A Greedy Algorithm for Time—Space Tradeoff in Probabilistic Inference

David Allen and Adnan Darwiche James D. Park
Computer Science Department Raytheon Missile Systems
University of California TU, Bldg. M/02 T18
Los Angeles, CA 90095 P.O. Box 11337
{dlallen,darwiché@cs.ucla.edu Tucson, AZ 85734

JamesD_Park@raytheon.com

Abstract

Recursive ConditioningR C, is an any—space algorithm for exact inference in Bayesian networks,
which can trade space for time by varying its cache size. VWRE€ns run with a constrained
cache size, an important problem arises: Which specific results should be cached in order to
minimize the running time of the algorithm? Prior work has focused on finding the optimal cache
allocation using branch-and-bound search. The cost of this search, however, can be significant, if
not infeasible, for networks that contain a large number of variables. To address this, we propose in
this paper a greedy algorithm which has quadratic time worst-case complexity and which appears
empirically to produce near—optimal cache allocations on the networks tested. This new allocation
algorithm allowsRC to do efficient time—space tradeoff on substantially larger networks than it
could previously.

1 Introduction vious technique by proposing a greedy algorithm
which has a quadratic time worst-case complexity,
Recursive ConditioningRC, is an any-space al- and then show that on many published Bayesian net-
gorithm for exact inference in Bayesian networksworks the greedy algorithm produces results which
(Darwiche, 2001). The algorithm works by using are near—optimal. This new algorithm is useful in
conditioning to decompose a network into smallerpractice when there is not enough time for a lengthy
subnetworks that are then solved independently angreprocessing step to search for the optimal mem-
recursively usingRC. Many of the subnetworks ory usage. It can also be useful in creating a good
generated by this decomposition process need to h&emory allocation to use as a seed for the branch-
solved multiple times redundantly, allowing the re- and-bound search. This new algorithm alldR& to
sults to be stored in a cache after the first compube used for time—space tradeoff on networks which
tation and then subsequently fetched during furthewere too large for the previous allocation algorithm
computations. This gives the algorithm its any—(thousands of nodes).
space behavior since any number of results may be This paper is structured as follows. We begin in
cached. This also leads to an important questiongection 2 with background oRC. The cache al-
“Given a limited amount of memory, which results location problem and the new greedy memory al-
should be cached in order to minimize the runningjocation algorithm are then discussed in Section 3.
time of the algorithm?” Experimental results and time-space tradeoff graphs
Previous work has been done to find a memoryn published Bayesian networks and challenging
allocation with an optimal running time by using bioinformatics networks are presented in Section 4,
systematic search techniques (Allen and Darwichefollowed by some conclusions in Section 5.
2003b; Allen and Darwiche, 2004). The main draw-
back of this approach, however, is that it can bep Any-Space Inference
very time consuming, if not infeasible, on large
networks. We will therefore complement the pre-RC works by using conditioning and case analysis

Definition 2 The cutsebf internal nodet in a dtree

0,
00eC O“@ is: cutset(t) i vars(t;) N vars(t,) — acutset(t),
0, whereacutset(¢) is the union of cutsets associated
B O\ . .
5 5 ® with ancestors of node t in the dtree. The context
/\\ A of nodet in a dtree is: context(t) ¢ vars(t) N
acutset(t). The clusterof nodet¢ in a dtree is:

c A
Pr(A) Pr(BIA) ‘/3\ Pr(CIB) cutset(t) U context(t) if ¢ is a non-leaf, and as

vars(t) if t is a leaf. The maximal cluster sizel
Pr(DIC) Pr(E|CD) is known as thevidth.

