm 2 (Dechter & Rish, 2003),
one chooses only a subset of these factors in order to
control the size of their product. Which particular set
of factors is chosen depends on the specific heuristic
used. Yet, regardless of the heuristic used, the answer
obtained by the mini-buckets method is guaranteed to
be an upper bound on the correct answer.2 One should
note here that the simple change from all to some on
Line 6 implies the following. The number of iterations
performed by Algorithm 1 is exactly the number of
network variables, since each iteration will eliminate
a network variable. However, Algorithm 2 may only
partially eliminate a variable in a given iteration, and
may take multiple iterations to eliminate it completely.

To help us visualize the computations performed by
Algorithms 1 and 2, consider their execution trace.

Definition 5 Given an instance of ve or mbe run

on a given network N , we define its execution trace T
as a labeled DAG which adds, for each iteration i,

• a node i, labeled by the factor set Si, and

• directed edges j → i, for all factors fj ∈ Si, each

labeled by the corresponding factor fj.

1More precisely, bucket elimination is a particular im-
plementation of variable elimination in which one uses a list
of buckets to manage the set of factors during the elimina-
tion process. Although the use of such buckets is important
for the complexity of the algorithm, we ignore them here
as the use of buckets is orthogonal to our discussion.

2This is also true for versions of the algorithm that com-
pute the probability of evidence.

Figure 3 depicts traces of both algorithms on the net-
work in Figure 2 (left). Variable elimination, whose
trace is shown on the left, eliminates variables from A
to E, and performs five iterations corresponding to the
network variables. Mini-buckets, however, performs
seven iterations in this case, as it takes two iterations
to eliminate variable A and two iterations to eliminate
variable C. Note that an execution trace becomes a
rooted tree after reversing the direction of all edges.

Given an execution trace T , we can visually identify
all of the network CPTs used to construct any factor
in Algorithms 1 and 2. For mini-buckets, we also want
to identify a subtrace of T , but one that covers only
those network CPTs that are relevant to a particular
attempt at eliminating variable X at iteration i. A
CPT is not relevant to iteration i if X is eliminated
from it in a later iteration, or if X has already been
eliminated from it in some previous iteration.

Given a trace T , we thus define the subtrace Ti relevant
to an iteration i as the nodes and edges of T that are
reachable from node i (including itself), but only by
walking up edges j → i, and only those edges labeled
with factors fj mentioning variable X. For example,
in Figure 3 (right), the subtrace Ti for iteration i = 7 is
the chain 4→ 6→ 7. In the same trace, the subtrace
Ti for iteration i = 5 is the chain 1→ 3→ 5.

Given a subtrace Ti, we can identify only those CPTs
that are relevant to a partial elimination of X, but
further, the set of variables those CPTs belong to.

Definition 6 Let i be an iteration of mbe where we

eliminate variable X, and let Ti be the subtrace of T
that is relevant to iteration i. The basis B of an iter-

ation i is a set of variables where Y ∈ B iff:

• ΘY |U ∈ Sj for some node j of Ti, and

• X ∈ {Y } ∪U,

where ΘY |U are CPTs in N .

For example, in Figure 3 (right), the basis of iteration
i = 4 is {D,E}, since C is eliminated from the CPTs
of D and E at iteration 4.

Given this notion, we can show how to construct a net-
work with split nodes, that corresponds to a particular
execution of the mini-bucket method. In particular,
exact variable elimination in N ′ will be able to mimic
mini-bucket elimination in N , with the same computa-
tional complexity. This is given in Algorithm 3 which
returns both a network N ′ and an ordering π′ of the
variables in N ′ (this includes the variables in original
network N and their clones in N ′). Figure 4 shows a
trace corresponding to a split network, and the asso-
ciated variable order.

Algorithm 3 split-mbe(N, e): returns a split net-
work N ′ and variable ordering π′, corresponding to a
run of mbe(N, e).

