
A Lightweight Component Caching Scheme for
Satisfiability Solvers?

Knot Pipatsrisawat and Adnan Darwiche
{thammakn,darwiche}@cs.ucla.edu

Computer Science Department
University of California, Los Angeles

Abstract. In this paper, we study an inefficiency caused by far-backtracking,
which is the type of non-chronological backtracking commonly practiced
by SAT solvers. This inefficiency is caused by an undesirable effect that
far-backtracking has on problems with component structure. We then
propose a lightweight solution to the problem. The presented solution
can be viewed as a partial component caching scheme that helps SAT
solvers avoid re-solving sub-problems multiple times. Empirical evalua-
tion of the technique reveals good performance improvements on a broad
range of industrial SAT instances.

1 Introduction

The Boolean satisfiability problem (SAT) asks whether a given Boolean formula
in conjunctive normal form (CNF) can be made true by some assignment of
its variables. For example, the formula ∆ = (a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ ¬c) is
satisfiable, because assigning a = true, b = false, c = true makes ∆ evaluate to
true. In this case, we say that 〈a,¬b, c〉 is a solution for ∆. On the other hand,
Γ = (a∨b)∧(¬a∨b∨c)∧(¬a∨b∨¬c)∧(¬b) is unsatisfiable. This class of problems,
which was the first member of the complexity class NP-complete [6], has played
important roles in Computer Science from both theoretical and practical points
of view. Many problems in real-world domains, such as hardware design, formal
verification, and planning, can now be solved efficiently with a satisfiability-based
approach [19, 15, 4, 18, 27, 16].

The majority of SAT solvers streamlined for dealing with real-world SAT
problems are based on the DPLL algorithm introduced by Davis et al. in 1962 [8].
The DPLL algorithm in its original form is essentially a depth-first search al-
gorithm that searches for a solution in the space of truth assignments. The
algorithm is also augmented with a lookahead mechanism called unit propaga-
tion to help reduce the search space size. DPLL advances to the next level of the
search tree by assigning true to a literal selected according to some heuristics.1

Such assignment is called a decision. A branching heuristic is used to select a

? This paper extends the work in [20]
1 A literal is defined as a variable or its negation.



variable to assign next. A phase selection heuristic is used to determine which
value of the selected variable to try first.

After assigning the literal ` to true, any clause that contains ` becomes
satisfied and can be removed from further consideration.2 Similarly, the literal
¬` now becomes falsified and can be removed from any clause it appears in. The
process of removing all satisfied clauses and falsified literals from the formula is
called formula simplification.3

Unit propagation is a process of inferring values of some variables based on
the assignments made so far. According to unit propagation, any literal that
appears alone in any clause after formula simplification can be set to true with-
out changing the satisfiability of the current formula. For example, consider ∆
defined above. After setting a = true, the second clause contains only c. Thus,
we can set c = true and continue working with a simpler formula. Unit propa-
gation refers to the repeated application of formula simplification and the above
rule until no more assignment can be inferred. Assignments derived during unit
propagation are called implications.

During unit propagation, a conflict may arise. A conflict happens when a
literal and its negation both become implications. A conflict is a sign of an
inconsistency, which indicates that the current assignments cannot be extended
to a solution. The algorithm must retract some of the assignments before it can
continue its quest for a solution. The process of undoing assignments in order to
escape from a conflict is called backtracking.

Over the years, many techniques have been invented to make DPLL more
efficient. One of them is non-chronological backtracking [25, 2, 17, 21]. The origi-
nal DPLL algorithm backtracks to the most recent decision whose negation has
not been tried. This backtracking scheme often ends up running into the same
conflict multiple times. Non-chronological backtracking deals with this problem
by performing an analysis that helps identify the causes of the conflict. The al-
gorithm can then backtrack past irrelevant assignments and focus on fixing the
conflict at the sources.4

However, non-chronological backtracking has an undesirable side-effect that
may cause an inefficiency when dealing with problems with a certain type of
structure. Many SAT problems can be decomposed into components, especially
those arising from real-world applications. A component is a sub-formula that
can be solved independently. Components may exist originally or form dynam-
ically as decisions are made and formula simplification takes place. Ideally, one
would want to solve each component independently and then combine sub-
solutions to generate a global solution. However, in practice, precise component
analysis is prohibitively expensive for SAT solving, because problem structure

2 A clause is a disjunction of literals.
3 In practice, literals and clauses are not actually removed from the problem rep-

resentation. SAT solvers usually have a flag for each of them to keep track of its
status.

