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Abstract

We propose an approach for approximating the partition function which is based
on two steps: (1) computing the partition function of a simplified model which
is obtained by deleting model edges, and (2) rectifying the result by applying an
edge-by-edge correction. The approach leads to an intuitive framework in which
one can trade-off the quality of an approximation with the complexity of com-
puting it. It also includes the Bethe free energy approximation as a degenerate
case. We develop the approach theoretically in this paper and provide a number
of empirical results that reveal its practical utility.

1 Introduction

We presented in prior work an approach to approximate inference which is based on performing
exact inference on a simplified model (Choi & Darwiche, 2006a, 2006b). We proposed obtaining
the simplified model by deleting enough edges to render its treewidth manageable under the current
computational resources. Interestingly enough, the approach subsumes iterative belief propagation
(IBP) as a degenerate case, and provides an intuitive framework for capturing some of its general-
izations (Choi & Darwiche, 2006a).

We show in this paper that the simplified models can also be used to approximate the partition
function if one applies a correction for each deleted edge. We propose two edge-correction schemes,
each of which is capable of perfectly correcting the partition function when a single edge has been
deleted. The first scheme will have this property only when a particular condition holds in the
simplified model, and gives rise to the Bethe free energy approximation when applied to a simplified
model that has a tree structure. The second correction scheme does not require such a condition and
is shown empirically to lead to more accurate approximations. Both schemes can be applied to the
whole spectrum of simplified models and can therefore be usedto trade-off the quality of obtained
approximations with the complexity of computing them.

2 Approximation by Edge Deletion

We first review our edge deletion framework in the context of pairwise Markov random fields (Choi
& Darwiche, 2007). For an application to directed models, see (Choi & Darwiche, 2006a).

Let a pairwise Markov random field (MRF)M have a graph(E ,V) with edges(i, j) ∈ E and nodes
i ∈ V, where each nodei of the graph is associated with a variableXi taking on valuesxi. Edges
(i, j) are associated with edge potentialsψ(xi, xj) and nodesi with node potentialsψ(xi). The
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Figure 1: An MRF (top); after edge
deletion (bottom).
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Figure 2: To delete edge(i, j) (top), we introduce
auxiliary nodek (middle), and delete equivalence
edge(i, k), adding edge parameters (bottom).

(strictly positive) distributionPr induced byM is defined as follows:

Pr(x)
def
=

1

Z

∏

(i,j)∈E

ψ(xi, xj)
∏

i∈V

ψ(xi),

wherex is an instantiationx1, . . . , xn of network variables, and whereZ is thepartition function:

Z
def
=

∑

x

∏

(i,j)∈E

ψ(xi, xj)
∏

i∈V

ψ(xi).

The basic idea behind our framework is to delete enough edgesfrom the pairwise MRF to render it
tractable for exact inference.

Definition 1 Let M be a pairwise MRF. To delete edge(i, j) from M we remove the edge(i, j)
fromM and then introduce the auxiliary potentialsθ(Xi) andθ(Xj) for variablesXi andXj .

Figure 1 provides an example of deleting an edge. When deleting multiple edges, we may introduce
multiple, yet distinct, potentialsθ(Xi) for the same nodeXi. We shall refer to auxiliary potentials
θ(Xi) andθ(Xj) asedge parametersand useΘ to denote the set of all edges parameters. The result-
ing pairwise MRF will be denoted byM′(Θ), its partition function will be denoted byZ ′(Θ) and
its distribution will be denoted byPr

′(.; Θ). When choosing a particular value for edge parameters
Θ, we will drop reference toΘ, using onlyM′, Z ′ andPr

′(.).

Note that while the distributionPr(.) and partition functionZ of the original pairwise MRFM
may be hard to compute, the distributionPr

′(.; Θ) and partition functionZ ′(Θ) of M′(Θ) should
be easily computable due to edge deletion. Note also that before we can usePr

′(.; Θ) andZ
′(Θ)

to approximatePr(.) andZ, we must first specify the edge parametersΘ. In fact, it is the values of
these parameters which will control the quality of approximationsPr

′(.; Θ) andZ
′(Θ).