1: N ′ ← N
2: for each iteration i of mbe(N, e) do

3: X ← as chosen on Line 5 of mbe

4: Si ← as chosen on Line 6 of mbe

5: B← basis of iteration i
6: if X ∈ B then

7: π′(i)← X
8: else

9: split node X in N ′ according to children B

10: π′(i)← clone X̂ of X resulting from split
11: return network N ′ and ordering π′

�����������Θ�Θ����
������ ���� Θ����
�����������Θ� ���
����	� ���� ��� Θ���
����
� ������

������ ���� ���

��	��
���� ��

���
�������∅ �∅

�����������Θ�Θ����
������

�����������Θ� ���
����	�

����
� ������

������ ���� ���

��	��
���� ��

���
�������∅ �∅

���

���

� ��� ��
�

��� �����
�

Figure 4: An execution trace of mbe on N (left) and
ve on N ′ (right). For simplicity, we ignore the priors of
clone variables in N ′. Networks are defined in Figure 2.

We now have our basic correspondence between mini-
buckets and node splitting.

Theorem 2 Let N be a Bayesian network, e be

some evidence, and let N ′ and π′ be the results of

split-mbe(N, e). We then have:

mbe(N, e) = βMPEp(N
′, e,−→e),

where β =
∏

C∈C
|C| and C are the clone variables

in N ′. Moreover, variable elimination on network N ′

using the variable order π′ has the same time and space

complexity of the corresponding run mbe(N, e).

Note that the ordering π′ returned by Algorithm 3 may
not be the most efficient ordering to use when running
exact variable elimination in a split network: there
may be another variable order where ve(N ′, e,−→e) pro-
duces smaller intermediate factors than mbe(N, e). In-
deed, we need not restrict ourselves to variable elimi-
nation when performing inference on the split network,
as any exact algorithm suffices for this purpose. This
property can have significant practical implications, a
point we highlight in Section 7 where we exploit recent
advances in exact inference algorithms.

5 NODE-SPLITTING STRATEGIES

Given the correspondences in the previous section,
every mini-bucket heuristic can now be interpreted as
a node splitting strategy. Consider for example the
mini-bucket heuristic given in (Dechter & Rish, 2003),
which is a greedy strategy for bounding the size of
the factors created by mbe. This heuristic works as
follows, given a bound on the size of the largest factor:

• A particular variable order is chosen and followed
by the heuristic.

• When processing variable X, the heuristic will
pick a maximal set of factors Si whose product
will be a factor of size within the given bound.

• The above process is repeated in consecutive iter-
ations and for the same variable X until variable
X is eliminated from all factors.

• Once X is completely eliminated, the heuristic
picks up the next variable in the order and the
process continues.

This heuristic tries then to minimize the number of
instances where a proper subset of factors is selected
in Line 6 of Algorithm 2, and can be interpreted as a
heuristic to minimize the number of clones introduced
into an approximation N ′. In particular, the heuristic
does not try to minimize the number of split variables.

We now introduce a new node splitting strategy based
on fully splitting nodes, where a variable is split along
every outgoing edge. The strategy is also a greedy al-
gorithm, which attempts to fully split the variable that
contributes most to the difficulty of running a join-

tree algorithm in the approximate network N ′. This
process is repeated until the network is sufficiently sim-
plified. In particular, the method starts by building a
jointree of the original network. It then picks a vari-
able whose removal from the jointree will introduce the
largest reduction in the sizes of the cluster and sepa-
rator tables. Once a variable is chosen, it is fully split.
One can obtain a jointree for the split network by sim-
ply modifying the existing jointree, which can then be
used to choose the next variable to split on.3 In our
empirical evaluation, we go further and construct a
new jointree for the simpler network, and choose the
next variable to split from it. This process is repeated
until the largest jointree cluster is within our bound.

We now have two strategies for splitting nodes in a net-
work. The first is based on the classical mini-bucket
heuristic that tries to minimize the number of clones,

3In particular, one can simply adjust the separators and
clusters without changing the structure of the jointree.

Algorithm 4 split-bnb: z and q? are global vari-
ables.

1: q ← βMPEp(N
′, z,−→z)

2: if q > q? then

3: if z is a complete instantiation then

4: q? ← q
5: else

6: pick some X /∈ Z

7: for each value x of variable X do

8: z← z ∪ {X = x}
9: split-bnb()

10: z← z− {X = x}

and the second one is based on reducing the size of
jointree tables and tries to minimize the number of
split variables. Recall that Corollary 1 tells us that
the quality of the MPE bound given by a split net-
work degrades monotonically with further splits. As
we shall see in Section 6, and empirically in Section 7,
it may sometimes be more important to minimize the
number of split variables, rather than the number of
clones, in the context of branch-and-bound search.