4 Unit propagation is an incomplete inference mechanism, hence, an inconsistency
generated at an earlier level may not manifest into a conflict until much later.



may change with every decision and every backtrack. Since SAT solvers only
look for a single solution, investing time in analyzing component structure can
hardly pay off. As a result, virtually no modern solver takes dynamic compo-
nent analysis into consideration, although some solvers have incorporated static
component analysis in the preprocessing phase [11, 1, 13, 9].

The lack of dynamic component analysis is made worse by the use of non-
chronological backtracking in modern SAT solvers. In particular, while back-
tracking past irrelevant assignments allows SAT solvers to deal with conflicts
better, it may inadvertently erase solutions of independent components. Erasing
these assignments means that the solver needs to solve these components again,
potentially leading to great inefficiencies.

This problem has been observed and solutions have been proposed in [12, 5].
Nevertheless, the proposed solutions seem to offer limited practicality for SAT
solvers, for which efficiency is a priority. We address this particular problem in
this paper and provide two contributions. First, we perform an analytic and
empirical analysis that substantiates our observations about the above behavior
of DPLL-based solvers. Second, we propose a low-overhead technique that is
oriented toward reducing the amount of repeated work performed by solvers
that use non-chronological backtracking.

The rest of this paper is structured as follows. Section 2 gives more back-
ground on non-chronological backtracking and the way it is practiced by SAT
solvers. In Section 3, we describe precisely the problem with this form of back-
tracking. In Section 4, we conduct an empirical study that exposes concretely this
weakness of the backtracking mechanism. Then, in Section 5, we describe a tech-
nique that could help mitigate the problem. We present experimental evaluation
of the proposed technique in Section 6. Related work is discussed in Section 7
and we close with some concluding remarks in Section 8.

2 Non-Chronological Backtracking in Modern SAT
Solvers

Every time a conflict happens, chronological backtracking backtracks to the most
recent unnegated decision and flips it. As mentioned earlier, this form of back-
tracking does not resolve conflicts efficiently. To consider a dramatic example,
suppose that setting v = true always result in a conflict (regardless of other
assignments). If the solver happened to set (for the first time) v = true at the
100th decision, a conflict would arise and chronological backtracking would sim-
ply flip the assignment of v. However, since this conflict takes place rather deep
in the search tree, the solver may, in the future, backtrack past v (erase v’s
assignment) and end up making the same mistake again when it later assigns
a value to v. This scenario is depicted in Figure 1. In Figure 1 (a), a conflict
due to the assignment v = true causes the assignment of v to be flipped. Then,
the search continues and the algorithm eventually backtracks past v to flip some
earlier assignments. In Figure 1 (b), the assignment v = true is repeated in a
different context, resulting in an immediate conflict. Chronological backtracking



would respond by flipping the assignment of v. Apparently, this conflict can keep
occurring under different contexts.

v

..
.

w

v

(a)

v

..
.

w

v

(b)

v

v

..
.

w

(c)

Fig. 1. (a) The assignment of v is flipped by chronological backtracking. (b) The same
conflict is repeated in a different context. (c) Response to the same conflict by non-
chronological backtracking. The assignment v = false is made at the top of the search
tree.

Non-chronological backtracking mitigates this problem by moving the fix for
the conflict up the search tree so that it does not get erased easily by later
backtracks. According to this scheme, whenever a conflict is found, the solver
performs a conflict analysis in order to identify earlier assignments that con-
tributed to the conflict. Then, the solver backtracks past all irrelevant decisions,
and flips some assignments to resolve the conflict. In the above example, since
the conflict was caused by the assignment v = true alone, non-chronological
backtracking would backtrack past all assignments and flip v to false at the
very top level of the search tree and continue to search (Figure 1 (c)). As a
result, v = false is effectively made permanent as any future backtrack can
no longer erase this assignment (unless there is no solution). In general, non-
chronological backtracking does not always have to backtrack to the very top
level. The amount of backtracking could be as small as one level or as large as
that in the above example.

