
A Greedy Algorithm for Time–Space Tradeoff in Probabilistic Inference

David Allen and Adnan Darwiche
Computer Science Department

University of California
Los Angeles, CA 90095

{dlallen,darwiche}@cs.ucla.edu

James D. Park
Raytheon Missile Systems

TU, Bldg. M/02 T18
P.O. Box 11337

Tucson, AZ 85734
JamesD Park@raytheon.com

Abstract

Recursive Conditioning,RC, is an any–space algorithm for exact inference in Bayesian networks,
which can trade space for time by varying its cache size. WhenRC is run with a constrained
cache size, an important problem arises: Which specific results should be cached in order to
minimize the running time of the algorithm? Prior work has focused on finding the optimal cache
allocation using branch-and-bound search. The cost of this search, however, can be significant, if
not infeasible, for networks that contain a large number of variables. To address this, we propose in
this paper a greedy algorithm which has quadratic time worst-case complexity and which appears
empirically to produce near–optimal cache allocations on the networks tested. This new allocation
algorithm allowsRC to do efficient time–space tradeoff on substantially larger networks than it
could previously.

1 Introduction

Recursive Conditioning,RC, is an any–space al-
gorithm for exact inference in Bayesian networks
(Darwiche, 2001). The algorithm works by using
conditioning to decompose a network into smaller
subnetworks that are then solved independently and
recursively usingRC. Many of the subnetworks
generated by this decomposition process need to be
solved multiple times redundantly, allowing the re-
sults to be stored in a cache after the first compu-
tation and then subsequently fetched during further
computations. This gives the algorithm its any–
space behavior since any number of results may be
cached. This also leads to an important question:
“Given a limited amount of memory, which results
should be cached in order to minimize the running
time of the algorithm?”

Previous work has been done to find a memory
allocation with an optimal running time by using
systematic search techniques (Allen and Darwiche,
2003b; Allen and Darwiche, 2004). The main draw-
back of this approach, however, is that it can be
very time consuming, if not infeasible, on large
networks. We will therefore complement the pre-

vious technique by proposing a greedy algorithm
which has a quadratic time worst-case complexity,
and then show that on many published Bayesian net-
works the greedy algorithm produces results which
are near–optimal. This new algorithm is useful in
practice when there is not enough time for a lengthy
preprocessing step to search for the optimal mem-
ory usage. It can also be useful in creating a good
memory allocation to use as a seed for the branch-
and-bound search. This new algorithm allowsRCto
be used for time–space tradeoff on networks which
were too large for the previous allocation algorithm
(thousands of nodes).

This paper is structured as follows. We begin in
Section 2 with background onRC. The cache al-
location problem and the new greedy memory al-
location algorithm are then discussed in Section 3.
Experimental results and time-space tradeoff graphs
on published Bayesian networks and challenging
bioinformatics networks are presented in Section 4,
followed by some conclusions in Section 5.

2 Any–Space Inference

RC works by using conditioning and case analysis

Pr(A) Pr(C|B)Pr(B|A)

Pr(E|CD)Pr(D|C)

A B C
D

E
B

A C

D
C

B B

A B C
D

E

Figure 1: A dtree with the cutset labeled below each
node and the context next to each node.

to decompose a network into smaller subnetworks
that are solved independently and recursively. The
algorithm is driven by a structure known as a de-
composition tree (dtree), which controls the decom-
position process at each level of the recursion. We
will first review the dtree structure and then discuss
RC.

2.1 Dtrees

Definition 1 (Darwiche, 2001) A dtreefor a
Bayesian network is a full binary tree, the leaves of
which correspond to the network conditional prob-
ability tables (CPTs). If a leaf nodet corresponds
to a CPTφ, thenvars(t) is defined as the variables
appearing in CPTφ. For an internal nodet, with

left child tl and right childtr, vars(t)
def
= vars(tl)∪

vars(tr).

Figure 1 depicts a simple dtree with the root node
t representing the entire network. To decompose
this network, the dtree instructs us to condition on
variableB, called the cutset of root nodet. Condi-
tioning on a set of variables leads to removing edges
outgoing from these variables, which for a cutset
is guaranteed to disconnect the network into two
subnetworks, one corresponding to the left child of
nodet and another corresponding to the right child
of nodet; see Figure 1. This decomposition process
continues until a boundary condition, a subnetwork
that has a single variable, is reached.