6 SEARCHING FOR MPE’S

When computing the MPE is too difficult for tradi-
tional inference algorithms, we can employ systematic
search methods to identify provably optimal solutions.

Suppose now that we are given network N and evi-
dence e, and that we want to compute MPEp(N, e)
using depth-first branch-and-bound search. We want
then to select some network N ′ using a node-splitting
heuristic from the previous section to allow for exact
inference in N ′ (say, by the jointree algorithm). The-
orem 1 gives us the upper bound

MPEp(N, e) ≤ βMPEp(N
′, e,−→e).

Moreover, one can easily show that if z is a complete
variable instantiation x of N , we then have

MPEp(N,x) = βMPEp(N
′,x,−→x);

see Lemma 1. These two properties form the basis of
our proposed search algorithm, split-bnb, which is
summarized in Algorithm 4.

Throughout the search, we keep track of two global
variables. First, z is a partial assignment of variables
in the original network that may be extended to pro-
duce an MPE solution in MPE (N, e). Second, q? is a
lower bound on the MPE probability that is the largest
probability of a complete instantiation so far encoun-
tered. The search is initiated after setting z to e and
q? to 0.0: we use evidence e as the base instantiation,

and 0.0 as a trivial lower bound. Upon completion
of the search, we have the optimal MPE probability
q? = MPEp(N, e).

At each search node, we compute a bound on the best
completion of z by performing exact inference in the
approximate network N ′. If the resulting upper bound
q is greater than the current lower bound q?, then we
must continue the search, since it is possible that z

can provide us with a better solution than what we
have already found. In this case, if z is already a com-
plete instantiation, it is easy to show that q is equal
to Pr(z) (by Lemma 1, in the Appendix) and that we
have found a new best candidate solution q?. If z is
not a complete instantiation, we select some variable
X that has not been instantiated. For each value x
of X, we add the assignment {X = x} to z and call
split-bnb recursively with the new value of z and our
candidate solution q?. Upon returning from the re-
cursive call, we retract the assignment {X = x}, and
continue to the next value of X.

6.1 REDUCING THE SEARCH SPACE

Consider now the following critical observation.

Proposition 1 Let N be a Bayesian network, and let

N ′ be the result of splitting nodes in N . If Z contains

all variables that were split in N to produce N ′, then

MPEp(N, z) = βMPEp(N
′, z,−→z),

where β =
∏

C∈C
|C| and C are all the clones in N ′.

According to this proposition, once we have instanti-
ated in z all variables that were cloned, the resulting
approximation is exact. This tells us that during our
search, we need not instantiate every one of our net-
work variables X. We need only instantiate variables
in a smaller set of variables Z ⊆ X containing precisely
the variables that were split in N to produce N ′. Once
the bound on the MPE probability becomes exact, we
know that we will not find a better solution by instan-
tiating further variables, so we can stop and backtrack.
This observation allows us to work in a reduced search
space: rather than searching in a space whose size is
exponential in the number of network variables X, we
search in a space whose size is exponential only in the
number of split variables!

Moreover, if our variable splitting strategy seeks to
minimize the number of split variables, rather than
the number of clones introduced, we can potentially
realize dramatic reductions in the size of the resulting
search space. As we shall see in the following section,
this can have a drastic effect on the efficiency of search.

7 EMPIRICAL OBSERVATIONS

We present empirical results in this section to high-
light the trade-offs in the efficiency of search based on
the quality of the bound resulting from different node
splitting strategies, and the size of the resulting search
space. We further illustrate how our framework allows
for significant practical gains with relatively little ef-
fort, by employing state-of-the-art algorithms for ex-
act inference in the approximate, node-split network.
Thus, our goal here is, not to evaluate a completely
specified system for MPE search, but to illustrate the
benefits that our node-splitting perspective can bring
to existing systems.

We begin with experiments on networks for decoding
error-correcting codes (see, e.g., Frey & MacKay, 1997;
Rish, Kask, & Dechter, 1998). We first consider sim-
pler networks, that correspond to codes containing 16
information bits and 24 redundant bits. Each of our
plot points is an average of 42 randomly generated net-
works: 6 networks for each of 7 levels of noise.4 Here,
an MPE solution would recover the most likely word
encoded prior to transmission. Our method for exact
inference in the approximate model is based on com-
piling Bayesian networks (Chavira & Darwiche, 2007),
an approach that has already been demonstrated to be
effective in branch-and-bound search for MAP expla-
nations (Huang, Chavira, & Darwiche, 2006).