The cutset of a dtree nodeis used to decom-

Figure 1: A dtree with the cutset labeled below eacrHPose the network associated with nadento the

node and the context next to each node. smaller networks associated with the childrent.of
That is, by conditioning on variables tutset(t),

. one is guaranteed to disconnect the network asso-

to decompose a network into smaller subnetworks.

that are solved independently and recursively. TheCIateOI with nodet. The context of dtree noadeis

. . . t he results: Any tw mputations on th
algorithm is driven by a structure known as a de_used 0 cache resuis. Any two computations on the

. . network associated with nodewill yield the same
composition tree (dtree), which controls the decom- . .
.) result if these computations occur under the same
position process at each level of the recursion. We L . :
e : : Instantiation of variables imontext(¢). Hence, a
will first review the dtree structure and then discuss . .))
RC cache is associated with each dtree nodehich
) stores the results of such computations (probabili-
21 Dtrees ties) indexed by instantiations obntext(¢).
For a given Bayesian network, many different

gefmlt.lon ! EDar\I/(v!che% ”2801) fitrﬁeflor a fdtrees exist and the quality of the dtree significantly

z;llyeh&an networ d ,I[S ?h u ;nan:(Iee, di t.e ezlalvesbo affects the resource requirementsRaE. The width
w .'(.: correspond to the network conditional prob-q o important measure of this,RE’s time com-
ability tables (CPTs). If a leaf nodecorresponds

. .) plexity is exponential in this value. (Darwiche,
toa CP_TgZ),_thenvars(t) IS defmed as the varlgbles 2001; Darwiche and Hopkins, 2001) discuss some
appearing in CPT¢. For an internal node, with

def dtree generation methods.
left child¢; and right childt,, vars(t) = vars(t;) U
vars(t). 2.2 Recursive Conditioning

Figure 1 depicts a simple dtree with the root nodeCven @ Bayesian network and a corresponding

¢ representing the entire network. To decomposdltree withroot, RC (Algorithms 1 and 2) can com-
this network, the dtree instructs us to condition onPUte the probability of evidenae' by first “record-

variable B, called the cutset of root node Condi- 19" the instantiatione and then callingRC(?),
tioning on a set of variables leads to removing edge¥/hich returns the probability af. _

outgoing from these variables, which for a cutset Linés S and 13 deal wittRC's caching. On

is guaranteed to disconnect the network into twd-iN€ 5, the algorithm checks whether it has per-

subnetworks, one corresponding to the left child offormed and cached this computation with respect to
nodet and another corresponding to the right childthe subnetwork associated with nddé\ computa-
of nodet; see Figure 1. This decomposition procesdion is characterized by the instantiationttsf con-

continues until a boundary condition, a subnetworkl€Xt, Which also serves as an index into the cache
that has a single variable, is reached. attached to node. If it has, it is simply fetched.

Each node in a dtree has three sets of variables *This paper will use the following standard notational con-
associated with it. The first two of these sets arevention. Variables will be depicted by uppercase letters (A) and

. . . their values by lowercase letters (a). Sets of variables will be
used byRC, while the third set is used to analyze written in boldface uppercas@) and sets of instantiated vari-

the complexity of the algorithm. ables will be in boldface lowercase)(

Algorithm 1 RC(t): Returns the probability of evi- Algorithm 3 Orient¢,«): Orient dtree with root

dencee recorded on the dtree rootedtat nodet with respect to leaf node.
1: if t is a leaf nodehen 1: Remove the root and replace it by an undirected edge
2: return LOOKUP() between its children.

3: else) o 2: Remove the edge between the leaf nadend its parent.
4: y « recorded instantiation afontext(t) 3: Add a new node’ with undirected edges to nodesandv.
5: if cache?(t) andcache;[y] # nil then 4: Direct all edges away front', making¢' the root of the
6 returncache; [y] oriented dtree.
7. else

8 p—0

9 for instantiationsc of unbound vars irutset(¢) do A

10: record instantiatioe !

11: p «— p+ RC(t))RC(t,) B

12 un-record instantiation s\

13 when cache?(t), cache[y] < p ¢c o OIB)dCID BB

14 returnp a) Bayesian Network b) Dtree

Algorithm 2 LOOKUP(t).