Without loss of generality, we will assume that we are only deletingequivalence edges(i, j), which
connect two variablesXi andXj with the same domain, and have a potentialφ(xi, xj) that denotes
an equivalence constraint:φ(xi, xj) = 1 if xi = xj , andφ(xi, xj) = 0 otherwise. The deletion of
any edge in an MRF can be formulated as the deletion of an equivalence edge.1

In previous work, we proposed (and justified) the following conditions on edge parametersθ(xi)
andθ(xj):

θ(xi) = α
∂Z ′

∂θ(xj)
and θ(xj) = α

∂Z ′

∂θ(xi)
(1)

1To delete an MRF edge(i, j) that is not an equivalence edge, we use the technique in Figure 2: we
introduce an auxiliary nodek betweeni andj; introduce an equivalence constraint on the edge(i, k); copy the
original potential of edge(i, j) to (k, j); and delete the equivalence edge(i, k). Note that the original model
and the extended one will have the same treewidth in this case, will agree on the distribution over their common
variables, and will have the same partition function values.
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whereα is a normalizing constant. Note that the partial derivatives of Equation 1 can be computed
efficiently in traditional inference frameworks (Darwiche, 2003; Park & Darwiche, 2004).

Equation 1 can also be viewed as update equations, suggesting an iterative method that searches
for edge parameters, which we calledED-BP (Choi & Darwiche, 2006a). Starting with an initial
approximationM′

0 at iterationt = 0 (say, with uniform parameters), we can compute edge pa-
rametersθt(xi) andθt(xj) for an iterationt > 0 by performing exact inference in the approximate
networkM′

t−1. We repeat this process until we observe that all parametersconverge to a fixed point
satisfying Equation 1 (if ever).

Note that Equation 1 does not specify a unique value of edge parameters, due to the constantsα.
That is, each value of these constants will lead to a different set of edge parameters. Yet, independent
of which constants we use, the resulting pairwise MRFM′ will have aninvariantdistributionPr

′(.)
that satisfies the following properties. First,

Pr
′(xi) = Pr

′(xj) =
1

zij

· θ(xi)θ(xj), (2)

wherezij =
∑

xi=xj
θ(xi)θ(xj). Next, if the pairwise MRFM′ has a tree structure, the node

marginals of distributionPr
′(.) will correspond precisely to the node marginals obtained byrunning

IBP on the original modelM. Finally, if the pairwise MRFM′ has loops (i.e., not a tree), the node
marginals of distributionPr

′ will correspond to node marginals obtained by running a generalization
of IBP on the original modelM (in particular, a class of iterative joingraph propagationalgorithms;
see Choi & Darwiche, 2006a; Aji & McEliece, 2001; Dechter, Kask, & Mateescu, 2002).

3 Approximating the Partition Function by Edge Correction

While the edge parameters specified by Equation 1 are guaranteed to yield an invariant distribution
Pr

′(.), they are not guaranteed to yield an invariant partition functionZ
′ as this function is sensitive

to the choice of constantsα. While these edge parameters will yield an interesting approximation of
node marginals, they do not yield a meaningful approximation of the partition function.

We will show in this section, however, that one can apply an edge-by-edge correction to the partition
functionZ

′, leading to a corrected partition function that is invariant to the choice of constantsα.
This seemingly subtle approach leads to two important consequences. First, it results in a new
semantics for the Bethe free energy approximation as a corrected partition function. Second, it
allows for an improved class of approximations based on improved corrections.

3.1 An Edge Correction that Gives Rise to the Bethe Free Energy

We will now propose a correction to the partition functionZ
′, which gives rise to the Bethe free

energy and some of its generalizations.

Proposition 1 Let M′ be the result of deleting a single equivalence edge(i, j) from a pairwise
MRF M. If the parameters of edge(i, j) are given by Equation 1, and if the mutual information
betweenXi andXj is zero inM′, then:

Z = Z
′ ·

1

zij

, where zij =
∑

xi=xj

θ(xi)θ(xj).

That is, if we delete asingleedge(i, j) and find thatXi andXj are independent in the resulting
modelM′, we can correct the partition functionZ ′ by zij and recover the exact partition function
Z. Moreover, the result of this correction is invariant to theconstantsα used in Equation 1.

From now on, we will useMI (Xi;Xj) to denote the mutual information between two variablesXi

andXj in the pairwise MRFM′. Moreover, whenMI (Xi;Xj) = 0, we will say that the deleted
edge(i, j) is a zero-MI edge.

Let us now consider the more realistic situation where we delete multiple edges, say,E?, fromM to
yield the modelM′. One can try to apply the above correction to each of the deleted edges, leading
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to a corrected partition functionZ ′ · 1
z
, where

z =
∏

(i,j)∈E?

zij =
∏

(i,j)∈E?