In our experiments, we compared the splitting strat-
egy based on a jointree (JT) with the strategy based
on a greedy mini-bucket elimination (MB), both de-
scribed in Section 5. In particular, we asserted limits
on the maximum cluster size for JT, and equivalently,
the size of the largest factor for MB. We then com-
pared the two strategies across a range of cluster and
factor size limits from 0 to 12, where 0 corresponds to
a fully disconnected network and 12 corresponds to ex-
act inference (no splits). In all of our experiments, to
emphasize the difference between splitting strategies,
we make neutral decisions in the choice of a search seed
(we use a trivial seed, 0.0), variable ordering (random)
and value ordering (as defined by the model).

First, consider Figure 5, which compares the effec-
tiveness of node splitting strategies in minimizing the
number of variables split and the number of clones.
Recall that the heuristic based on jointrees (JT) seeks
to minimize the number of split variables, while the
greedy mini-bucket (MB) strategy would seek to mini-
mize the number of clones. We see that in Figure 5, on

4In particular, each network is associated with its own
piece of evidence corresponding to a codeword received via
transmission through a (simulated) noisy Gaussian chan-
nel, with standard deviations ranging from σ = 0.2 to
σ = 0.8 in steps of 0.1.

0 5 10
0

5

10

15

log
2
(max cluster size)

of

 v
ar

s
sp

lit

JT
MB

0 5 10
0

20

40

60

80

log
2
(max cluster size)

of

 c
lo

ne
s

cr
ea

te
d JT

MB

Figure 5: Comparing splitting heuristics.

0 5 10
10

0

10
2

10
4

log
2
(max cluster size)

se
ar

ch
 s

pa
ce

 s
iz

e JT
MB

0 5 10
10

0

10
5

log
2
(max cluster size)

se
ar

ch
 n

od
es

Figure 6: Evaluating the efficiency of search. On the
right, the top pair searches in the full space, and the
bottom pair searches in the reduced space.

the left, our jointree (JT) method can split nearly half
of the variables that the mini-bucket (MB) strategy
splits. On the other hand, we see that on the right, the
mini-bucket (MB) strategy is introducing fewer clones.
Note that on both extremes (no splits and all split),
MB and JT are identical.

To see the impact that reducing the number of split
variables has on the efficiency of search, consider Fig-
ure 6. On the left, we see that JT can get an order
of magnitude savings over MB in the size of the re-
duced search space, which is exponential only in the
number of split variables (see again Figure 5). Con-
sider now, on the right, the number of nodes visited
while performing split-bnb search. The top pair plots
the efficiency of search using the full search space (JT-
F and MB-F), while the bottom pair plots the effi-
ciency of using the reduced search space (JT-R and
MB-R). We see that both JT-R and MB-R experience
several orders of magnitude improvement when using
the reduced-search space versus the full search space.

When we compare JT-F and MB-F (top pair), we see
that MB-F is in fact more efficient in terms of the
number of nodes visited. In this setting, where both
methods are searching in the same space, we see that
the number of clones introduced appears to be the
dominant factor in the efficiency of search. This is
expected, as we expect that the upper bounds on the
MPE probability should be tighter when fewer clones
are introduced. When we now compare JT-R and
MB-R (bottom pair), we see that the situation has

0 10 20

10

20

30

log
2
(max cluster size)

of

 v
ar

s
sp

lit
JT
MB

0 10 20

20

40

60

80

log
2
(max cluster size)

of

 c
lo

ne
s

cr
ea

te
d JT

MB

Figure 7: Comparing splitting heuristics.

0 10 20

10
5

log
2
(max cluster size)

se
ar

ch
 s

pa
ce

 s
iz

e JT
MB

0 10 20

10
2

10
4

log
2
(max cluster size)

se
ar

ch
 n

od
es

Figure 8: Evaluating the efficiency of search.

Table 1: Compilation versus Variable Elimination

Search AC VE
Network Nodes Time (s) Time (s) Imp.
90-20-1 14985 18 2417 135
90-20-2 137783 111 15953 144
90-20-3 3065 4 1271 334
90-20-4 4545 3 988 355
90-20-5 29343 38 6579 173
90-20-6 5065 3 630 227
90-20-7 2987 2 1155 485
90-20-8 6213 6 812 146
90-20-9 5121 5 2367 480
90-20-10 8419 10 2343 235

reversed, and that JT-R is now outperforming MB-R.
Here, each method is performing search in their own
reduced search spaces. A strategy based on reducing
the number of split variables reduces the size of the
search space, and this reduction now dominates the
quality of the bound.

