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Abstract

We propose an approach for approximating the partitiontfanavhich is based
on two steps: (1) computing the partition function of a siifigedd model which
is obtained by deleting model edges, and (2) rectifying &salt by applying an
edge-by-edge correction. The approach leads to an irguitamework in which
one can trade-off the quality of an approximation with thenptexity of com-
puting it. It also includes the Bethe free energy approxiomaas a degenerate
case. We develop the approach theoretically in this papgpaovide a number
of empirical results that reveal its practical utility.

1 Introduction

We presented in prior work an approach to approximate infarevhich is based on performing
exact inference on a simplified model (Choi & Darwiche, 2Q0B206b). We proposed obtaining
the simplified model by deleting enough edges to renderaesitidth manageable under the current
computational resources. Interestingly enough, the agbreubsumes iterative belief propagation
(IBP) as a degenerate case, and provides an intuitive frankefar capturing some of its general-
izations (Choi & Darwiche, 2006a).

We show in this paper that the simplified models can also bd ts@pproximate the partition
function if one applies a correction for each deleted edge pypose two edge-correction schemes,
each of which is capable of perfectly correcting the pantitiunction when a single edge has been
deleted. The first scheme will have this property only wheredigular condition holds in the
simplified model, and gives rise to the Bethe free energyafipration when applied to a simplified
model that has a tree structure. The second correction sctieas not require such a condition and
is shown empirically to lead to more accurate approximatiddoth schemes can be applied to the
whole spectrum of simplified models and can therefore be tesg@dde-off the quality of obtained
approximations with the complexity of computing them.

2 Approximation by Edge Deletion

We first review our edge deletion framework in the contextaifwise Markov random fields (Choi
& Darwiche, 2007). For an application to directed models, €hoi & Darwiche, 2006a).

Let a pairwise Markov random field (MREM have a grapli€, V) with edgeq, j) € £ and nodes
1 € V, where each nodeof the graph is associated with a variable taking on values;;. Edges
(1,7) are associated with edge potentigi§e;, z;) and nodes with node potentials)(z;). The
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Figure 2: To delete edgeg, j) (top), we introduce
Figure 1: An MRF (top); after edge auxiliary nodek (middle), and delete equivalence
deletion (bottom). edge(i, k), adding edge parameters (bottom).

(strictly positive) distributionPr induced byM is defined as follows:

Pr(x = H (s, x; Hw (x4),

(1 J)EE =%
wherex is an instantiatiorry, . . . , x,, of network variables, and whetgis thepartition function:
def
= > 11 v@oe) [Tv@)
x (i,5)€€ i€V

The basic idea behind our framework is to delete enough ddgesthe pairwise MRF to render it
tractable for exact inference.

Definition 1 Let M be a pairwise MRF. To delete edgée j) from M we remove the edgg, ;)
from M and then introduce the auxiliary potentiad$X;) and6(X;) for variablesX; and X ;.

Figure 1 provides an example of deleting an edge. When dgletirdtiple edges, we may introduce
multiple, yet distinct, potential@(X;) for the same nod&;. We shall refer to auxiliary potentials
6(X;) andf(X,) asedge parameterand useo to denote the set of all edges parameters. The result-
ing pairwise MRF wil be denoted by1’(©), its partition function will be denoted bg’(©) and

its distribution will be denoted byr’(.; ©). When choosing a particular value for edge parameters
©, we will drop reference t®, using onlyM’, Z’ and Pr'(.).

Note that while the distributiorPr(.) and partition functionZ of the original pairwise MRFEM
may be hard to compute, the distributién’(.; ©) and partition functiorz’(©) of M’(©) should
be easily computable due to edge deletion. Note also thatdefe can usér’(.;©) and Z'(0)
to approximatePr(.) andZ, we must first specify the edge paramet@rdn fact, it is the values of
these parameters which will control the quality of appreadionsPr/(.; ©) andZ'(0).

Without loss of generality, we will assume that we are onlietileg equivalence edggs, j), which
connect two variableX; andX; with the same domain, and have a potentiat;, = ;) that denotes
an equivalence constraint(z;, z;) = 1if «; = z;, and¢(z;, z;) = 0 otherwise. The deletion of
any edge in an MRF can be formulated as the deletion of an @iguive edgé.