∑

xi=xj

θ(xi)θ(xj). (3)

We will refer to this correction as azero-MI edge correction, or just ZERO-EC. This correction is
no longer guaranteed to recover the exact partition function Z, even if each of the deleted edges is
a zero-MI edge. Yet, if the pairwise MRFM′ has a tree structure, applying this correction to the
partition functionZ ′ gives rise to the Bethe free energy approximation.

To review, the Bethe free energyFβ is an approximation of the true free energyF of a pairwise
MRF M, and is exact whenM has a tree structure (Yedidia, Freeman, & Weiss, 2005). Since
F = − logZ, we can in principle useFβ as an approximation of the partition functionZ, even
whenM does not have a tree structure, i.e., we can useZβ = exp{−Fβ}.

Theorem 1 LetM′ be the result of deleting equivalence edges from a pairwise MRFM. If M′ has
a tree structure and its edge parameters are as given by Equation 1, we haveZβ = Z

′ · 1
z
.

Hence, the Bethe approximation ofZ is a degenerate case of theZERO-EC correction. That is, it
corresponds to anZERO-EC correction applied to a pairwise MRFM′ that has a tree structure. Since
theZERO-EC correction is specified purely in quantities available in the modelM′, it will be easily
computable as long as the modelM′ is sparse enough (i.e., it has a treewidth which is manageable
under the given computational resources). Hence, this correction can be practically applicable even
if M′ does not have a tree structure. In such a case, the correctionwill lead to an approximation of
the partition function that we expect to be superior to the one obtained by the Bethe free energy. We
will illustrate this point empirically later in the paper.

3.2 Improved Edge Corrections

Proposition 1 gives us a condition that allows us to correct the partition function exactly, but under
the assumption that the single edge deleted is zero-MI. The following result allows us, in fact, to
correct the partition function when deletinganysingle edge.

Proposition 2 Let M′ be the result of deleting a single equivalence edge(i, j) from a pairwise
MRFM. If the parameters of edge(i, j) are given by Equation 1, then:

Z = Z
′ ·
yij

zij

, where yij =
∑

xi=xj

Pr
′(xi | xj) =

∑

xi=xj

Pr
′(xj | xi).

Contrary to the first correction, this one may either increase or decrease the value ofZ
′. Moreover,

when the deleted edge(i, j) happens to be zero-MI, Proposition 2 reduces to Proposition1.

We can also use this proposition as a basis for correcting thepartition function when multiple edges
are deleted, just as we did in Equation 3. In particular, we now propose using the correctionZ ′ · y

z
,

wherez is the same factor given in Equation 3, and

y =
∏

(i,j)∈E?

yij =
∏

(i,j)∈E?

∑

xi=xj

Pr
′(xi | xj) (4)

We refer to this correction as ageneral edge correction, or justGENERAL-EC.

4 Edge Recovery

Suppose we already have a tree-structured approximationM′ of the original modelM, but we
are afforded more computational resources. We can then improve the approximation byrecovering
some of the deleted edges. However, whichedge’s recovery would have the most positive impact on
the quality of the approximation?

Edge Recovery for ZERO-EC. Since ZERO-EC is exact when a single edge is deleted with
MI (Xi;Xj) = 0, one may want to recover those edges(i, j) with the highest mutual informa-
tion MI (Xi;Xj).2 We will indeed show the promise of this heuristic in Section 6for ZERO-EC
corrections. We will also show that it turns out to be a poor heuristic for GENERAL-EC corrections.

2This heuristic was first proposed in (Choi & Darwiche, 2006a).
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Edge Recovery for GENERAL-EC. Consider the situation when two equivalence edges are
deleted,(i, j) and(s, t). Here, we use the approximate correction:Z

′ · y
z

= Z
′ ·

yij

zij

yst

zst
, where

yij

zij
is the single-edge correction for edge(i, j) and yst

zst
is the single-edge correction for edge(s, t).

The question now is: when is this double-edge correction exact? Intuitively, we want to identify
a situation where each edge can be corrected, independentlyof each other. Consider then the case
where variablesXi,Xj are independent of variablesXs,Xt.

Proposition 3 Let M′ be the result of deleting two equivalence edges,(i, j) and (s, t), from
a pairwise MRFM. If the edge parameters ofM′ are as given by Equation 1, and if
MI (Xi,Xj ;Xs,Xt) = 0 in M′, then:

Z = Z
′ ·
yij

zij

yst

zst

.