¢ « CPT of variableX associated with leaf
if X is instantiatedhen
x «+ recorded instantiation oX

dPIBaCIB) BN B olg gcle) wElA A

u < recorded instantiation oX’s parents) Oriented Dtree d) Dgraph
returng(z|u) Il ¢(z|u) = Pr(z|u)
else

returnl Figure 2: Converting a dtree into a dgraph.

ues,RC can be run on a different structure known
ti ib| hed _ 3 as a decomposition graph (dgraph), which is a set of
sultis possibly cached on Line 13. dtrees that share structure. We previously reported

When every computation is cache®C uses ihis apility, however the details were not presented
O(nexp(w)) space and time, whereis the num- (Allen and Darwiche, 2004).

ber of nodes in the network and is the width of Our first observation is that wheRC is applied
the dtree. This corresponds to the complexity of thg, 5 yiree under evidenegit not only computes the
jointree algorithm, assuming that the dtree is gen-

- i probability of e, but also the marginals over vari-
erated from a jointree (Darwiche, 2001). When n0gpeq in the cutset of the root. Specificallylfis

computations are cached, the memory requiremenfs 1ot cutset, then @C iterates over all possible
is reduced ta@(n), in which case the time require- ,<tantiationsy of U, it computesPr(u, e). From

ment increases 0 (n exp(w logn)). Any amount heqe values, the posterior marginals odecan be
of memory between these two extremes can also b@omputed.

used in increments of the size of a cache value. If the variables of interest do not appear in the

Suppose now that the available memory is limited,q ot cytset, the dtree can be oriented so that they do,

and we can only cache a subset of the computationghjle maintainingRC's complexity. Pseudocode
performed byRC. The specific subset that we cachesq the orientation process is given in Algorithm 3
can have a dramatic effect on the algorithm’s run-3,4 an example is shown in Figure 2.

ning time. Therefore, we would like to choose that
subset which minimizes the running time.

Otherwise, the computation is performed and its re

Suppose that we have variablfeand its parents

U and that the marginal over this family is desired,
Pr(X,U,e). This can be accomplished by taking a
dtreet for the network and orienting it with respect
WhenRC s run on a dtree, it computes the proba-to the leaf node containing the CPT of variable
bility of evidence,Pr(e). However, another com- The root cutset in this new dtreéwill contain ei-
mon query is to compute the posterior marginalsher X and its parent$), or solely its parentt). In

over the variables or families in the network, for the first case, Algorithm 1 computd%-(X, U, e),
examplePr(A,e). In order to compute these val- the desired result. The second case only appears

2.3 Computing Marginals Over Families

when variableX is a leaf node in which case Al- computations are cached, or none are cached. The
gorithm 1 compute$’r(U, e). However, as isa RC code in Algorithm 1 assumes a discrete cache
leaf node,Pr(X, U, e) is easily obtained from this. factor, which is captured by the flagche?(t), in-

By orienting the dtree towards each CPT in thedicating whether caching will take place at nade
network, we are guaranteed to obtain the marginals One can count the number of recursive calls made
over every network family. The set of result- by RC given any discrete cache factor. This is
ing dtrees will be called alecomposition graph significant as it is proportional t&kC's time re-
(dgraph),which is simply a set of dtrees that sharequirement in the worst case of having no evidence
structure (Figure 2). If we are only interested in(as evidence allows inconsistent instantiations to be
marginals over variables (instead of over families),skipped). Specifically, it? denotes the parent of
we only need to orient the dtree with respect to anodet in a diree, and# denotes the number of in-
subset of the CPTs, such that all variables appear igtantiations of variable§, the number of recursive

at least one root’s cutset. calls made to nodeis (Darwiche, 2001):

The following theorem shows that every (ori-
ented) dtree that participates in the dgraph has no calls(t) = cutset(t")"[cf (t")context(t")" +
greater width than the original dtree, and that the to- (1 = cf(t"))calls(t")]. (1)

tal size of the dgraph is linear in the size of the orig-
inal dtree. This proves that the complexity REC

on dgraphs is the same as its complexity on dtree
(under full caching).

If the cache factor of? is 0, a call tot? is then guar-
gnteed to generate a call to childor each instan-
tiation of tP's cutset. If the cache factor of is 1,

it will only make calls to childt to fill up its cache,
Theorem 1 Given a dtree withn nodes and width put will then lookup further computations from the
w, the dgraph generated by orienting the dtree withcache (therefore it makes one call for each instanti-
respect to each leaf node will have width (57 — ation of the cutset for each instantiation of its con-
7)/2 nodes andk(n — 2) edges fom > 3.2 text). Equation 1 can be extended to dgraphs as fol-

