
A Lightweight Component Caching Scheme for
Satisfiability Solvers

Knot Pipatsrisawat and Adnan Darwiche
{thammakn,darwiche}@cs.ucla.edu

Computer Science Department
University of California, Los Angeles

Abstract. We introduce in this paper a lightweight technique for reduc-
ing work repetition caused by non–chronological backtracking commonly
practiced by DPLL–based SAT solvers. The presented technique can be
viewed as a partial component caching scheme. Empirical evaluation of
the technique reveals significant improvements on a broad range of in-
dustrial instances.

1 Introduction

As a DPLL–based SAT solver makes decisions, the knowledge base gets simplified
due to Boolean constraint propagation. This simplification may be substantial
enough to disconnect the knowledge base into independent components1. Knowl-
edge about independent components could reduce the amount of work done by
a solver. However, precise component analysis is prohibitively expensive for SAT
solving in general, although some solvers have incorporated static component
analysis in the preprocessing phase [1, 9, 6].

The lack of dynamic component analysis is made worse by the use of non–
chronological backtracking, because it may cause solvers to erase assignments
that are not related to the conflict. In the worst case, erased assignments may
contain solutions to independent components. As a result, the solver may need to
solve some components multiple times. This problem has already been observed
and solutions have been proposed in [8, 4]. Nevertheless, the proposed solutions
seem to offer limited improvements on real–world instances.

We address this particular problem in this paper and provide two contribu-
tions. First, an analytic and empirical analysis that substantiates the observa-
tions about work repetition in modern SAT solvers that use non–chronological
backtracking. Second, a low–overhead technique that helps reduce work repeti-
tion in such solvers.

The rest of this paper is structured as follows. In Section 2, we describes pre-
cisely the above problem. An empirical study that further exposes and quantifies
the problem is presented in Section 3. A solution is proposed in Section 4 and
is evaluated in Section 5. Section 6 discusses related work and we conclude in
Section 7.
1 A component is defined as a set of clauses. Two components are independent if they

share no variable.



2 Losing Work with Non–Chronological Backtracking

The use of non–chronological backtracking in SAT and CSP allows solvers to
better focus on fixing the cause of the conflict [18, 2, 11]. The most common
non–chronological backtracking scheme used by SAT solvers today, called far–
backtracking [16], is based on generating asserting clauses [20]. This approach
involves undoing the assignments from the point of conflict up to (not including)
the assertion level. Although the results and analysis we present in this paper
can be adapted to work for non–chronological backtracking in general, we stay
focused on far–backtracking as it is the most common in modern SAT solvers.

One caveat on this backtracking scheme is that all decisions and implied
variable assignments made between the level of the conflict and the assertion level
are effectively erased by backtracking. As we shall see next, these assignments
may contain solutions of sub–problems (components) and would be lost in the
backtracking process, requiring their rediscovery at a later stage in the search.

. . .
0 1 2 3 k−1 k+1 k+2 k+3k

Decision
level

Component 1

k+4

Component 2

Erased assignmentsAssertion level

Fig. 1. Erased assignments due to a backtrack.

To consider a dramatic example of this phenomena, examine Figure 1 in
which the solver has solved a component using the first k decision levels. After
several decisions on a second component, the solver runs into a conflict and
derives a unit learned clause. The assertion level in this case will be level 0,
leading the solver to erase all assignments, assert the unit clause, and restart
the search process all over. After the learned clause is asserted, the solver will
continue looking for solutions for both components, as it did not save the solution
it previously found. This can lead to great inefficiency as the solver may end up
solving some components multiple times.

We will provide a more realistic, yet still somewhat synthetic, empirical study
in the next section to quantify further this potential inefficiency.

3 An Empirical Study

To illustrate the extent of work repetition, we artificially generated instances
that would cause work repetition in conventional SAT solvers. Each instance
was generated by merging four identical copies of a satisfiable instance. These
bigger instances will be referred to as replicated instances throughout this paper.



Instance Name Runtime
MiniSat MiniSat with ps

Original Replicated Ratio Original Replicated Ratio
vmpc 21.renamed-as.sat05-1923 6.01 731.98 122 1.5 21.58 14
vmpc 21.shuffled-as.sat05-1955 0.48 59.37 124 1.25 26.01 21
vmpc 23.renamed-as.sat05-1927 39.19 3202.67 82 2.4 28.61 12
vange-color-54 28.26 4624.42 163 4.24 96.34 23
velev-fvp-sat-3.0-12 6.70 >200* >29 4.07 41.87 10
ibm 19 rule SAT dat.k30 7.91 209.73 26 6.47 28.6 4.4
ibm 21 rule SAT dat.k35 8.87 819.00 92 5.15 44.12 8.6

Table 1. Runtime (in seconds) of MiniSat with and without progress saving. (*) indicates insufficient
memory. The ratio columns show approximate ratios of runtime on replicated over original instances.