Modern SAT solvers use a specific form of non-chronological backtracking
that is tightly-coupled with clause learning [28, 17, 2]. Upon each conflict, SAT
solvers would perform a conflict analysis that produces a learned clause, which is
added to the formula. Adding learned clauses to the formula does not change its
satisfiability. Moreover, learned clauses make some relationships between vari-
ables explicit and prevent SAT solvers from repeating the same conflicts in the
future. The content of a learned clause is used to determine the destination of
the subsequent non-chronological backtrack. The details of conflict analysis and
determining backtrack destinations are beyond the scope of this paper.



Modern SAT solvers generate a specific type of learned clauses called assert-
ing clauses [28]. The backtrack destination computed from an asserting clause
is referred to as the assertion level. This specific form of non-chronological
backtracking, which backtracks to the assertion levels computed from assert-
ing clauses, is often referred to as far-backtracking. Far-backtracking is used by
virtually all DPLL-based SAT solvers today.

3 Losing Work with Far-Backtracking

While far-backtracking improves performance of SAT solvers significantly in
practice, it comes with an undesirable side-effect. The assignments that get
erased during far-backtracking could contain solutions to previously solved parts
of the problem. Hence, after backtracking, the solver needs to solve these parts
again, potentially leading to great inefficiencies.

3.1 Independent Components

A component can be defined with respect to a CNF formula as follows: Let
a set of clauses ∆ be a CNF formula. A set of clauses C is a component in
∆ if C shares no variable with ∆\C. Throughout this paper, we use the term
independent component interchangeably with component to emphasize the fact
that a solution of a component is independent from solutions of the rest of the
problem.

Biere and Sinz showed in [5] that many SAT instances from real-world ap-
plications do exhibit component structures due to the nature of the problems.
Independent components could also be generated dynamically. As the solver
makes decisions, the formula gets simplified by removals of falsified literals
and satisfied clauses. These simplifications may be substantial enough to dis-
connect the problem into multiple independent pieces. For example, originally,
∆ = {(a∨b∨c), (a∨b∨¬c), (a∨d∨e), (a∨d∨¬e)} contains a single component.
However, after setting a = false, the formula gets simplified and disconnected
into two components: {(b ∨ c), (b ∨ ¬c)} and {(d ∨ e), (d ∨ ¬e)}.

3.2 How Far-backtracking Erases Work

Contrary to chronological backtracking, far-backtracking may erase legitimate
assignments which may be solutions to independent components. When far-
backtracking is performed, all assignments between the point of conflict and the
assertion level are erased.

To illustrate the extent of work that could be erased, let us consider an ex-
ample in Figure 2. In this figure, the solver has solved a component using the
first k decision levels. After a few decisions into another independent compo-
nent, a conflict occurs. Suppose that the solver derives an asserting clause that
contains only one literal ` for the conflict. In this case, the assertion level will



. . .
0 1 2 3 k−1 k+1 k+2 k+3k

Decision
level

Component 1

k+4

Component 2

Erased assignmentsAssertion level

Fig. 2. Erased assignments due to a far-backtrack.

be zero. Consequently, far-backtracking will force the solver to undo all assign-
ments between the current level and level zero. After the implication ` = true
is discovered by unit propagation at level zero, the solver will continue looking
for solutions of both components all over again, even though it had previously
found a solution for one of the components.

While the above scenario is rather extreme, it serves well as an example to
illustrate how much inefficiency could be introduced by far-backtracking. We
will provide a more realistic, yet still somewhat synthetic, empirical study in the
next section to quantify further this potential inefficiency of this backtracking
scheme. We will finally perform an empirical study in Section 6 using real-world
problems from the previous SAT competition.

4 An Empirical Study

To better illustrate and quantify the extent of work repetition a SAT solver
might go through due to far-backtracking, we constructed instances that have a
special structure. The intention was to create instances that contained multiple
independent components, leading conventional SAT solvers, which are not aware
of the problem structure, to solve each component multiple times. Each instance
was simply generated by initially concatenating four identical copies of a small
SAT instance. These bigger instances will be referred to as replicated instances
throughout the rest of this paper.5

Table 1 reports the results of this initial experiment, conducted using a state-
of-the-art solver, MiniSat [10], on a computer with Intel Pentium 3.4GHz pro-
cessor and 2GB of RAM.6 The table reports runtime of MiniSat on each original
and replicated instance. Let us first consider the first three runtime columns.
The remaining columns will be discussed in the next section.