The dgraph version oRC uses more mem- OWS:
ory as it maintains more caches. These addi-
tional caches also make the cache allocation prob- calls(t)
lem much harder as there are many more nodes in
a dgraph where a decision needs to be made on

whether to cache or not. The only difference between Equations 1 and 2 is
the summation over each parent. This is due to the
fact that a®RCis run on each root node, each parent
The total number of computations that a dgraph (owill still make calls to its children based on Equa-
dtree) nodet desires to cache equals the numbettion 1, and since this is independent for each parent
of instantiations ofcontext(t). Given a memory of ¢, the number of calls from each parent can be
constraint, however, one may not be able to cachéummed to determine the total number of calls. If
all these computations, and therefore must specifyhe cache factor is not discrete, the above formulas
which results in particular to cache. @ache fac- give the average number of recursive calls, since the
tor cf for a dgraph is a function which maps eachactual number of calls will depend on the specific
internal nodet in the dgraph into a numberf(t) ~ computations cached.

betweerD) and1. Hence, ifcf (t) = .75, then node Previously, systematic search techniques were
can only cach&5% of these total computations. A used to produce optimal time-space tradeoff curves
discretecache factor is one which maps every inter-using discrete cache factors (Allen and Darwiche,
nal dgraph node into eithéror 0: all of the node’s 2003b; Allen and Darwiche, 2004). However, some
— _ problems were too large for the search to finish in a

If n < 3, thenn = 3 (two node network) o, = 1 (sin-

gle node network) and any dtree on these networks can alreaor)ﬁasonable gmount of tlme. Also, in some .SItuatlons
compute all marginals. (e.g. Bayesian network inference tools), it may be

= Z cutset(t?)#[cf (t")context(t*)* +

(1= cf(t?))ealls(t?)]. (2)

3 Cache Allocation Problem

Algorithm 4 GreedyMemoryAllocation(). iary scores under the current cache faetpr First,

1: candidates «all internal dgraph nodes _ calls®/ (t), which is the number of calls made to
2: awailableSpace —maximum number of caches entries al- nodet (under cache factorf). Secondppccf(t),
lowed (total memory / memory per cache entry) o
3: while availableSpace > 0 andcandidates # () do which is the number of calls made to descendants
4511 Com]pvutz ascore;(?(; each_rﬁloldecﬁndidates of ¢ for each call made to (inclusive of that call,
: maxNode +— candidate with largest score .

6: Allocate memory tomaxNode and remove from under cache factorf). We then have:
candidates i

7. ReduceavailableSpace by the size ofmaxNode's Theorem 2 Letcfs be .acaChe factor which results
context from caching at node in cache factorcf1, and let

m be the size of cache at notld_etc; andce; be the
total number of recursive calls made BRC under
preferable for the cache allocation algorithm to runcache factor:f; andcf» respectively. The score of
very quickly, even if the resulting memory alloca- qdet under cache factoef, is thenscore®/s (t) =

tion is not optimal. c1—co .
Y —% _ Moreover, we have:

3.1 Greedy Memory Allocation Algorithm score®1 (t) =

This section proposes a greedy method for allocat- [cutset™ (t) « calls“/* (t) — cutset™ (t) * context™ (t)]
ing memory, which runs in quadratic time. The [epc®Tt (8 + epcTt (7)) /[context (t)]. (3)
memory allocations produced by this method are
not guaranteed to be optimal, yet, it is shown exper_Therefore, if we havealls andcpc for each node in
imentally in Section 4 that they appear to be near-the dgraph, we can obtain the scores for all dgraph
optimal on the networks we experimented with. ~ nodes inO(rn) time. We will now show that all such
The greedy method starts with no memory allo-Scores can be initialized i@ (n) time and that they
cated to any of the dgraph caches. It then choose&n also all be updated i@2(n) time after caching
(one at a time) a dgraph nodand allocates mem- &t a particular node.
ory m (the size oft's cache) tot. Suppose that; To initialize calls for each node, we traverse the
is the number of recursive calls made RE before dgraph such that parent nodes are visited prior to
memory is allocated to the cache at nedSuppose their children. At each node we computealls(t)
further thatc, is the number of recursive calls made Using Equation 2, which can be computed in con-
by RC after memory has been allocated to the cach&tant time since the number of calls to each parent

att (co < c¢1). The nodet will be chosen greedily S already known. Now to initializepc for each
in order to maximize(c; — c2)/m: the number of Node we reverse the order and visit children prior to

reduced calls per memory unit. their parents. At each nodecomputecpc(t) using:
The pseudocode for this method is shown in Al- - .4y — 1 4 cutset(t)* * (epe(tr) + epe(tr)). 4)

gorithm 4. The while—loop will execut@(n) times,

wheren is the number of dgraph internal nodes. To update these numbers after caching at node