In previous work, we proposed (and justified) the followiranditions on edge parametet6r;)
andéd(x;):
oz’ oz’

)

To delete an MRF edgéi, j) that is not an equivalence edge, we use the technique in Figure 2: we
introduce an auxiliary node betweeni andj; introduce an equivalence constraint on the edgg); copy the
original potential of edgés, j) to (k, j); and delete the equivalence eddek). Note that the original model
and the extended one will have the same treewidth in this case, will agree distiibution over their common
variables, and will have the same partition function values.



wherea is a normalizing constant. Note that the partial derivatigéEquation 1 can be computed
efficiently in traditional inference frameworks (Darwict2903; Park & Darwiche, 2004).

Equation 1 can also be viewed as update equations, suggestiiterative method that searches
for edge parameters, which we called-sp (Choi & Darwiche, 2006a). Starting with an initial
approximationMy, at iterationt = 0 (say, with uniform parameters), we can compute edge pa-
rameterd,(z;) andd,(z;) for an iterationt > 0 by performing exact inference in the approximate
network M, _,. We repeat this process until we observe that all parametergerge to a fixed point
satisfying Equation 1 (if ever).

Note that Equation 1 does not specify a unique value of edgampeters, due to the constaits
That is, each value of these constants will lead to a diffesetof edge parameters. Yet, independent
of which constants we use, the resulting pairwise MRFwill have aninvariantdistribution Pr’(.)

that satisfies the following properties. First,

Pr(as) = Pr(;) = — - 0(0)6 (), @

Zij

wherez;; = Zr,,:zj 6(x;)0(x;). Next, if the pairwise MRFM' has a tree structure, the node

marginals of distributior®r’(.) will correspond precisely to the node marginals obtainedibying
IBP on the original modeM. Finally, if the pairwise MRFM’ has loops (i.e., not a tree), the node
marginals of distributior’ will correspond to node marginals obtained by running a geization

of IBP on the original modeM (in particular, a class of iterative joingraph propagatigorithms;
see Choi & Darwiche, 2006a; Aji & McEliece, 2001; Dechterska& Mateescu, 2002).

3 Approximating the Partition Function by Edge Correction

While the edge parameters specified by Equation 1 are guachtasyield an invariant distribution
Pr'(.), they are not guaranteed to yield an invariant partitiorcfiom Z’ as this function is sensitive
to the choice of constante While these edge parameters will yield an interesting appration of
node marginals, they do not yield a meaningful approxinmadibthe partition function.

We will show in this section, however, that one can apply ageeloly-edge correction to the partition
function Z’, leading to a corrected partition function that is invatitmthe choice of constants.
This seemingly subtle approach leads to two important @ureseces. First, it results in a new
semantics for the Bethe free energy approximation as aaedepartition function. Second, it
allows for an improved class of approximations based onavgxt corrections.

3.1 An Edge Correction that Gives Rise to the Bethe Free Eneyg

We will now propose a correction to the partition functig@h, which gives rise to the Bethe free
energy and some of its generalizations.

Proposition 1 Let M’ be the result of deleting a single equivalence e¢igg) from a pairwise
MRF M. If the parameters of edgg, j) are given by Equation 1, and if the mutual information
betweenX; and X is zero inM’, then:

1
Z=27". s where Zij = Z H(xl)e(xj)

T =X

That is, if we delete @ingleedge(s, j) and find thatX; and X; are independent in the resulting
model M’, we can correct the partition functiaf by z;; and recover the exact partition function
Z. Moreover, the result of this correction is invariant to doastantsy used in Equation 1.

From now on, we will usé/I(X;; X;) to denote the mutual information between two variab{gs
andX; in the pairwise MREM'. Moreover, whenMI(X;; X;) = 0, we will say that the deleted
edge(s, j) is a zero-Ml edge.