Each node in a dtree has three sets of variables
associated with it. The first two of these sets are
used byRC, while the third set is used to analyze
the complexity of the algorithm.

Definition 2 The cutsetof internal nodet in a dtree

is: cutset(t)
def
= vars(tl) ∩ vars(tr) − acutset(t),

whereacutset(t) is the union of cutsets associated
with ancestors of node t in the dtree. The context

of nodet in a dtree is: context(t)
def
= vars(t) ∩

acutset(t). The clusterof node t in a dtree is:
cutset(t) ∪ context(t) if t is a non-leaf, and as
vars(t) if t is a leaf. The maximal cluster size−1
is known as thewidth.

The cutset of a dtree nodet is used to decom-
pose the network associated with nodet into the
smaller networks associated with the children oft.
That is, by conditioning on variables incutset(t),
one is guaranteed to disconnect the network asso-
ciated with nodet. The context of dtree nodet is
used to cache results: Any two computations on the
network associated with nodet will yield the same
result if these computations occur under the same
instantiation of variables incontext(t). Hence, a
cache is associated with each dtree nodet, which
stores the results of such computations (probabili-
ties) indexed by instantiations ofcontext(t).

For a given Bayesian network, many different
dtrees exist and the quality of the dtree significantly
affects the resource requirements ofRC. The width
is one important measure of this, asRC’s time com-
plexity is exponential in this value. (Darwiche,
2001; Darwiche and Hopkins, 2001) discuss some
dtree generation methods.

2.2 Recursive Conditioning

Given a Bayesian network and a corresponding
dtree with roott, RC(Algorithms 1 and 2) can com-
pute the probability of evidencee1 by first “record-
ing” the instantiatione and then callingRC(t),
which returns the probability ofe.

Lines 5 and 13 deal withRC’s caching. On
Line 5, the algorithm checks whether it has per-
formed and cached this computation with respect to
the subnetwork associated with nodet. A computa-
tion is characterized by the instantiation oft’s con-
text, which also serves as an index into the cache
attached to nodet. If it has, it is simply fetched.

1This paper will use the following standard notational con-
vention. Variables will be depicted by uppercase letters (A) and
their values by lowercase letters (a). Sets of variables will be
written in boldface uppercase (A) and sets of instantiated vari-
ables will be in boldface lowercase (a).

Algorithm 1 RC(t): Returns the probability of evi-
dencee recorded on the dtree rooted att.
1: if t is a leaf nodethen
2: return LOOKUP(t)
3: else
4: y ← recorded instantiation ofcontext(t)
5: if cache?(t) andcachet[y] 6= nil then
6: returncachet[y]
7: else
8: p ← 0
9: for instantiationsc of unbound vars incutset(t) do

10: record instantiationc
11: p ← p + RC(tl)RC(tr)
12: un–record instantiationc
13: when cache?(t), cachet[y] ← p
14: returnp

Algorithm 2 LOOKUP(t).
φ ← CPT of variableX associated with leaft
if X is instantiatedthen

x ← recorded instantiation ofX
u ← recorded instantiation ofX ’s parents
returnφ(x|u) // φ(x|u) = Pr(x|u)

else
return1

Otherwise, the computation is performed and its re-
sult is possibly cached on Line 13.

When every computation is cached,RC uses
O(n exp(w)) space and time, wheren is the num-
ber of nodes in the network andw is the width of
the dtree. This corresponds to the complexity of the
jointree algorithm, assuming that the dtree is gen-
erated from a jointree (Darwiche, 2001). When no
computations are cached, the memory requirement
is reduced toO(n), in which case the time require-
ment increases toO(n exp(w log n)). Any amount
of memory between these two extremes can also be
used in increments of the size of a cache value.

Suppose now that the available memory is limited
and we can only cache a subset of the computations
performed byRC. The specific subset that we cache
can have a dramatic effect on the algorithm’s run-
ning time. Therefore, we would like to choose that
subset which minimizes the running time.