Figures 7 and 8 depict similar results but for larger
coding networks, in which we have a rate 1

2
code with

32 information bits and 32 redundant bits. Note that
only the reduced space was used for search here.

Our approach based on node splitting has another ma-
jor advantage, which we have only briefly mentioned
thus far. By formulating mini-buckets as exact infer-
ence in an approximate network, the evaluation of the
mini-bucket approximation need not rely on any spe-
cific exact inference algorithm. We mention here that

the arithmetic circuit (AC) approach we have been
using to compute the bound indeed has a key advan-
tage over mainstream algorithms, in that it is able
to effectively exploit certain types of local structure
(Chavira & Darwiche, 2006). To highlight the extent
to which using a different algorithm can be significant,
we constructed another set of experiments. In each, we
used a different grid network, first introduced in (Sang,
Beame, & Kautz, 2005), and constructed a single MPE
query. Each grid network has treewidth in the low
thirties, just out of reach for traditional algorithms for
exact inference. We ran our search twice, each time us-
ing a different algorithm to compute the mini-bucket
bound: the first using AC and the second using stan-
dard variable elimination (that does not exploit local
structure). Table 1 shows the results for each network,
including the number of search nodes visited and, for
each algorithm, the total search time. For each net-
work, we performed two identical searches for each al-
gorithm: the only difference being in how the bound

was computed. Consequently, the dramatic differences
we observe reflect the ability of the AC approach to
exploit local structure, showing how advances in exact
inference can be easily utilized to extend the reach of
mini-bucket approximations.

8 CONCLUSION

We presented in this paper a new perspective on mini-
bucket approximations, formulating it in terms of ex-
act inference in an approximate network, but one
found by splitting nodes. This perspective has led to a
number of theoretical and practical insights. For one,
it becomes apparent that a branch-and-bound search
using a mini-bucket bound may operate in a drasti-
cally reduced search space. This suggests a heuris-
tic for identifying a mini-bucket approximation that
is explicitly based on minimizing this search space,
rather than the quality of the resulting bound. Empir-
ically, we observe that a reduced search space can have
more impact than a better bound, in terms of the effi-
ciency of branch-and-bound search. Moreover, as our
approach is independent of the algorithm used for ex-
act inference in the resulting approximate network, we
can effortlessly employ state-of-the-art algorithms for
exact inference, including those that can exploit com-
pilation and local structure.

A PROOFS

Lemma 1 Let N be a Bayesian network, and let N ′

be the result of splitting nodes in N . We then have

Pr(x) = βPr ′(x,−→x).

Here β =
∏

C∈C
|C|, where C is the set of clones in

network N ′.

Proof of Lemma 1 Note first that −→x is an instanti-
ation of only root variables, and that all clones have
uniform priors, i.e., θc = |C|−1. We then have that

Pr ′(−→x) =
∏

c∼−→
x

θc =
∏

C∈C

|C|−1 = β−1.

Since instantiation x is compatible with −→x , where a
variable and its clones are set to the same value, we
find in Pr ′(x | −→x) that clone variables act as selectors
for the CPT values composing Pr(x). Thus

Pr ′(x,−→x) = Pr ′(x | −→x)Pr ′(−→x) = Pr(x)β−1

and we have Pr(x) = βPr ′(x,−→x), as desired. �

Proof of Theorem 1 Suppose for contradiction that
there exists an instantiation z ∈ MPE (N, e) such that
Pr(z) > βMPEp(N

′, e,−→e). By Lemma 1, the instan-
tiation −→z gives us

Pr(z) = βPr ′(z,−→z) > βMPEp(N
′, e,−→e),

contradicting the optimality of MPEp(N
′, e,−→e). �

Proposition 1 is in fact a generalization of Lemma 1
from a complete instantiation x to a partial instantia-
tion z where Z contains all nodes that have been split
in N ′. Note that splitting a node X when the value
of X has already been fixed corresponds to a com-
mon preprocessing rule for Bayesian networks given
evidence. In particular, when a given piece of evidence
z fixes the value of variable Z, any edge Z → Y can be
pruned and a selector node Ẑ can be made a parent of
Y . Node Ẑ is then set to the value that instantiation
z assigns to Z. This pruning process yields a simpler
network which corresponds exactly to the original net-
work for any query of the form {α, z}.