Note that Equation 2 can be evaluated for all nodesve note that the only change in the cache factor oc-

in O(n) time, which gives us the total number of curs att. Therefore, the only affected nodes &

recursive calls made bRC under any cache factor ancestors and descendants. Hence stheecs and

cf. Hence, the score of each dgraph nedan be calls for descendants efand thescores andepe for

computed inD(n) time by simply evaluating Equa- ancestors of need to be updated using Equations 2

tion 2 twice for all nodes: once while cachingtat and 4.

and another time without caching @&t Under this Some internal nodes have dead caches, which
method, Line 4 will takeD(n?) time, leading to a are never used (Allen and Darwiche, 2003a). The
total time complexity ofD(n?). cached nodes are chosen only from those with use-

We will now show, however, how to compute the ful caches, which can sometimes be significantly
scores of all candidates in ony(n) time, leading less than the total number of internal nodes. The
to a total complexity of0(n?). The key idea is to outer loop of the greedy algorithm is actually linear
maintain for each nodein the dgraph two auxil- only in the number of nodes cached. Therefore, a

water.net - Time vs Space munin3.net - Time vs Space

" Greedy ——
DFBB(5min) —x-—
DFBRB(1hr seeded) -

' Greedy —+—
140 DFBNB(SMIn) —-x---
120

100 |

Time (sec)
Time (sec)
"

]

g

——x

. . h I !
0 2 4 6 8 10 12 14 16 0 10 20 30 40 50 60 70 80 90
Space (MB) Space (MB)

Figure 3: Time—space tradeoff on water. Figure 4: Time—space tradeoff on munin3.

barley.net - Time vs Space
300

Greedy ——
DEBRB(SMN) -
DFBNB(1h seaded) —x.-

more refined complexity analysis would B&nm)
wheren is still the number of internal nodes in the
dgraph andn is the number of cached nodes.

4 Time-Space Tradeoff

150

Time (sec)

The main goal of this section is to present empir-
ical evidence that the greedy memory allocation
algorithm produces near—optimal results efficiently,
making it significant for practical applications. ST wmwm w w & e
Additionally, the branch-and-bound search is T

initialized with a seed, and since the greedy Figure 5: Time—space tradeoff on barley.
algorithm finds better results quicker, its results

make good seed values. Experiments were run %Bilocation algorithms on this dgraph. We then plot-

networks from th_e B.ayesian netvyork repqsitoryted the results, where “Greedy” is the new greedy
(http://www.cs.huji.ac.il/labs/compbio/Repository/) heuristic, “DFBnB(5min)” is the depth-first branch-
and on genetic networks from the bioinformatics ’

domain (Ott, 1999§.

50 |

and-bound algorithm run for 5 minutes (Allen and
))) Darwiche, 2004), and “DFBnB(1hr,seeded)” is the
As mentioned in Section 3, the number of reCUr-gq 4 oy aigorithm when seeded with the greedy result

sive calls Whi(_:h will be made bRC in the worst o4 for up td hour. Each data point on the plot
case can easily be computed for any cache faCtOEhows how long it would tak&C to run, based on
This number is proportional to the running time of

: e the corresponding amount of memory (i.e. each data
the algorithnt These timings represent the worst

o~ ; i point is a solution to the cache allocation problem).
case timings oRC, asRC will do less work given 5 e DEBNB searches were also seeded with the

evidence. . result from the next lowest memory usage, as a so-
For the networks from the repository, we gener-y isn ysing less memory would also be a solution
ated a dgraph capable of computing marginals OVel, the problem with more memory,

all individual variables and then compared the cache Figures 3, 4, and 5 show these plots on the wa-

3The networks used are a subset of those used in (Fishelsdi€r, munin3, and barley networks. On all networks,
and Geiger, 2002) the allocation problem was solved fot different