Fig. 2. Decision behavior on a replicated instance of MiniSat (left) and MiniSat with progress saving
(right). Both x-axes represent the chronological order of decisions.

Table 1 reports the results of this initial experiment, conducted using Min-
iSat [7], on a computer with Intel Pentium 3.4GHz processor and 2GB of RAM.
The table reports runtime of MiniSat on each original and replicated instance.
Let us first consider the first three runtime columns. The remaining columns
will be discussed in the next section. According to this table, MiniSat can be
more than two orders of magnitude slower on replicated instances, even though
a replicated instance contains four identical copies of the original instance.

Further investigation on these instances reveals the source of inefficiency.
In the next experiment, we plot indices of decision variables in chronological
order. The left plot in Figure 2 shows such plot based on running MiniSat on
the replicated instance of vmpc 21.shuffled-as.sat05-1955. Variable indices in the
replicated instance range from 1 to 1764 (4 × 441 original variables). Each in-
dependent component in the instance occupies a contiguous range of variable
indices. Each dark band in this plot indicates the solver’s attempt to solve a
component. We can see in this plot that MiniSat ended up solving all components
multiple times. Most of the attempts to re-solve a component take non-trivial
amount of work, as illustrated by the width of each band. This clearly illustrates
that work repetition is responsible for a fair amount of the disproportionate in-
crease in runtime of the solver on the replicated instances. Further experiments
revealed that similar behavior persisted on other instance pairs as well2.

2 More experimental results are available in an extended version of the paper at
http://reasoning.cs.ucla.edu/publications.html



Suite Instance Runtime* # Solved
Count MiniSat P. Saving MiniSat P. Saving

fvp sat 3.0 20 1134.027 45.59 10 20
grieu 05 32 5069.342 1789.555 16 19
IBM 2004 1 11 19 4422.805 1623.339 14 18
IBM 2004 1 14 19 329.039 194.078 19 19
manol pipe 31 5050.709 5247.547 30 31
pipe sat 1.0 10 92.108 973.436 6 8
liveness sat 1.0 10 114.576 888.857 5 6
vliw sat 2.0 9 59.312 887.14 5 5
narain 05 10 194.998 249.998 5 5
Total 160 16466.916 11899.54 110 131

Table 2. Runtime of MiniSat with and without progress saving. * The solvers’ runtime for each
suite is calculated from instances solved by both versions.

4 A Lightweight Caching Scheme

The solution we are proposing for this problem is simple and can be thought
of as a lightweight partial component caching technique. Since far–backtracking
could erase partial solutions, we simply save them. This technique, which we
refer to as progress saving, requires keeping an additional array of literals, called
the saved–literal array. Every time the solver performs a backtrack and erases
assignments, each erased assignment is saved in the this array. Now, any time
the solver decides to branch on variable v, it uses the saved literal, if one exists.
Otherwise, the solver uses the default phase selection heuristic. Note that this
technique would fit nicely on any Chaff-like solver implementation.

We integrated progress saving into MiniSat for the purpose of evaluation3.
In this integration, the variable ordering heuristic needs not be changed. Now,
consider the last three columns of Table 1, in which the runtimes of MiniSat
with progress saving on original and replicated instances are compared. In all
cases, there are significant improvements in runtime on replicated instances.

Furthermore, the decision behavior of MiniSat with progress saving on the
replicated instance of vmpc 21.shuffled-as.sat05-1955 is shown on the right of
Figure 2. This plot indicates a decease in work repetition. Though previously
solved components are still revisited (thin strips of dots after dark bands), their
solutions are almost immediately found, because of the saved literals.

5 Experimental Results

We now evaluate progress saving on a set of 1251 industrial benchmarks drawn
from the SAT’05 competition [17] and [19, 10]. All experiments were performed
on a Pentium 4, 3.8 GHz and 2GB RAM, with time limit of 1800 seconds.

Table 2 reports runtime on 160 instances selected from the total 1251 in-
stances considered. According to this table, progress saving solves 21 more in-
stances than MiniSat, improves the overall running time on those instance solved
by both solvers, yet leads to worse running time on some of the instances.
3 Progress saving was originally introduced in RSat [12, 14].



Figure 3 provides more comprehensive evidence on the effectiveness of progress
saving as it considers all 1251 instances discussed above. On the left, we compare
three versions of MiniSat (different phase selection heuristics) to MiniSat with
its default heuristic augmented with progress saving. The x-axis lists the number
of solved instances for a given cutoff time (y-axis), showing that progress saving
dominates all three versions of MiniSat. On the right, we show a head-to-head
runtime comparison between MiniSat and MiniSat with progress saving. Note
that both axes here are in log-scale. This figure, which also depicts the best
linear fit, provides further evidence on the effectiveness of progress saving.