2.3 Computing Marginals Over Families

WhenRC is run on a dtree, it computes the proba-
bility of evidence,Pr(e). However, another com-
mon query is to compute the posterior marginals
over the variables or families in the network, for
examplePr(A, e). In order to compute these val-

Algorithm 3 Orient(t,u): Orient dtree with root
nodet with respect to leaf nodeu.
1: Remove the roott and replace it by an undirected edge

between its children.
2: Remove the edge between the leaf nodeu and its parentv.
3: Add a new nodet′ with undirected edges to nodesu andv.
4: Direct all edges away fromt′, making t′ the root of the

oriented dtree.

A

B

C D

a) Bayesian Network

)(Aφ)|(BDφ)|(BCφ)|(ABφ

b) Dtree

)|(BDφ)|(BCφ)(Aφ)|(ABφ

c) Oriented Dtree

)(Aφ)|(BDφ)|(BCφ)|(ABφ

d) Dgraph

Figure 2: Converting a dtree into a dgraph.

ues,RC can be run on a different structure known
as a decomposition graph (dgraph), which is a set of
dtrees that share structure. We previously reported
this ability, however the details were not presented
(Allen and Darwiche, 2004).

Our first observation is that whenRC is applied
to a dtree under evidencee, it not only computes the
probability of e, but also the marginals over vari-
ables in the cutset of the root. Specifically, ifU is
the root cutset, then asRC iterates over all possible
instantiationsu of U, it computesPr(u, e). From
these values, the posterior marginals overU can be
computed.

If the variables of interest do not appear in the
root cutset, the dtree can be oriented so that they do,
while maintainingRC’s complexity. Pseudocode
for the orientation process is given in Algorithm 3
and an example is shown in Figure 2.

Suppose that we have variableX and its parents
U and that the marginal over this family is desired,
Pr(X,U, e). This can be accomplished by taking a
dtreet for the network and orienting it with respect
to the leaf node containing the CPT of variableX.
The root cutset in this new dtreet′ will contain ei-
therX and its parentsU, or solely its parentsU. In
the first case, Algorithm 1 computesPr(X,U, e),
the desired result. The second case only appears

when variableX is a leaf node in which case Al-
gorithm 1 computesPr(U, e). However, asX is a
leaf node,Pr(X,U, e) is easily obtained from this.

By orienting the dtree towards each CPT in the
network, we are guaranteed to obtain the marginals
over every network family. The set of result-
ing dtrees will be called adecomposition graph
(dgraph),which is simply a set of dtrees that share
structure (Figure 2). If we are only interested in
marginals over variables (instead of over families),
we only need to orient the dtree with respect to a
subset of the CPTs, such that all variables appear in
at least one root’s cutset.

The following theorem shows that every (ori-
ented) dtree that participates in the dgraph has no
greater width than the original dtree, and that the to-
tal size of the dgraph is linear in the size of the orig-
inal dtree. This proves that the complexity ofRC
on dgraphs is the same as its complexity on dtrees
(under full caching).

Theorem 1 Given a dtree withn nodes and width
w, the dgraph generated by orienting the dtree with
respect to each leaf node will have widthw, (5n −
7)/2 nodes and4(n− 2) edges forn > 3.2

The dgraph version ofRC uses more mem-
ory as it maintains more caches. These addi-
tional caches also make the cache allocation prob-
lem much harder as there are many more nodes in
a dgraph where a decision needs to be made on
whether to cache or not.

3 Cache Allocation Problem

The total number of computations that a dgraph (or
dtree) nodet desires to cache equals the number
of instantiations ofcontext(t). Given a memory
constraint, however, one may not be able to cache
all these computations, and therefore must specify
which results in particular to cache. Acache fac-
tor cf for a dgraph is a function which maps each
internal nodet in the dgraph into a numbercf (t)
between0 and1. Hence, ifcf (t) = .75, then nodet
can only cache75% of these total computations. A
discretecache factor is one which maps every inter-
nal dgraph node into either1 or 0: all of the node’s

2If n ≤ 3, thenn = 3 (two node network) orn = 1 (sin-
gle node network) and any dtree on these networks can already
compute all marginals.

computations are cached, or none are cached. The
RC code in Algorithm 1 assumes a discrete cache
factor, which is captured by the flagcache?(t), in-
dicating whether caching will take place at nodet.