This suggests a new edge recovery heuristic forGENERAL-EC approximations to the partition func-
tion. First, we start with a tree-structured networkM′, and assign each deleted edge(i, j) a score:

∑

(s,t)∈E?\(i,j)

MI (Xi,Xj ;Xs,Xt).

We then prefer to recover the topk with the highest mutual information scores.

5 Edge Corrections and Free Energies

When the modelM′ is a tree,ZERO-EC yields the influential Bethe free energy approximation
(Yedidia et al., 2005). When the modelM′ has cycles, it can be shown thatZERO-EC corresponds
more generally to joingraph free energy approximations (Aji & McEliece, 2001; Dechter et al.,
2002); see (Choi & Darwiche, 2006a) for the connection to iterative joingraph propagation.

GENERAL-EC can also take the form of another free energy approximation.Note that when multiple
equivalence edges are deleted, we can compute the partitionfunctionZ ′

ij of a modelM′
ij by treating

the single edge(i, j) as if it was the only edge deleted:Z ′
ij = Z

′ ·
yij

zij
. Therefore, we have that:

Z
′ ·
y

z
= Z

′ ·
∏

(i,j)∈E?

yij

zij

= Z
′ ·

∏

(i,j)∈E?

Z ′
ij

Z ′
.

This leads to a free energy of the form− log(Z ′ · y
z
) = (n − 1) log Z

′ −
∑

(i,j)∈E? logZ ′
ij , where

n is the number of equivalence edges(i, j) deleted. The structure of this (dual) free energy can
be visualized via an EP graph (Welling, Minka, & Teh, 2005), which can be used to design EP
free energy approximations (Minka, 2001a, 2001b), consisting of M′ as the base approximation
with modelsM′

ij as outer regions. Whereas we fixed, somewhat arbitrarily, ouredge parameters
to satisfy Equation 1, we could in principle seek edge parameters optimizing the above free energy
directly (see the Appendix), lifting edge deletion approximations towards EP and GBP free energy
approximations with higher-order structure. In the other direction, this perspective could provide
new semantics for certain EP and GBP free energies. Moreover, the edge recovery heuristic from
the previous section can serve as a heuristic for identifying improved EP and GBP free energies.
This is a perspective that is currently being investigated.

Although much of the progress in IBP and its generalizationshave relied on the free energy per-
spective, yielding successful algorithms for approximating marginals, relatively little attention has
been paid to direct approximations of the partition function. A notable exception is tree-reweighted
belief propagation (Wainwright, Jaakkola, & Willsky, 2005), which provides upper bounds on the
log partition function that can be thought of as a convexifiedform of the Bethe free energy. Mean
field methods and its generalizations are another well-known class of approximations that provide
lower bounds on the partition function (e.g., Saul & Jordan,1995; Jaakkola, 2000). These, and
other variational approximations (Jordan, Ghahramani, Jaakkola, & Saul, 1999; Choi & Darwiche,
2006b), provide a complementary approach to approximate inference as exact inference in simpli-
fied models, but one based on solving a nonlinear optimization problem. In Section 6, we highlight
an initial comparison of edge-corrected partition function approximations against a generalization
of the mean field approximations given by (Wiegerinck, 2000;Geiger, Meek, & Wexler, 2006).
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6 Experimental Results

Our goal here is to highlight the effects that different edgerecovery heuristics have onZERO-EC
andGENERAL-EC approximations. For each plot, we generate over 50 problem instances, omitting
those instances whereED-BP fails to converge in 100 iterations. Starting from a random spanning
tree, we rank each deleted edge, and recover edgesk at a time until all edges are recovered. At each
point, we evaluate the quality of the approximation by the average relative error|Ẑ − Z|/Z, where
Ẑ denotes the appropriate approximation. Note that when no edges are recovered (from the tree
approximation),ZERO-EC corresponds to the Bethe approximation.

In Figure 3, we generated random6 × 6 grid networks, where pairwise couplings were given ran-
dom parameters (left), or random parameters in[0.0, 0.1) or (0.9, 1.0] (right). We recovered edges
randomly here, and comparedZERO-EC (Z-EC) andGENERAL-EC (G-EC) with variational lower
bounds onZ based on a mean field generalization (Wiegerinck, 2000; Geiger et al., 2006). We gave
the variational approximation the same network structure as ZERO-EC andGENERAL-EC (eliminat-
ing the auxiliary variables). We find that the variational bounds are loose here, compared to the
approximations given byZERO-EC andGENERAL-EC.