800 850 900 950 1000 1050 1100 1150 1200

200

400

600

800

1000

1200

1400

1600

1800

Number of instances solved

R
un

tim
e 

(s
)

MiniSat
MiniSat[positive]
MiniSat[random]
MiniSat+ps

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

MiniSat

M
in

iS
at

+
ps

 
y = 0.57*x + 14

Fig. 3. Comparing three versions of MiniSat (different phase selection heuristics) to MiniSat with
progress saving. The default phase selection heuristic of MiniSat splits on negative literals. We also
consider splitting on positive and randomly chosen literals.

6 Related Work

Model counters and knowledge compilers have proven to benefit greatly from dy-
namic and semi–dynamic component analysis performed during the search [13,
15, 5, 3]. These techniques are usually too expensive to apply to SAT solving.
Ginsberg addressed a very similar problem in the context of CSP [8]. The author
proposed a new backtracking scheme called dynamic backtracking. This approach
is superficially similar to ours. However, it may cause the search space after back-
tracking to become overly constrained, as pointed out by the author. Moreover,
it would require a careful modification of the contemporary SAT framework to
make it work as intended. Neither is the case for our solution.

Biere and Sinz showed that independent components do exist in some real-
world SAT instances and proposed an efficient method to take advantage of
the structure [4]. However, their approach is semi–dynamic, as it only considers
permanent decompositions that occur in the absence of any decision. While
improvements on artificially–generated instances were reported, similar gains
did not materialized in their experiment on real–world instances.



7 Conclusion

We studied an inefficiency introduced by the conventional backtracking scheme of
modern SAT solvers. We then proposed a low–overhead solution, called progress
saving, that can be viewed as a component caching technique. The practicality
of our solution is illustrated by experimental results, which show improvements
on a wide range of problems when the technique is integrated into MiniSat.

References

1. Aloul, F., Markov, I., and Sakallah, K. Force: a fast and easy-to-implement
variable-ordering heuristic. In Proc. of the 13th ACM Great Lakes Symposium on
VLSI 2003. pp. 116-119. (2003).

2. Bayardo, R. J. J., and Schrag, R. C. Using CSP look-back techniques to solve
real-world SAT instances. In AAAI’97 (Providence, Rhode Island), pp. 203–208.

3. Beame, P., Impagliazzo, R., Pitassi, T., and Segerlind, N. Memoization
and dpll: Formula caching proof systems. In Proc. of 18th Annual IEEE Conf. on
Computational Complexity, Aarhus, Denmark. (2003).

4. Biere, A., and Sinz, C. Decomposing sat problems into connected components.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 2 (2006).

5. Darwiche, A. New advances in compiling CNF to decomposable negational nor-
mal form. In Proc. of European Conference on AI. (2004).

6. Durairaj, V., and Kalla., P. Variable ordering for efficient sat search by ana-
lyzing constraint-variable dependencies. In SAT’05 (August 2005).

7. Eén, N., and Sörensson, N. An extensible sat-solver. In SAT’03 (2003).
8. Ginsberg, M. L. Dynamic backtracking. Jrnl of Artf. Intel. Resrh. 1 (1993).
9. Huang, J., and Darwiche, A. A structure-based variable ordering heuristic for

sat. In (IJCAI’03) (2003), pp. 1167–1172.
10. IBM. Ibm formal verification benchmark library. http://www.research.ibm.com

/haifa/projects/verification/RB Homepage/fvbenchmarks.html.
11. Marques-Silva, J. P., and Sakallah, K. A. GRASP - A New Search Algo-

rithm for Satisfiability. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design (1996), pp. 220–227.

12. Pipatsrisawat, K., and Darwiche, A. SAT Solver Description: RSat.
13. Roberto J. Bayardo, J., and Pehoushek, J. D. Counting models using con-

nected components. In Proc. of the 17th Natl. Conf. on AI. (2000), AAAI Press /
The MIT Press, pp. 157–162.

14. Rsat sat solver homepage. http://reasoning.cs.ucla.edu/rsat.
15. Sang, T., Bacchus, F., Beame, P., Kautz, H. A., and Pitassi, T. Combining

component caching and clause learning for effective model counting. In SAT’04.
16. Sang, T., Beame, P., and Kautz, H. A. Heuristics for fast exact model counting.

In SAT (2005), pp. 226–240.
17. SAT’05 Competition Homepage, http://www.satcompetition.org/2005/.
18. Stallman, R., and Sussman, G. Forward reasoning and dependency-directed

backtracking in a system for computer-aided circuit analysis. Artf. Intel. 9 (1977).
19. Velev, M. N. Sat bnchmrk lib. www.miroslav-velev.com/sat benchmarks.html.
20. Zhang, L., Madigan, C. F., Moskewicz, M. W., and Malik, S. Efficient

conflict driven learning in boolean satisfiability solver. In ICCAD (2001), pp. 279–
285.