The results show that, MiniSat can be more than two orders of magnitude
slower on replicated instances, even though each replicated instance contains four
identical copies of the original instance. Although, we expected MiniSat to not
be able to take advantage of component information, the increases in runtime

5 Each original instance must be satisfiable. If we created a replicated instance from
an unsatisfiable instance, the runtime for the replicated instance would not be inter-
esting, as an inconsistency found in any single component would render the whole
instance unsatisfiable.

6 MiniSat won the last SAT competition in the industrial category [24].



Instance Name Runtime
MiniSat MiniSat with ps

Original Replicated Ratio Original Replicated Ratio

vmpc 21.renamed-as.sat05-1923 6.01 731.98 122 1.5 21.58 14

vmpc 21.shuffled-as.sat05-1955 0.48 59.37 124 1.25 26.01 21

vmpc 23.renamed-as.sat05-1927 39.19 3202.67 82 2.4 28.61 12

IBM FV 2004 1 02 3 SAT dat.k70 1.29 923.97 716 1.03 11.78 11

IBM 19 rule SAT dat.k30 7.91 209.73 26 6.47 28.6 4.4

IBM 21 rule SAT dat.k35 8.87 819.00 92 5.15 44.12 8.6

vange-color-54 28.26 4624.42 163 4.24 96.34 23

velev-fvp-sat-3.0-12 6.70 >200* >29 4.07 41.87 10

difp 19 123.14 2939.51 24 37.64 304.42 8.1

Table 1. Runtime (in seconds) of MiniSat with and without progress saving. (*) in-
dicates insufficient memory. The ratio columns show approximate ratios of runtime on
replicated instances over original instances.

on replicated instances are rather shocking. By just repeating an easy instance
four times, we could create an instance that is impossible for MiniSat to solve
within an hour.

We performed further investigation on these instances to track down the
causes of the disproportionate runtime. In the following experiment, indices of
decision variables were recorded during executions of MiniSat. These indices were
later plotted in chronological order to reveal what decisions were made during
the search.

The plot on the left of Figure 3 is from an execution of MiniSat on the repli-
cated instance of vmpc 21.shuffled-as.sat05-1955. The original instance contains
441 variables, resulting in 1764 variables in the replicated instance. Each com-
ponent in the replicated instance occupies a contiguous range of variable indices.
Variables 1 through 441 belong to the first component. Variables 442 through
882 belong to the second component and so on. Each dark band in this plot
indicates a solver’s attempt to solve the component that contains the variables
in the band’s range. From this plot, we can see that the solver does a fine job in
staying focused on one component at any given time. The execution trace of the
solver indicates that component switching took place when the solver finished
a component. Multiple bands that coexist on the same variable range indicate
that the solver ended up solving each component more than once.

This is already a bad sign. As discussed earlier, once a solution of a com-
ponent is discovered, it could be saved and combined with solutions from other
components. Clearly, the solver did not take advantage of this fact. Nevertheless,
one might argue that re-solving a previously solved component should be rela-
tively straightforward, because modern SAT solvers add learned clauses to the



Fig. 3. Decision behavior on a replicated instance of MiniSat (left) and MiniSat with
progress saving (right). Both x-axes represent the chronological order of decisions.

formula. These learned clauses should dramatically reduce the amount of work
required to rediscover the solution.7

According to the left plot of Figure 3, this does not seem to be the case.
Recall that bands on the same horizontal level corresponds to the solver’s at-
tempts on the same component. The widths of the bands vary greatly within the
same component. More importantly, there is no sign that the solver performed
significantly less work on later attempts. As a matter of fact, on a few occasions,
the solver even spent more time on the later visits to a component.

The results of this experiment clearly illustrates that work repetition is re-
sponsible for a fair amount of the disproportionate increase in runtime of the
solver on the replicated instances. Further experiments revealed that similar be-
havior persisted on other instance pairs as well. More results can be found in
Figure 7 in the Appendix.

5 A Lightweight Caching Scheme

The solution we are proposing for this problem is simple and can be thought of as
a lightweight component caching technique. In particular, since far-backtracking
could erase solutions from memory, we simply save them. This technique, which
we refer to as progress saving, requires keeping an additional array of literals,
called the saved-literal array. The size of this array is equal to the number of
variables in the instance and each position of this array is associated with a
variable. Every time the solver performs a backtrack and erases assignments, each
erased assignment is saved in the saved-literal array. Both decision assignments
and implication assignments are saved. Now, any time the solver decides to
branch on variable v, it tries the saved value first, if one exists. Otherwise, the
solver resorts to the default phase selection heuristic.