In Figure 4, we compareZERO-EC approximations withGENERAL-EC approximations. In each
of the four plots, we use random edge recovery as a baseline. In the first plot from the left, we
evaluated the (static) edge recovery heuristic used in (Choi & Darwiche, 2006a), where we recovered
edges first with the highest mutual information (MI+) score in the tree approximation. We see
that this heuristic has a positive effective on the quality of ZERO-EC approximations, relative to
random recovery. In the second plot, we reversed the decisions, choosing to recover first those with
the lowest score (MI–), and see the opposite effect. In both plots, the heuristic appears to have
little effect on theGENERAL-EC approximations. In the last two plots of Figure 4, we evaluate the
heuristics proposed in Section 4 in a similar way (MI2+ and MI2–). We see now this new heuristic
has a positive effect onGENERAL-EC, andZERO-EC as well. Note also thatGENERAL-EC dominates
the respectiveZERO-EC approximation, on average.

As all of the previous results can be formulated for Bayesiannetworks in a straightforward manner,
we also run experiments here on Bayesian networks, for whicha variety of benchmark networks are
publicly available.3 Here each problem instance is an instantiation of evidence,randomly set on all
leaves of the network.

In Figure 5, we see similar results in thewin95pts andwater networks, as we saw in our random
grid networks. In Figure 6, thealarm network appears to show thatZERO-EC approximations may
not be sensitive in some networks to the edge recovery heuristic introduced forGENERAL-EC.

7 Conclusion

We proposed an approach for approximating the partition function which is based on two steps: (1)
computing the partition function of a simplified model whichis obtained by deleting model edges,
and (2) rectifying the result by applying an edge-by-edge correction. The approach leads to an intu-
itive framework in which one can trade-off the quality of an approximation with the complexity of
computing it through a simple process of edge recovery. We provided two concrete instantiations of
the proposed framework by proposing two edge correction schemes with corresponding heuristics
for edge recovery. The first of these instantiations captures the well known Bethe free energy ap-
proximation as a degenerate case. The second instantiationhas been shown to lead to more accurate
approximations and appears to hold promise for capturing a more sophisticated class of free energy
approximations.

3The networks used here are available at http://www.cs.huji.ac.il/labs/compbio/Repository.
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Figure 3: Edge correction in random6 × 6 grid networks.
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A Stationary point conditions for general edge correction

We consider here stationary points of

f = − log
[
Z

′ ·
∏

(i,j)∈E?

Z ′
ij

Z ′

]
= − log Z

′ −
∑

(i,j)∈E?

[
log Z

′
ij − log Z

′
]
.

Consider the partial derivatives off with respect toθ(xi):

∂f

∂θ(xi)
=

∂

∂θ(xi)

{
− log Z

′ −
[
log Z

′
ij − log Z

′
]
−

∑

(s,t)∈E?\(i,j)

[
log Z

′
st − log Z

′
]}

=
∂

∂θ(xi)

{
− log Z

′
ij −

∑

(s,t)∈E?\(i,j)

[
log Z

′
st − log Z

′
]}

= 0 −
∑

(s,t)∈E?\(i,j)

[ 1

Z ′
st

∂Z ′
st

∂θ(xi)
−

1

Z ′

∂Z ′

∂θ(xi)

]

Setting these partial derivatives to zero, and rearrangingwe have:

∑

(s,t)∈E?\(i,j)

1

Z ′

∂Z ′

∂θ(xi)
=

∑

(s,t)∈E?\(i,j)

1

Z ′
st

∂Z ′
st

∂θ(xi)
.

Multiplying by θ(xi) on each side, and simplifying, we have stationary point conditions:
∑

(s,t)∈E?\(i,j)

Pr
′(xi) =

∑

(s,t)∈E?\(i,j)

Pr
′
st(xi),

or simply ∑

(s,t)∈E?\(i,j)

(n− 1)Pr
′(xi) = Pr

′
st(xi), (5)

wheren is the number of edges deleted. Analagously for edge parametersθ(xj).

One condition where these conditions are satisfied is when all networksM′ andM′
ij agree on

marginals for variableXi andXj . However, Condition 5 is weaker, and asks only that the sum of
the marginals forxi be consistent.
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