Let us now consider the more realistic situation where wetdghultiple edges, sa§;, from M to
yield the modelM’. One can try to apply the above correction to each of the elletiges, leading



to a corrected partition functiod’ - % where

2= J[ == > 0(x:)0(x;). (3)
(i) €€ (i.j)€E* wi=x;
We will refer to this correction as zero-MI edge correctionor justzERO-EC. This correction is
no longer guaranteed to recover the exact partition functipeven if each of the deleted edges is
a zero-MlI edge. Yet, if the pairwise MRF1’ has a tree structure, applying this correction to the
partition functionZ’ gives rise to the Bethe free energy approximation.

To review, the Bethe free enerdy; is an approximation of the true free enerfyof a pairwise
MRF M, and is exact whep\M has a tree structure (Yedidia, Freeman, & Weiss, 2005). eSinc
F = —log Z, we can in principle usé’z as an approximation of the partition functidf) even
whenM does not have a tree structure, i.e., we canise= exp{—Fp}.

Theorem 1 Let M’ be the result of deleting equivalence edges from a pairwiB& M. If M’ has
atree structure and its edge parameters are as given by Euuat we haveZg = Z’ - %

Hence, the Bethe approximation &fis a degenerate case of therRoO-EC correction. That is, it
corresponds to anERO-EC correction applied to a pairwise MRF1’ that has a tree structure. Since
theZERO-EC correction is specified purely in quantities available ia thodelM’, it will be easily
computable as long as the model’ is sparse enough (i.e., it has a treewidth which is manageabl
under the given computational resources). Hence, thigction can be practically applicable even
if M’ does not have a tree structure. In such a case, the corredgtidead to an approximation of
the partition function that we expect to be superior to the olotained by the Bethe free energy. We
will illustrate this point empirically later in the paper.

3.2 Improved Edge Corrections

Proposition 1 gives us a condition that allows us to corfeetgartition function exactly, but under
the assumption that the single edge deleted is zero-MI. dh@nfing result allows us, in fact, to
correct the partition function when deletiagysingle edge.

Proposition 2 Let M’ be the result of deleting a single equivalence e¢igg) from a pairwise
MRF M. If the parameters of edde, j) are given by Equation 1, then:
Yij
Z =07 .27 where i = Pr' i i) = Pr'(x; i)
vo= D Prlailag) = 32 Prita;| @)
Ti=T; T;=Tj
Contrary to the first correction, this one may either inceemsdecrease the value 8f. Moreover,
when the deleted edde, j) happens to be zero-Ml, Proposition 2 reduces to Proposition

We can also use this proposition as a basis for correctingahéion function when multiple edges
are deleted, just as we did in Equation 3. In particular, we pmpose using the correctidff - £,
wherez is the same factor given in Equation 3, and

y= 11 wa= 1] D Prlwlay 4)

(i,5)€€x (1,5)€E* Ti=xj
We refer to this correction asgeneral edge correctigror justGENERAL-EC.

4 Edge Recovery

Suppose we already have a tree-structured approximatiérof the original modelM, but we
are afforded more computational resources. We can theroiragghe approximation bgecovering
some of the deleted edges. However, whadige’s recovery would have the most positive impact on
the quality of the approximation?

Edge Recovery for ZERO-EC. Since ZzERO-EC is exact when a single edge is deleted with
MI(X;; X;) = 0, one may want to recover those eddegj) with the highest mutual informa-
tion MI(X;; X;).> We will indeed show the promise of this heuristic in Sectiofo6zERO-EC
corrections. We will also show that it turns out to be a poarrfstic for GENERAL-EC corrections.

2This heuristic was first proposed in (Choi & Darwiche, 2006a).



Edge Recovery for GENERAL-EC. Consider the situation when two equivalence edges are
deleted,(i, j) and (s,¢). Here, we use the approximate correctiofl:- £ = 7’ . £ where

Zij Zst

i is the single-edge correction for edge;) andgj is the single-edge correction for edget).

The question now is: when is this double-edge correctiomt®xantuitively, we want to identify
a situation where each edge can be corrected, independémich other. Consider then the case
where variables(;, X; are independent of variables,, X,.