7 Although MiniSat occasionally deletes learned clauses to reduce memory usage, no
learned clause was deleted during this execution of MiniSat.



vmpc 23.renamed-as.sat05-1927 difp 19 0 wal rcr

0 2 4 6 8 10
0

1

2

3

4

5

6
x 10

4

Number of independent components

R
un

tim
e 

(s
)

MiniSat
MiniSat with caching
Linear runtime

0 2 4 6 8 10
0

1

2

3

4

5

6
x 10

4

Number of independent components

R
un

tim
e 

(s
)

MiniSat
MiniSat with caching
Linear runtime

Fig. 4. Runtime of MiniSat on replicated instances with varied number of components.
Hypothetical linear (on the number of components) runtime is also depicted in each
plot.

Recall that a phase selection heuristic complements a branching heuristic: the
latter chooses a variable to branch on, while the former chooses a particular value
of the variable to instantiate first. Our technique can therefore be implemented
as a phase selection heuristic, which requires very little overhead. This is to
be contrasted with explicit component analysis which would be prohibitively
expensive.

For evaluation purposes, we integrated progress saving into MiniSat. We
performed our first test of the technique on the set of original and replicated
instances in Table 1. The results are reported in the last three columns of the
same table. The performance of MiniSat with progress saving on replicated in-
stances improves significantly on all cases. The runtime ratio columns provide a
strong evidence that progress saving helps reduce work repetition dramatically.

Consider now the plot on the right of Figure 3. This plot, which parallels the
one on its left, visualizes the decision behavior of MiniSat with progress saving on
the same replicated instance. Reduction in work repetition performed by MiniSat
can clearly be seen from the differences of the two plots in the figure. Note that
solved components are still revisited, as indicated by very thin strips of dots
after each thick band. However, their solutions are almost immediately found,
because all decisions made were based on assignments saved in the saved-literal
array.

Our next experiment involved the generation of replicated instances of vary-
ing sizes to allow a more systematic study of the performance of MiniSat with
and without progress saving. This experiment was performed on a machine with
Intel Xeon 2.4GHz with 4GB of RAM. Figure 4 depicts results of this experiment
on two sets of instances.8 The plots clearly show that the runtime of MiniSat
8 More results can be found in the Appendix.



Suite Instance Runtime* Instances solved
count MiniSat P. Saving MiniSat P. Saving

fvp sat 3.0 20 1134.027 45.59 10 20
grieu 05 32 5069.342 1789.555 16 19
pipe sat 1.0 10 92.108 973.436 6 8
IBM 2004 1 11 19 4422.805 1623.339 14 18
IBM 2004 1 14 19 329.039 194.078 19 19
manol pipe 31 5050.709 5247.547 30 31
liveness sat 1.0 10 114.576 888.857 5 6
narain 05 10 194.998 249.998 5 5
vliw sat 2.0 9 59.312 887.14 5 5

Total 160 16466.916 11899.54 110 131

Table 2. Runtime of different versions of MiniSat. * The solvers’ runtime for each
suite is calculated from instances solved by all versions.

could grow rapidly as the number of components increases. On the other hand,
MiniSat with progress saving scales much better with the increasing number of
independent components.

Our experiments up to this point involved synthetic, replicated instances to
illustrate the behavior of progress saving as a component caching scheme. In
the next section, we will show experiments on unmodified instances from the
previous SAT competition to illustrate the performance of this technique under
more realistic settings.

6 Experimental Results

We now evaluate progress saving on real-world instances. In the following experi-
ments, we used 1251 industrial instances drawn from the SAT’05 competition [24]
and from contemporary benchmark libraries [26, 14]. All experiments were per-
formed on a machine with Intel Pentium 4, 3.8 GHz and 2GB of RAM, with a
time-out limit of 1800 seconds.