One can count the number of recursive calls made
by RC given any discrete cache factor. This is
significant as it is proportional toRC’s time re-
quirement in the worst case of having no evidence
(as evidence allows inconsistent instantiations to be
skipped). Specifically, iftp denotes the parent of
nodet in a dtree, andS# denotes the number of in-
stantiations of variablesS, the number of recursive
calls made to nodet is (Darwiche, 2001):

calls(t) = cutset(tp)#[cf(tp)context(tp)# +

(1− cf(tp))calls(tp)]. (1)

If the cache factor oftp is 0, a call totp is then guar-
anteed to generate a call to childt for each instan-
tiation of tp’s cutset. If the cache factor oftp is 1,
it will only make calls to childt to fill up its cache,
but will then lookup further computations from the
cache (therefore it makes one call for each instanti-
ation of the cutset for each instantiation of its con-
text). Equation 1 can be extended to dgraphs as fol-
lows:

calls(t) =
∑
tp

cutset(tp)#[cf(tp)context(tp)# +

(1− cf(tp))calls(tp)]. (2)

The only difference between Equations 1 and 2 is
the summation over each parent. This is due to the
fact that asRCis run on each root node, each parent
will still make calls to its children based on Equa-
tion 1, and since this is independent for each parent
of t, the number of calls from each parent can be
summed to determine the total number of calls. If
the cache factor is not discrete, the above formulas
give the average number of recursive calls, since the
actual number of calls will depend on the specific
computations cached.

Previously, systematic search techniques were
used to produce optimal time-space tradeoff curves
using discrete cache factors (Allen and Darwiche,
2003b; Allen and Darwiche, 2004). However, some
problems were too large for the search to finish in a
reasonable amount of time. Also, in some situations
(e.g. Bayesian network inference tools), it may be

Algorithm 4 GreedyMemoryAllocation().
1: candidates ←all internal dgraph nodes
2: availableSpace ←maximum number of caches entries al-

lowed (total memory / memory per cache entry)
3: while availableSpace > 0 andcandidates 6= ∅ do
4: Compute a score for each node incandidates
5: maxNode ← candidate with largest score
6: Allocate memory to maxNode and remove from

candidates
7: ReduceavailableSpace by the size ofmaxNode’s

context

preferable for the cache allocation algorithm to run
very quickly, even if the resulting memory alloca-
tion is not optimal.

3.1 Greedy Memory Allocation Algorithm

This section proposes a greedy method for allocat-
ing memory, which runs in quadratic time. The
memory allocations produced by this method are
not guaranteed to be optimal, yet, it is shown exper-
imentally in Section 4 that they appear to be near–
optimal on the networks we experimented with.

The greedy method starts with no memory allo-
cated to any of the dgraph caches. It then chooses
(one at a time) a dgraph nodet and allocates mem-
ory m (the size oft’s cache) tot. Suppose thatc1

is the number of recursive calls made byRC before
memory is allocated to the cache at nodet. Suppose
further thatc2 is the number of recursive calls made
by RCafter memory has been allocated to the cache
at t (c2 ≤ c1). The nodet will be chosen greedily
in order to maximize(c1 − c2)/m: the number of
reduced calls per memory unit.

The pseudocode for this method is shown in Al-
gorithm 4. The while–loop will executeO(n) times,
wheren is the number of dgraph internal nodes.
Note that Equation 2 can be evaluated for all nodes
in O(n) time, which gives us the total number of
recursive calls made byRC under any cache factor
cf . Hence, the score of each dgraph nodet can be
computed inO(n) time by simply evaluating Equa-
tion 2 twice for all nodes: once while caching att,
and another time without caching att. Under this
method, Line 4 will takeO(n2) time, leading to a
total time complexity ofO(n3).