Proof of Proposition 1 From the correspondence
to pruning edges outgoing instantiated variables, we
know that queries of the form {α, z}, including com-
plete instantiations {x, z}, are equivalent in N condi-
tioned on z and N ′ conditioned on {z,−→z }. Thus the
MPEs of each network must also be the same. �

Proof of Theorem 2 Given the trace of an instance
of mbe(N, e), algorithm split-mbe(N, e) returns a
network N ′ and an ordering π′ of variables in N ′.
We show, by induction, that each iteration of ve

on N ′ mimics each iteration of mbe on N . We can
then conclude that the product of factors returned by
both must be the same, and further, that they are of
the same time and space complexity. In particular,

we show how ve(N, e,−→e) mimics mbe(N, e) first on
Line 2, and then Lines 5, 6 and 7, in Algorithms 1 and
2. For simplicity, we ignore the constant factor β that
the clone CPTs contribute to the MPE value of N ′.

On Line 2 (iteration i = 0), by construction, the CPTs
in N are the same as the CPTs in N ′, after relabeling.
For iterations i > 0, assume for induction that the
factors available to both ve and mbe are the same.

On Line 5, if mbe picked variable X on Line 5, then
algorithm ve picks variable X ′ = π′(i), which is either
X or a clone X̂, by construction (Lines 7 and 10 of
Algorithm 3).

On Line 6, each factor in the set Si is either 1) a CPT
mentioning X, or 2) a factor that is composed of a
CPT mentioning X. The variables that these CPTs
belong to are the variable set B, the basis of iteration
i. Algorithm 3 decides to split (or not split), so that
each variable in B will have a CPT in N ′ that mentions
X ′ = π′(i). We know by induction, that all factors f
selected by mbe are available for selection by ve in N ′.
Since Algorithm 3 ensures that each of these factors
f now mention X ′ , and since ve picks all factors
mentioning X ′, we know ve picks the same factors
mbe picked.

On Line 7, consider any variable Z mentioned in Si.
Let j ≥ i be the iteration where Z is eliminated in
mbe. The relevant CPTs mentioning Z at iteration i
are among the relevant CPTs of the basis at iteration
j. Thus, Algorithm 3 ensures that they all mention the
same instance of Z in N ′. Thus, the resulting product
of factors fi must be the same after relabeling. �

A node-split network also upper bounds Pr(e). The
following theorem corresponds to a mini-bucket bound
on the probability of evidence (Dechter & Rish, 2003).

Theorem 3 Let N be a Bayesian network, and let N ′

be the result of splitting nodes in N . We then have

Pr(e) ≤ βPr ′(e,−→e).

Here, β =
∏

C∈C
|C|, where C is the set of clones in

network N ′.

Proof of Theorem 3 By Lemma 1, we know that
Pr(x) = βPr ′(x,−→x). Therefore:

Pr(e) =
∑

x∼e

Pr(x) = β
∑

x∼e

Pr ′(x,−→x)

≤ β
∑

x′∼e,−→e

Pr ′(x′) = βPr ′(e,−→e)

where x′ is an instantiation of variables in N ′, but
where the values of the original network variables are
not necessarily compatible with the values of the clone
variables (as they are in x and −→x). �

B LOOP-CUTSET CONDITIONING

The loop-cutset conditioning algorithm and split-bnb

search are closely related when our splitting strategy
performs only full splits (see Definition 3). This cor-
respondence reveals the difficulty of answering the fol-
lowing decision problem:

D-FS: Given k and ω, does there exist a set
Z of size ≤ k such that fully splitting nodes
Z in network N results in an approximate
network N ′ with treewidth ≤ ω?

We now state the following negative result.

Theorem 4 Decision problem D-FS is NP–complete.

Hardness can be shown by reduction from the loop-
cutset problem, which is NP–complete (Suermondt
& Cooper, 1990). In particular, when we fully split
enough variables Z to render N ′ a polytree, then Z

also constitutes a loop-cutset of N .