Table 2 reports runtime on 160 instances selected from the total 1251 in-
stances considered. In this experiment, there are two versions of MiniSat being
considered: the normal MiniSat and MiniSat with progress saving. To exclude
time-out penalty from the runtime columns, these columns are based only on
instances that can be solved by both versions of MiniSat within the time-out
limit. According to this table, MiniSat with progress saving solves 21 instances
more than MiniSat, improves the overall running time on those instance solved
by both solvers, yet leads to worse runtime on some of the instances.

The next set of results provides more comprehensive evidence on the effec-
tiveness of progress saving as it is based on all 1251 instances discussed above. On
the left of Figure 5, we compare three versions of MiniSat (different phase selec-
tion heuristics) to MiniSat with its default phase selection heuristic augmented
with progress saving. By default, MiniSat always branches on the negative literal



first. To demonstrate the effectiveness of progress saving, we compare it against
two obvious modifications to the phase selection heuristic; branch on positive
literals and branch randomly. The x-axis lists the number of solved instances for
a given cutoff time (y-axis), showing that progress saving dominates all three
versions of MiniSat. This plot shows that simple modifications to the phase selec-
tion heuristic do not significantly effect performance on a large set of instances,
but progress saving does.

On the right of the same figure, we show a head-to-head runtime comparison
between MiniSat and MiniSat with progress saving. Note that both axes here
are in log-scale. Each data point in this figure represents one instance. The x-
coordinate is the runtime of MiniSat on the instance, while the y-coordinate is
the runtime of MiniSat with progress saving on the same instance. The best
linear fit depicted in this plot provides further evidence on the effectiveness of
progress saving when added to MiniSat.

800 850 900 950 1000 1050 1100 1150 1200

200

400

600

800

1000

1200

1400

1600

1800

Number of instances solved

R
un

tim
e 

(s
)

MiniSat
MiniSat[positive]
MiniSat[random]
MiniSat+ps

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

Runtime of MiniSat

R
un

tim
e 

of
 M

in
iS

at
 +

 p
s

 
y = 0.57*x + 14

Fig. 5. (Left) Comparing three versions of MiniSat to MiniSat with progress saving.
(Right) Head-to-head runtime comparison between MiniSat and MiniSat with progress
saving.

For more insights on the effectiveness of progress saving, the above instances
are categorized into 4 groups based on the number of unit learned clauses dis-
covered by MiniSat (N). Figure 6 compares the runtime of MiniSat and MiniSat
with progress saving on each group. Base on this figure, progress saving seems
to provide the most gain on instances in which MiniSat discovered many unit
learned clauses (large N). This result is consistent with the analysis in previous
sections. Since MiniSat backtracks to the top level every time a unit learned
clause is derived, the more unit clauses learned, the more likely partial solutions
are erased. For moderate values of N , MiniSat with progress saving still dom-
inates, although not as much as in the previous case. It is interesting to note
that, even in the case where no unit clause was learned, progress saving still



N ≥ 100 50 ≤ N < 100

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

1600

1800

Number of instances solved

C
ut

−
of

f t
im

e 
(s

)
MiniSat
MiniSat+ps

300 310 320 330 340 350 360 370 380
0

200

400

600

800

1000

1200

1400

1600

1800

Number of instances solved

C
ut

−
of

f t
im

e 
(s

)

MiniSat
MiniSat+ps

0 < N < 50 N = 0

400 420 440 460 480 500 520
0

200

400

600

800

1000

1200

1400

1600

1800

Number of instances solved

C
ut

−
of

f t
im

e 
(s

)

MiniSat
MiniSat+ps

90 100 110 120 130 140 150 160
0

200

400

600

800

1000

1200

1400

1600

1800

Number of instances solved

MiniSat
MiniSat+ps

Fig. 6. Runtime comparison with instances broken down by the number of unit learned
clauses discovered during the search by MiniSat (N).

improves the performance of the solver significantly. This is possible because
progress saving is applied to all backtracks and could potentially cache solutions
of components decomposed at any level during the search.

7 Related Work

Model counters and knowledge compilers, which are based on exhaustive search,
have proved to benefit greatly from dynamic and semi–dynamic component anal-
ysis performed during the search [22, 23, 7, 3]. These techniques are usually too
expensive to apply to SAT solving. Ginsberg addressed a very similar problem in
the context of CSP [12]. The author proposed a new backtracking scheme called
dynamic backtracking, which allows the solver to specifically undo bad assign-
ment instead of backtracking to it. This approach is superficially similar to ours.
However, it may cause the problem to become overly-constrained after back-
tracking, as pointed out by the author. Moreover, implementing this approach



in the contemporary SAT framework would require a careful modification to
make it work as intended. Neither is the case for our solution.