We will now show, however, how to compute the
scores of all candidates in onlyO(n) time, leading
to a total complexity ofO(n2). The key idea is to
maintain for each nodet in the dgraph two auxil-

iary scores under the current cache factorcf . First,
callscf (t), which is the number of calls made to
nodet (under cache factorcf). Second,cpccf (t),
which is the number of calls made to descendants
of t for each call made tot (inclusive of that call,
under cache factorcf). We then have:

Theorem 2 Let cf2 be a cache factor which results
from caching at nodet in cache factorcf1, and let
m be the size of cache at nodet. Letc1 andc2 be the
total number of recursive calls made byRC under
cache factorcf1 andcf2 respectively. The score of
nodet under cache factorcf1 is thenscorecf1(t) =
c1−c2

m . Moreover, we have:

scorecf1(t) =

[cutset#(t) ∗ callscf1(t)− cutset#(t) ∗ context#(t)] ∗
[cpccf1(tl) + cpccf1(tr)]/[context#(t)]. (3)

Therefore, if we havecalls andcpc for each node in
the dgraph, we can obtain the scores for all dgraph
nodes inO(n) time. We will now show that all such
scores can be initialized inO(n) time and that they
can also all be updated inO(n) time after caching
at a particular node.

To initialize calls for each node, we traverse the
dgraph such that parent nodes are visited prior to
their children. At each nodet, we computecalls(t)
using Equation 2, which can be computed in con-
stant time since the number of calls to each parent
is already known. Now to initializecpc for each
node we reverse the order and visit children prior to
their parents. At each nodet, computecpc(t) using:

cpc(t) = 1 + cutset(t)# ∗ (cpc(tl) + cpc(tr)). (4)

To update these numbers after caching at nodet,
we note that the only change in the cache factor oc-
curs att. Therefore, the only affected nodes aret’s
ancestors and descendants. Hence, thescores and
calls for descendants oft and thescores andcpc for
ancestors oft need to be updated using Equations 2
and 4.

Some internal nodes have dead caches, which
are never used (Allen and Darwiche, 2003a). The
cached nodes are chosen only from those with use-
ful caches, which can sometimes be significantly
less than the total number of internal nodes. The
outer loop of the greedy algorithm is actually linear
only in the number of nodes cached. Therefore, a

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
)

Space (MB)

water.net - Time vs Space

Greedy
DFBnB(5min)

Figure 3: Time–space tradeoff on water.

more refined complexity analysis would beO(nm)
wheren is still the number of internal nodes in the
dgraph andm is the number of cached nodes.

4 Time–Space Tradeoff

The main goal of this section is to present empir-
ical evidence that the greedy memory allocation
algorithm produces near–optimal results efficiently,
making it significant for practical applications.
Additionally, the branch-and-bound search is
initialized with a seed, and since the greedy
algorithm finds better results quicker, its results
make good seed values. Experiments were run on
networks from the Bayesian network repository
(http://www.cs.huji.ac.il/labs/compbio/Repository/)
and on genetic networks from the bioinformatics
domain (Ott, 1999).3

As mentioned in Section 3, the number of recur-
sive calls which will be made byRC in the worst
case can easily be computed for any cache factor.
This number is proportional to the running time of
the algorithm.4 These timings represent the worst
case timings ofRC, asRC will do less work given
evidence.

For the networks from the repository, we gener-
ated a dgraph capable of computing marginals over
all individual variables and then compared the cache

3The networks used are a subset of those used in (Fishelson
and Geiger, 2002)

4On our 2.4 GHz Linux system, the JAVA implementation
of RCexecutes approximately 6 million recursive calls per sec-
ond. Therefore, our time–space tradeoff curves will use this
constant to convert the number of calls into inference timings
for each network. The bioinformatics networks require a spe-
cial logarithmic version ofRC and therefore the constant of
500,000 is used for them (Allen and Darwiche, 2003a).

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90

T
im

e
(s

ec
)

Space (MB)

munin3.net - Time vs Space

Greedy
DFBnB(5min)

DFBnB(1hr,seeded)

Figure 4: Time–space tradeoff on munin3.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

T
im

e
(s

ec
)

Space (MB)

barley.net - Time vs Space

Greedy
DFBnB(5min)

DFBnB(1hr,seeded)

Figure 5: Time–space tradeoff on barley.

allocation algorithms on this dgraph. We then plot-
ted the results, where “Greedy” is the new greedy
heuristic, “DFBnB(5min)” is the depth-first branch-
and-bound algorithm run for 5 minutes (Allen and
Darwiche, 2004), and “DFBnB(1hr,seeded)” is the
search algorithm when seeded with the greedy result
and run for up to1 hour. Each data point on the plot
shows how long it would takeRC to run, based on
the corresponding amount of memory (i.e. each data
point is a solution to the cache allocation problem).
All the DFBnB searches were also seeded with the
result from the next lowest memory usage, as a so-
lution using less memory would also be a solution
to the problem with more memory.