Proposition 3 Let M’ be the result of deleting two equivalence edggs;) and (s,t), from
a pairwise MRF M. If the edge parameters oM’ are as given by Equation 1, and if
MI(X;, X;; X5, X¢) = 0in M, then:

7 — g YidYst
Z’ij Zst

This suggests a new edge recovery heuristiGBKRERAL-EC approximations to the partition func-
tion. First, we start with a tree-structured netwavk', and assign each deleted edgej) a score:

> MI(X;, X X, Xy).
(s,t)€EX\(1,4)
We then prefer to recover the tépwith the highest mutual information scores.

5 Edge Corrections and Free Energies

When the modelM’ is a tree,ZERC-EC yields the influential Bethe free energy approximation
(Yedidia et al., 2005). When the mod#ét’ has cycles, it can be shown thEtRO-EC corresponds
more generally to joingraph free energy approximations €AMcEliece, 2001; Dechter et al.,
2002); see (Choi & Darwiche, 2006a) for the connection tatiee joingraph propagation.

GENERAL-EC can also take the form of another free energy approximahlliate that when multiple
equivalence edges are deleted, we can compute the paftitiotion Z;; of a modelM;; by treating

the single edgéi, j) as if it was the only edge deleted;; = 2" - Z—; Therefore, we have that:

Y Yij Zz(j
Z Z_Z H Zij_Z - z
(i,j)€EE* (,j)€EE*

This leads to a free energy of the formlog(Z’ - £) = (n —1)log Z’ — _; ;)ce- log Z;;, where
n is the number of equivalence edg@s;) deleted. The structure of this (dual) free energy can
be visualized via an EP graph (Welling, Minka, & Teh, 2005hieh can be used to design EP
free energy approximations (Minka, 2001a, 2001b), coingjsdf M’ as the base approximation
with modelsM.. as outer regions. Whereas we fixed, somewhat arbitrarilyedge parameters
to satisfy Equation 1, we could in principle seek edge patara@ptimizing the above free energy
directly (see the Appendix), lifting edge deletion approations towards EP and GBP free energy
approximations with higher-order structure. In the othieeation, this perspective could provide
new semantics for certain EP and GBP free energies. Moretheedge recovery heuristic from
the previous section can serve as a heuristic for identfyimproved EP and GBP free energies.
This is a perspective that is currently being investigated.

Although much of the progress in IBP and its generalizatiozge relied on the free energy per-
spective, yielding successful algorithms for approximgumarginals, relatively little attention has
been paid to direct approximations of the partition functié notable exception is tree-reweighted
belief propagation (Wainwright, Jaakkola, & Willsky, 200%vhich provides upper bounds on the
log partition function that can be thought of as a convexifarth of the Bethe free energy. Mean
field methods and its generalizations are another well-knolass of approximations that provide
lower bounds on the partition function (e.g., Saul & Jordd®95; Jaakkola, 2000). These, and
other variational approximations (Jordan, Ghahramaakkiaa, & Saul, 1999; Choi & Darwiche,
2006b), provide a complementary approach to approximdgeance as exact inference in simpli-
fied models, but one based on solving a nonlinear optimizatioblem. In Section 6, we highlight
an initial comparison of edge-corrected partition functapproximations against a generalization
of the mean field approximations given by (Wiegerinck, 2088iger, Meek, & Wexler, 2006).



6 Experimental Results

Our goal here is to highlight the effects that different edgeovery heuristics have rERO-EC
andGENERAL-EC approximations. For each plot, we generate over 50 prohhstamces, omitting
those instances whereb-BP fails to converge in 100 iterations. Starting from a randgaring
tree, we rank each deleted edge, and recover ddgea time until all edges are recovered. At each
point, we evaluate the quality of the approximation by therage relative errqﬁ — Z|/Z, where

Z denotes the appropriate approximation. Note that when gesedre recovered (from the tree
approximation)ZERO-EC corresponds to the Bethe approximation.