Biere and Sinz showed in [5] that independent components do exist in real-
world instances. They proposed to perform precise component analysis only at
certain points during the search. In particular, their system performs compo-
nent analysis only when the solver backtracks to the top level. Any solutions
for independent components are then saved permanently. This approach is semi-
dynamic, as it only considers problem decomposition in the absence of any deci-
sion. This means that unless components exist originally or the solver backtracks
to the top level, this approach will not have any positive effect on performance.
In contrast, progress saving has positive impacts even when the solver did not
backtrack to the top level, as illustrated by Figure 6 (case N = 0).9 In any case,
component analysis certainly introduced a higher overhead, which resulted in
slight runtime increase when the proposed technique was tested on real-world
instances that contain components.

8 Conclusion

In this paper, we studied a problem with the conventional backtracking scheme
used by modern SAT solvers. We then proposed a simple, yet very effective,
solution, called progress saving. This technique can be viewed as a component
caching scheme that can be implemented with a very low overhead as a phase
selection heuristic on any contemporary SAT framework. Experimental results
show improvements on a wide range of industrial SAT problems.

References

1. Aloul, F., Markov, I., and Sakallah, K. Force: a fast and easy-to-implement
variable-ordering heuristic. In Proc. of the 13th ACM Great Lakes Symposium on
VLSI 2003. (2003).

2. Bayardo, R. J. J., and Schrag, R. C. Using CSP look-back techniques to solve
real-world SAT instances. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI’97) (Providence, Rhode Island, 1997), pp. 203–208.

3. Beame, P., Impagliazzo, R., Pitassi, T., and Segerlind, N. Memoization
and dpll: Formula caching proof systems. In Proceedings of 18th Annual IEEE
Conference on Computational Complexity, Aarhus, Denmark (2003). (2003).

4. Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. Symbolic model checking
without BDDs. Lecture Notes in Computer Science 1579 (1999), 193–207.

5. Biere, A., and Sinz, C. Decomposing sat problems into connected components.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 2 (2006).

9 The accuracy of this comparison is based on the assumption that this set of instances
do not originally contain multiple components. We did not verify this assumption
due to limited resource.



6. Cook, S. A. The complexity of theorem-proving procedures. In STOC ’71: Pro-
ceedings of the third annual ACM symposium on Theory of computing (New York,
NY, USA, 1971), ACM Press, pp. 151–158.

7. Darwiche, A. New advances in compiling CNF to decomposable negational nor-
mal form. In Proceedings of European Conference on Artificial Intelligence (2004).

8. Davis, M., Logemann, G., and Loveland, D. A machine program for theorem-
proving. Commun. ACM 5, 7 (1962), 394–397.

9. Durairaj, V., and Kalla., P. Variable ordering for efficient sat search by an-
alyzing constraint-variable dependencies. In Proceedings of the 9th International
Conference on Theory and Applications of Satisfiability Testing (August 2005).

10. Eén, N., and Sörensson, N. An extensible sat-solver. In SAT (2003), pp. 502–
518.

11. Fadi A. Aloul, Igor L. Markov, K. A. S. Faster sat and smaller bdds via
common function structure. In Technical Report #CSE-TR-445-01 (November
2001), University of Michigan.

12. Ginsberg, M. L. Dynamic backtracking. Journal of Artificial Intelligence Re-
search 1 (1993), 25–46.

13. Huang, J., and Darwiche, A. A structure-based variable ordering heuristic
for sat. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI) (2003), pp. 1167–1172.

14. IBM. Ibm formal verification benchmark library. http://www.research.ibm.com
/haifa/projects/verification/RB Homepage/fvbenchmarks.html [Online; accessed
30-11-2006].

15. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic Model Checking: 1020 States and Beyond. In Proceedings of the Fifth
Annual IEEE Symposium on Logic in Computer Science (Washington, D.C., 1990),
IEEE Computer Society Press, pp. 1–33.

16. Kautz, H. A., and Selman, B. Planning as satisfiability. In Proceedings of the
Tenth European Conference on Artificial Intelligence (ECAI’92) (1992), pp. 359–
363.