Figures 3, 4, and 5 show these plots on the wa-
ter, munin3, and barley networks. On all networks,
the allocation problem was solved for11 different
memory constraints, with the exception of the wa-
ter network where it was done for101 constraints.
There are two things to note. The first is shown on
Figure 3, where the DFBnB finishes in under6 sec-
onds. Since it finished, the DFBnB curve is optimal

Table 1: Timing of the greedy allocation algorithm
on networks from the repository.

Network Dgraph Useful Timing (seconds)
nodes caches Max Avg

Barley 190 77 0.04 0.02
Diabetes 1788 780 2.32 1.74
Link 2993 1268 7.86 5.72
Mildew 145 58 0.04 0.02
Munin1 775 332 0.43 0.29
Munin2 4158 1781 14.52 10.03
Munin3 4355 1885 17.57 13.56
Munin4 4285 1852 15.77 12.15
Pigs 1837 749 2.71 1.97
Water 121 41 0.03 0.01

and hence we don’t need to run a1 hour version. By
comparing this optimal curve with the greedy curve
we can see that the greedy results are not necessar-
ily optimal, however they are close to the optimal
curve. The second thing to note from these graphs
is on Figure 4, where we see that the greedy algo-
rithm found better values than the results when DF-
BnB was run for 5 minutes. Then when DFBnB was
seeded with the greedy result, for each constraint, it
was given an hour to find something better and was
unable to improve on them.

Out of the10 networks in the repository, when
the DFBnB search was seeded with the greedy al-
gorithm’s result, it was unable to improve any of the
results on6 of the networks. On the other four, two
of which are shown in Figures 3 and 5, the greedy
still is close to the best cache allocation found.

Table 1 shows how long it took the greedy al-
gorithm to calculate its memory allocation and the
size of the corresponding dgraph. The number of
useful caches is also reported, as this is a more ac-
curate representation of the search space, as some
nodes’ caches are dead and should not be cached
(Allen and Darwiche, 2003a). The table reports the
maximum and average timings over the11 different
memory constraints. It shows that on most networks
the greedy algorithm runs in just a few seconds and
in that time it can be seen on the graphs that in many
cases it finds better memory allocations than the
DFBnB algorithm could in5 minutes. Therefore,
this shows that the greedy algorithm can be useful
as a seed for the search, since it runs very fast and
finds significantly better allocations quicker.

Some additional experiments were run on net-
works from the bioinformatics domain, which are

Table 2: Timing of the greedy allocation algorithm
on the bioinformatics networks.

Greedy
Network Dtree Useful Timing (secs) RC Time (secs)

nodes caches Max Avg cf = 0.5 = 1.0

EA5 4183 1063 0.88 0.49 0.4 0.3
EA6 4981 1263 1.01 0.77 0.9 0.6
EA7 5855 1512 1.76 1.08 2.2 1.8
EA8 7579 1883 2.37 1.80 5.7 4.1
EA9 15493 3763 9.20 7.81 8170.3 3439.1
EA10 15939 3879 10.21 8.22 2265.7 1762.4
EA11 18053 4391 13.62 10.78 3350.4 2377.3

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 50 100 150 200 250 300 350 400

T
im

e
(s

ec
)

Space (MB)

datafileEA10.dat - Time vs Space

Greedy
DFBnB(5min)

DFBnB(1hr,seeded)

Figure 6: Time–space tradeoff on EA10.

used for doing genetic linkage analysis. These
networks contain large numbers of variables and
therefore have very large dtrees (Allen and Dar-
wiche, 2003a). Genetic linkage analysis only re-
quires Pr(e) calculations, therefore these exper-
iments were done on dtrees, instead of dgraphs.
These dtrees still require significant amounts of
memory, which has prompted another line of re-
search into time–space tradeoffs (Fishelson and
Geiger, 2002; Fishelson and Geiger, 2003). This
other research attempts to run the variable elimina-
tion algorithm (Dechter, 1996) until it begins to run
out of memory and then switches to conditioning
(Pearl, 1988). As the main interest in the genetic
linkage analysis domain is in running the algorithm
without exhausting the system resources, no time–
space tradeoff analysis has been published for dif-
fering amounts of memory.