In Figure 3, we generated randdinx 6 grid networks, where pairwise couplings were given ran-
dom parameters (left), or random parameterf)if, 0.1) or (0.9, 1.0] (right). We recovered edges
randomly here, and compareg¢rRo-EC (Z-EC) andGENERAL-EC (G-EC) with variational lower
bounds orZ based on a mean field generalization (Wiegerinck, 2000;&eial., 2006). We gave
the variational approximation the same network structgree®0-EC andGENERAL-EC (eliminat-

ing the auxiliary variables). We find that the variationalihds are loose here, compared to the
approximations given bgyERO-EC andGENERAL-EC.

In Figure 4, we compar@eRO-EC approximations wWithGENERAL-EC approximations. In each
of the four plots, we use random edge recovery as a baselméhelfirst plot from the left, we
evaluated the (static) edge recovery heuristic used ini@Barwiche, 2006a), where we recovered
edges first with the highest mutual information (MI+) scometlie tree approximation. We see
that this heuristic has a positive effective on the qualityzBrRo-EC approximations, relative to
random recovery. In the second plot, we reversed the desisathoosing to recover first those with
the lowest score (MI-), and see the opposite effect. In btits pthe heuristic appears to have
little effect on theGENERAL-EC approximations. In the last two plots of Figure 4, we evaluhe
heuristics proposed in Section 4 in a similar way (MI2+ an@M)| We see now this new heuristic
has a positive effect BBRENERAL-EC, andZERO-EC as well. Note also thatENERAL-EC dominates
the respective ERO-EC approximation, on average.

As all of the previous results can be formulated for Bayesigiworks in a straightforward manner,
we also run experiments here on Bayesian networks, for wanigriety of benchmark networks are
publicly available’> Here each problem instance is an instantiation of evideaoelomly set on all
leaves of the network.

In Figure 5, we see similar results in then95pt s andwat er networks, as we saw in our random
grid networks. In Figure 6, thel ar mnetwork appears to show thagRO-EC approximations may
not be sensitive in some networks to the edge recovery hieurisoduced forGENERAL-EC.

7 Conclusion

We proposed an approach for approximating the partitiontfan which is based on two steps: (1)
computing the partition function of a simplified model whishobtained by deleting model edges,
and (2) rectifying the result by applying an edge-by-edgeemtion. The approach leads to an intu-
itive framework in which one can trade-off the quality of grpeoximation with the complexity of
computing it through a simple process of edge recovery. \Weiged two concrete instantiations of
the proposed framework by proposing two edge correctiopreels with corresponding heuristics
for edge recovery. The first of these instantiations captthie well known Bethe free energy ap-
proximation as a degenerate case. The second instantigttpeen shown to lead to more accurate
approximations and appears to hold promise for capturingm mophisticated class of free energy
approximations.

3The networks used here are available at http://iwww.cs.huiji.ac.il/labskiofRepository.
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A Stationary point conditions for general edge correction

We consider here stationary points of

g
f=—log|Z"- H Zl” =—logZ' — Z [log Z]; —log Z'].
(i) (i, 7)cE

Consider the partial derivatives gfwith respect td(x;):

of 0 , . ) / /
= —logZ' — |logZ,; —log Z"| — log Z,, —log Z
56() ~ 6(e\loeZ ~ llesZ;—leg 2] M;\M{ g 2y —log 2']}
3}
- 90(z;) {—log Z;; - Z [log Z;, —log Z'] }

(s,t)€EX\(4,5)

1 aZ’ 1 azl
= 0- Z — st =
(s,6)EEX\(i,7) Zy 00(x;)  Z 86(%—)}

Setting these partial derivatives to zero, and rearrangimfave:
Z 1 0z Z 1 07,
7' 00(x;) 7!, 00(x;)
encenan 2 @) e\ D 00
Multiplying by 6(z;) on each side, and simplifying, we have stationary point tard:

S Pl = Y Priga),

(s,)€EX\(4,5) (s,)€EX\(4,5)

or simply
(n = 1)Pr'(z;) = Priy(z), ()
(s,t)€EX\(4:9)
wheren is the number of edges deleted. Analagously for edge paesstét:; ).

One condition where these conditions are satisfied is whenealorks M’ and M. agree on
marginals for variableX; and X ;. However, Condition 5 is weaker, and asks only that the sum of
the marginals for:; be consistent.
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