17. Marques-Silva, J. P., and Sakallah, K. A. GRASP - A New Search Algo-
rithm for Satisfiability. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design (1996), pp. 220–227.

18. McMillan, K. Symbolic model checking. PhD thesis, Pittsburgh, PA, USA
(1992).

19. Nam, G.-J., Sakallah, K. A., and Rutenbar, R. A. Satisfiability-based layout
revisited: detailed routing of complex fpgas via search-based boolean sat. In FPGA
’99: Proceedings of the 1999 ACM/SIGDA seventh international symposium on
Field programmable gate arrays (New York, NY, USA, 1999), ACM Press, pp. 167–
175.

20. Pipatsrisawat, K., and Darwiche, A. A lightweight component caching scheme
for satisfiability solvers. To appear in SAT’07.

21. Prosser, P. Hybrid algorithms for the constraint satisfaction problem. Compu-
tational Intelligence, 9(3) (August 1993), 268–299.

22. Roberto J. Bayardo, J., and Pehoushek, J. D. Counting models using con-
nected components. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Innovative Applications of Arti-
ficial Intelligence (2000), AAAI Press / The MIT Press, pp. 157–162.

23. Sang, T., Bacchus, F., Beame, P., Kautz, H. A., and Pitassi, T. Com-
bining component caching and clause learning for effective model counting. In



Proceedings of the Seventh International Conference on Theory and Applications
of Satisfiability Testing (SAT) (2004).

24. SAT’05 Competition Homepage, http://www.satcompetition.org/2005/.
25. Stallman, R., and Sussman, G. Forward reasoning and dependency-directed

backtracking in a system for computer-aided circuit analysis. Artificial Intelligence
9 (October 1977).

26. Velev, M. N. Sat benchmarks library. http://www.miroslav-velev.com/
sat benchmarks.html.

27. Velev, M. N., and Bryant, R. E. Effective use of boolean satisfiability proce-
dures in the formal verification of superscalar and vliw. In DAC ’01: Proceedings
of the 38th conference on Design automation (New York, NY, USA, 2001), ACM
Press, pp. 226–231.

28. Zhang, L., Madigan, C. F., Moskewicz, M. W., and Malik, S. Efficient
conflict driven learning in boolean satisfiability solver. In ICCAD (2001), pp. 279–
285.



Appendix

A Additional Experimental Results

In this section, we provide additional results of some experiments discussed in
Section 4.

vmpc 21.renamed-as.sat05-1923

0 0.5 1 1.5 2

x 10
5

0

200

400

600

800

1000

1200

1400

1600

1800

vmpc 22.renamed-as.sat05-1924

0 1 2 3 4 5

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

vmpc 23.renamed-as.sat05-1927

Fig. 7. Additional plots showing decision behavior of MiniSat with and without
progress saving. Plots of MiniSat are shown on the left column. Paralleled plots for
MiniSat with progress saving are shown on the right column. The x-axis of each plot
represents decision number and the y-axis represents variable index.



ibm 19 rule SAT dat.k30 vmpc 21.shuffled-as.sat05-1955

0 2 4 6 8 10
0

500

1000

1500

2000

Number of independent components

R
un

tim
e 

(s
)

MiniSat
MiniSat with caching
Linear runtime

0 2 4 6 8 10
0

100

200

300

400

500

600

Number of independent components

R
un

tim
e 

(s
)

MiniSat
MiniSat with caching
Linear runtime

ibm 21 rule SAT dat.k35 IBM FV 2004 rule batch 1 02 3 SAT dat.k70

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

Number of independent components

R
un

tim
e 

(s
)

MiniSat
MiniSat with caching
Linear runtime

0 2 4 6 8 10
0

1

2

3

4

5

6

7
x 10

4

Number of independent components

R
un

tim
e 

(s
)

MiniSat
MiniSat with caching
Linear runtime

bmc-ibm-10 bmc-ibm-12

0 5 10 15
0

200

400

600

800

1000

Number of independent components

R
un

tim
e 

(s
)

MiniSat
MiniSat with caching
Linear runtime

0 5 10 15
0

100

200

300

400

500

600

Number of independent components

R
un

tim
e 

(s
)

MiniSat
MiniSat with caching
Linear runtime

Fig. 8. Runtime of MiniSat on replicated instances with varied number of components.