4 . . .
On our 2.4 GHz Linux system, the JAVA implementation . - . _
of RC executes approximately 6 million recursive calls per sec-memory constraints, with the exception of the wa

ond. Therefore, our time—space tradeoff curves will use thister network where it was done faf1 constraints.
constant to convert the number of calls into inference timingsThere are two things to note. The first is shown on

for each network. The bioinformatics networks require a spe-—. . .
cial logarithmic version ofRC and therefore the constant of Figure 3, where the DFBnB finishes in undesec-

500,000 is used for them (Allen and Darwiche, 2003a). onds. Since it finished, the DFBnB curve is optimal

Table 1: Timing of the greedy allocation algorithm Table 2: Timing of the greedy allocation algorithm

on networks from the repository. on the bioinformatics networks.

Network | Dgraph | Useful | Timing (seconds) _ Greedy)
nodes | caches| Max Avg Network | Dtree | Useful | Timing (secs) RC Time (secs)

Barley 190 77 0.04 002 nodes | caches| Max Avg | ¢f =05 =1.0
Diabetes | 1788 | 780 | 232 174 EAS 4183 | 1063 | 0.88 0.49 0.4 03
Mildew 145 58 | 004 002 EA7 5855 | 1512 | 1.76 1.08 2.2 1.8
Muninl 775 332 0.43 0.29 EA8 7579 1883 2.37 1.80 5.7 4.1
Munin2 4158 1781 | 14.52 10.03 EA9 15493 3763 9.20 7.81 8170.3 3439.1
Munin3 4355 1885 | 17.57 13.56 EA10 15939 3879 | 10.21 8.22 2265.7 1762.4
Pigs 1837 749 271 1.97
Water 121 41 0.03 0.01

datafileEA10.dat - Time vs Space
3000

j Greedy ——
DFBNB(EMIN
DFBNB(1hr seeded) --x--
2800 | B

and hence we don't need to run &our version. By
comparing this optimal curve with the greedy curve
we can see that the greedy results are not necessar-
ily optimal, however they are close to the optimal
curve. The second thing to note from these graphs .«!
is on Figure 4, where we see that the greedy algo-
rithm found better values than the results when DF-

BnB was run for 5 minutes. Thenwhen DFBnBwas ™o = & = w @ w w w
seeded with the greedy result, for each constraint, it . .

was given an hour to find something better and was ~ Fi9ure 6: Time—space tradeoff on EA10.
unable to improve on them.

Out of the10 networks in the repository, when ysed for doing genetic linkage analysis. These
the DFBNB search was seeded with the greedy alhetworks contain large numbers of variables and
gorithm’s result, it was unable to improve any of the therefore have very large dtrees (Allen and Dar-
results org of the networks. On the other four, two \yiche, 2003a). Genetic linkage analysis only re-
of which are shown in Figures 3 and 5, the greedyquires Pr(e) calculations, therefore these exper-
still is close to the best cache allocation found. iments were done on dtrees, instead of dgraphs.

Table 1 shows how long it took the greedy al- These dtrees still require significant amounts of
gorithm to calculate its memory allocation and thememory, which has prompted another line of re-
size of the corresponding dgraph. The number obearch into time—space tradeoffs (Fishelson and
useful caches is also reported, as this is a more aGeiger, 2002; Fishelson and Geiger, 2003). This
curate representation of the search space, as sormther research attempts to run the variable elimina-
nodes’ caches are dead and should not be cacheidn algorithm (Dechter, 1996) until it begins to run
(Allen and Darwiche, 2003a). The table reports theout of memory and then switches to conditioning
maximum and average timings over thiedifferent (Pearl, 1988). As the main interest in the genetic
memory constraints. It shows that on most networkdinkage analysis domain is in running the algorithm
the greedy algorithm runs in just a few seconds andvithout exhausting the system resources, no time—
in that time it can be seen on the graphs that in mangpace tradeoff analysis has been published for dif-
cases it finds better memory allocations than thd€ering amounts of memory.