If N ′ is rendered a polytree, and we ignore the bound
during split-bnb search and further employ the re-
duced search space over split variables Z, then split-

bnb reduces to loop-cutset conditioning. More gener-
ally, when we split enough variables Z so that network
N ′ has treewidth ω, split-bnb reduces to ω–cutset
conditioning (Bidyuk & Dechter 2004).

Assuming that for exact inference in N ′, we use an
algorithm that is exponential in the treewidth ω of
N ′, this correspondence tells us that the worst-case
time and space complexity of split-bnb search is pre-
cisely that of ω–cutset conditioning. In particular, say
that n is the number of variables in N , value m is the
number of variables cloned in N ′, and value ω is the
treewidth of network N ′. The worst-case time com-
plexity of split-bnb search is thus

O(n exp{ω} · exp{m}) = O(n exp{ω + m}),

since we spend O(n exp{ω}) time at each of at most
exp{m} search nodes. Note that the space complexity
of split-bnb search is only O(n exp{ω}+ m).

References

Chavira, M., & Darwiche, A. (2006). Encoding CNFs to
empower component analysis. In SAT, pp. 61–74.
Springer Berlin / Heidelberg, Lecture Notes in Com-
puter Science, Volume 4121.

Chavira, M., & Darwiche, A. (2007). Compiling Bayesian
networks using variable elimination. In IJCAI, pp.
2443–2449.

Choi, A., & Darwiche, A. (2006a). An edge deletion seman-
tics for belief propagation and its practical impact on
approximation quality. In AAAI, pp. 1107–1114.

Choi, A., & Darwiche, A. (2006b). A variational approach
for approximating Bayesian networks by edge dele-
tion. In UAI, pp. 80–89.

Dechter, R. (1996). Bucket elimination: A unifying frame-
work for probabilistic inference. In UAI, pp. 211–219.

Dechter, R., Kask, K., & Mateescu, R. (2002). Iterative
join-graph propagation. In UAI, pp. 128–136.

Dechter, R., & Rish, I. (2003). Mini-buckets: A general
scheme for bounded inference. J. ACM, 50 (2), 107–
153.

Frey, B. J., & MacKay, D. J. C. (1997). A revolution:
Belief propagation in graphs with cycles. In NIPS,
pp. 479–485.

Huang, J., Chavira, M., & Darwiche, A. (2006). Solving
map exactly by searching on compiled arithmetic cir-
cuits. In AAAI, pp. 143–148.

Hutter, F., Hoos, H. H., & Stützle, T. (2005). Efficient
stochastic local search for MPE solving. In IJCAI,
pp. 169–174.

Kolmogorov, V., & Wainwright., M. J. (2005). On the
optimality of tree-reweighted max-product message
passing. In UAI.

Marinescu, R., & Dechter, R. (2005). AND/OR branch-
and-bound for graphical models. In IJCAI, pp. 224–
229.

Marinescu, R., Kask, K., & Dechter, R. (2003). Systematic
vs. non-systematic algorithms for solving the MPE
task. In UAI, pp. 394–402.

Park, J. D. (2002). Using weighted max-sat engines to solve
MPE. In AAAI/IAAI, pp. 682–687.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
mann Publishers, Inc., San Mateo, California.

Rish, I., Kask, K., & Dechter, R. (1998). Empirical eval-
uation of approximation algorithms for probabilistic
decoding. In UAI, pp. 455–463.

Sang, T., Beame, P., & Kautz, H. (2005). Solving Bayesian
networks by weighted model counting. In AAAI,
Vol. 1, pp. 475–482. AAAI Press.

Suermondt, H. J., & Cooper, G. F. (1990). Probabilistic
inference in multiply connected networks using loop
cutsets. IJAR, 4, 283–306.

Wainwright, M. J., Jaakkola, T., & Willsky, A. S. (2005).
Map estimation via agreement on trees: message-
passing and linear programming. IEEE Transactions
on Information Theory, 51 (11), 3697–3717.

Weiss, Y. (2000). Correctness of local probability propa-
gation in graphical models with loops. Neural Com-
putation, 12 (1), 1–41.

Yedidia, J., Freeman, W., & Weiss, Y. (2005). Construct-
ing free-energy approximations and generalized be-
lief propagation algorithms. IEEE Transactions on
Information Theory, 51 (7), 2282–2312.

Zhang, N. L., & Poole, D. (1996). Exploiting causal inde-
pendence in bayesian network inference. Journal of
Artificial Intelligence Research, 5, 301–328.