Even on these very large networks, the greedy
heuristic can run in a matter of seconds and still pro-
duce better results than DFBnB only. The timings
of the greedy heuristic on the networks are shown
in Table 2. For example, network EA11 has a dtree
with 18, 053 nodes and the algorithm is still able

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0 100 200 300 400 500 600 700 800

T
im

e
(s

ec
)

Space (MB)

datafileEA11.dat - Time vs Space

Greedy
DFBnB(5min)

DFBnB(1hr,seeded)

Figure 7: Time–space tradeoff on EA11.

to run in under14 seconds. Two time–space trade-
off curves are shown in Figures 6 and 7. It can be
seen on EA10 that the DFBnB could not improve
upon the greedy results given an hour, and in fact
it proved4 of the data points were optimal. EA10
also shows that without the greedy seed, the DF-
BnB in 5 minutes wasn’t able to do as well as the
greedy did in under11 seconds. On EA11, the one
hour search only improved upon3 of the greedy data
points, while it proved4 of the other greedy solu-
tions were optimal.

Previously these genetic networks were too large
to efficiently run the DFBnB algorithm on, however
using the greedy cache allocation scheme opens
these networks up to the domain of time-space
tradeoff with RC. For example, Table 2 lists the
amount of timeRC would take using full caching
and when this amount is reduced by half, when us-
ing the memory allocation from the greedy algo-
rithm.5 These results show that even on these large
networks,RC can efficiently perform time–space
tradeoff, which was previously not possible due to
the memory allocation search.

5 Conclusions

We proposed in this paper a greedy algorithm for
memory allocation within the framework of infer-
ence by recursive conditioning. The algorithm has
quadratic time worst-case complexity, and appears
to produce near–optimal results efficiently on our
networks. The proposed method appears to be quite
significant for the practice of time–space tradeoff in

5These timings each represent the exact time requirement in
the worst-case of no evidence.

probabilistic reasoning.
The algorithms described in this paper have been

implemented in theSAM IAM tool, which is avail-
able publicly (UCLA Automated Reasoning Group,
http://reasoning.cs.ucla.edu/samiam).

Acknowledgments

This work has been partially supported by NSF
grant IIS-9988543 and MURI grant N00014-00-1-
0617. The work by James Park was done while at
UCLA.

References

David Allen and Adnan Darwiche. 2003a. New ad-
vances in inference by recursive conditioning. InUAI-
2003, pages 2–10.

David Allen and Adnan Darwiche. 2003b. Optimal
time–space tradeoff in probabilistic inference. In
IJCAI-03, pages 969–975.

David Allen and Adnan Darwiche, 2004.Advances in
Bayesian networks, volume 146 ofStudies in Fuzzi-
ness and Soft Computing, chapter Optimal Time–
Space Tradeoff in Probabilistic Inference, pages 39–
55. Springer–Verlag, New York.

Adnan Darwiche and Mark Hopkins. 2001. Using re-
cursive decomposition to construct elimination orders,
jointrees, and dtrees. InECSQARU’01, pages 180–
191.

Adnan Darwiche. 2001. Recursive conditioning.Artifi-
cial Intelligence, 126:5–41, February.

Rina Dechter. 1996. Bucket elimination: A unify-
ing framework for probabilistic inference. InUAI-96,
pages 211–219.

Ma’ayan Fishelson and Dan Geiger. 2002. Exact genetic
linkage computations for general pedigrees.Bioinfor-
matics, 18(1):189–198.

Ma’ayan Fishelson and Dan Geiger. 2003. Optimizing
exact genetic linkage computations. InRECOMB’03.

Jurg Ott. 1999. Analysis of Human Genetic Linkage.
The Johns Hopkins University Press, Baltimore.

Judea Pearl. 1988.Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers, San Francisco.

UCLA Automated Reasoning Group. SamIam: Sen-
sitivity Analysis, Modeling, Inference And More.
http://reasoning.cs.ucla.edu/samiam.