DFBNB algorithm could in5 minutes. Therefore, Even on these very large networks, the greedy
this shows that the greedy algorithm can be usefuheuristic can run in a matter of seconds and still pro-
as a seed for the search, since it runs very fast anguce better results than DFBnB only. The timings
finds significantly better allocations quicker. of the greedy heuristic on the networks are shown

Some additional experiments were run on netin Table 2. For example, network EA11 has a dtree

works from the bioinformatics domain, which are with 18,053 nodes and the algorithm is still able

2600

2400

Time (sec)

2200

1800

datafileEA11.dat - Time vs Space
7000

,l e probabilistic reasoning.
oransinsiesed - | The algorithms described in this paper have been
=T “] implemented in theSAMIAM tool, which is avail-
able publicly (UCLA Automated Reasoning Group,
http://reasoning.cs.ucla.edu/samiam).

5500

5000

4500

Time (sec)

Acknowledgments

3500

3000

This work has been partially supported by NSF
‘ ‘ ‘ ‘ ‘ ‘ ‘ grant 11S-9988543 and MURI grant NO0014-00-1-
wm T e 0617. The work by James Park was done while at
UCLA.

2500

2000
0

Figure 7: Time—space tradeoff on EA11.

to run in underi4 seconds. Two time—space trade- References
off curves are shown in Figures 6 and 7. It can beDavid Allen and Adnan Darwiche. 2003a. New ad-
seen on EA10 that the DFBnB could not improve vances in inference by recursive ConditioningUAI-
upon the greedy results given an hour, and in fact 2003 pages 2-10.
it proved4 of the data points were optimal. EA10 David Allen and Adnan Darwiche. 2003b. Optimal
also shows that without the greedy seed, the DF- time-space tradeoff in probabilistic inference. In
BnB in 5 minutes wasn't able to do as well as the WCAI-03 pages 969-975.
greedy did in undet1 seconds. On EAL11, the one David Allen and Adnan Darwiche, 2004Advances in
hour search only improved up@rof the greedy data ~ Bayesian networks/olume 146 ofStudies in Fuzzi-
points, while it provedt of the other greedy solu- ~ N€ss and Soft Computinghapter Optimal Time—
. imal Space Tradeoff in Probabilistic Inference, pages 39—
tions Wgre optimal.) 55. Springer—Verlag, New York.

Previously these genetic networks were too large

to efficiently run the DFBnB algorithm on, however Adnan Darwiche and Mark Hopkins. 2001. Using re-
cursive decomposition to construct elimination orders,

using the greedy cache aIIocatiqn schgme OPens j,intrees, and dtrees. IBCSQARU'01 pages 180—
these networks up to the domain of time-space 191.

tradeoff with RC. For example, Table 2 lists the
amount of timeRC would take using full caching
and when this amount is reduced by half, when us-

ing the memory allocation from the greedy algo- Rina Dechter. 1996. Bucket elimination: A unify-
rithm> These results show that even on these large " Zgr;i:\iv_ozrli;or probabilistic inference. AI-96,
networks, RC can efficiently perform time—space pag '

tradeoff, which was previously not possible due toMa'ayan Fishelson and Dan Geiger. 2002. Exact genetic

; linkage computations for general pedigreBginfor-
the memory allocation search. matics 18(1):189-198.

Adnan Darwiche. 2001. Recursive conditioninfytifi-
cial Intelligence 126:5-41, February.

5 Conclusions Ma’ayan Fishelson and Dan Geiger. 2003. Optimizing
exact genetic linkage computations.RECOMB’'03
We proposed in this paper a greedy algorithm for

memory allocation within the framework of infer- JU'g Ott. 1999. Analysis of Human Genetic Linkage
. e . The Johns Hopkins University Press, Baltimore.

ence by recursive conditioning. The algorithm has

quadratic time worst-case complexity, and appeargudea Pearl. 1988Probabilistic Rea_lsoning in Intelli-

to produce near—optimal results efficiently on our g:gfgjﬁrgﬁa ESg’l‘{g{:‘esrso‘cspiﬁulfr'gii'gggremr‘

networks. The proposed method appears to be quite g ’ '

significant for the practice of time—space tradeoff inUCLA Automated Reasoning Group. Samlam: Sen-
sitivity Analysis, Modeling, Inference And More.
*These timings each represent the exact time requirement in http://reasoning.cs.ucla.edu/samiam.
the worst-case of no evidence.

