
On Tractability and Hypertree Width

Yuliya Zabiyaka and Adnan Darwiche

Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095-1596, USA,
{yuliaz,darwiche}@cs.ucla.edu

Abstract. We investigate in this paper the notion of hypertree width as
a parameter for bounding the complexity of CSPs, especially those whose
constraints can be represented compactly, such as SAT problems. We first
identify a simple condition which is necessary for hypertree width to
provide better complexity bounds than treewidth. We then observe that
SAT problems do not satisfy this condition and, hence, hypertree width
cannot directly provide tighter bounds than those obtained by treewidth
on these problems. We next identify a simple class of SAT problems which
may contain tractable subsets, yet neither hypertree width nor treewidth
bounds can recognize such tractability. Hence our final contribution is a
technique for introducing the auxiliary variables into the problems that
allows us to recognize the tractability of this class of problems.

1 Introduction

The interaction (primal) graph of a CSP, together with its treewidth [14], have
been classical tools for bounding the complexity of CSPs [5, 2]. The interaction
graph, like other models of problem structure, is an abstraction which can lose
problem details that are necessary for distinguishing between tractable and in-
tractable classes of problems. The hypergraph of a CSP is a more refined abstrac-
tion of problem structure [7], allowing one to retain some of the details missed
by the interaction graph. In fact, the hypergraph and its associated notion of
hypertree width allow one to provide tighter complexity bounds [8], leading one
to recognize tractable classes that cannot be recognized as such based on the
treewidth of their interaction graphs.

This paper is based on investigating the fundamental reasons allowing hyper-
tree width to provide better bounds than treewidth, with the goal of applying
these results to SAT problems, a specific type of CSPs. Our first observation
is that the key difference between hypergraphs and interaction graphs lies in
the ability of the first to distinguish between multi–variable interactions that re-
sult from a single constraint, versus those that result from multiple constraints.
This ability is indeed exclusive to hypergraph abstractions and is lost when a
CSP is abstracted into an interaction graph. This observation, which may seem
obvious in hindsight, has an important implication: one would obtain an asymp-
totic difference between the bounds based on hypertree width and those based

on treewidth only in the presence of constraints whose scope is not bounded
by a constant. In fact, and perhaps more consequential, the difference can only
be attained in the presence of a constraint that has a scope not bounded by a
constant, yet a bounded number of tuples in its corresponding relation.

Our interest in this study stems from our interest in SAT problems, a special
class of CSPs with the following property. Each constraint is a clause, which can
have an unbounded number of variables. Yet, a clause, viewed as a relation, has
a number of tuples that is exponential in its number of variables. This means
that SAT problems do not satisfy the condition which is necessary for hypertree
width and treewidth to yield asymptotically different bounds. Therefore, the
advantages of hypertree width over treewidth are not immediately applicable to
SAT problems.

The situation is even more interesting when one considers the standard as-
sumptions about how CSP/SAT problems are represented and how their sizes
are measured. In particular, the bounds based on hypertree width assume that
a CSP is represented by explicitly enumerating the tuples of each constraint [8,
4]. Therefore, the size of a CSP is always linear in the number of tuples that
define constraints. This is not how the size of a SAT problem is typically mea-
sured though, as one would represent a constraint by a single clause instead of
listing all truth assignments that satisfy the constraint. Hence, the size of a SAT
problem is measured by the length of its clauses. Following is the implication of
this important distinction. If we assume that a SAT problem is represented by
explicitly listing the tuples of each clause, hypertree width (and the associated
algorithm of [9]) may claim a problem to be solvable in time polynomial in the
size of the problem. Yet if we express these bounds in terms of the classical size
of a SAT problem (length of its clauses), we may find the bounds to be no longer
polynomial.

Even more strongly: hypertree width cannot recognize the tractability of the
class of SAT problems containing clauses of the sizes that are not bounded by
the constant, assuming that the size of a SAT problem is measured using clause
lengths. It is also well known that treewidth cannot recognize the tractability of
such classes of problems either, as the treewidth cannot be smaller than the size
of the largest clause minus one. We present a method, however, that helps in
addressing this problem and is based on introducing auxiliary variables. The pro-
posed method can only improve the treewidth bounds of a given SAT problem,
allowing one to recognize the tractability of a class of problems which cannot
be recognized based on either the hypertree width or treewidth of the original
problems.

2 On the relation between treewidth and hypertree width

Consider Figure 1 which depicts the interaction graph and the hypergraph for a
CSP with three constraints:

1. c1 over variables A, B,C, called the scope of c1.
2. c2 over variables A, B,D.

3. c3 over variables C, D.

Fig. 1. A hypergraph (left) and an interaction graph (right) for a CSP over variables
A, B, C, D with three constraints: c1 (over A, B, C), c2 (over A, B, D) and c3 (over
C, D)

Both graphs have CSP variables as their nodes. There is an edge in the interac-
tion graph between any two variables participating in the same constraint, while
there is a hyperedge in the hypergraph corresponding to every constraint.

The treewidth of a CSP is defined on its interaction graph. This can be de-
fined in a number of ways, one of which as the width of its best jointree [4].
The hypertree width of a CSP is defined on its hypergraph, as the width of
its best hypertree decomposition [10]. Figure 2 depicts a hypertree decomposi-
tion and a jointree for the CSP discussed above. A hypertree decomposition can
be viewed as a refinement on a jointree. In particular, a jointree is a tree in
which each node is marked by a set of variables that satisfy certain properties;
see the formal definition in the Appendix. The width of a jointree is the size of
its largest variable marking minus one. The jointree in Figure 2 has width 3.
A hypertree decomposition can be defined as a jointree in which each node is
also marked by a set of constraints. It is required that the scope of constraints

Fig. 2. Hypertree decomposition (left) and jointree (right) that corresponds to the
hypertree decomposition for the problem depicted in Figure 1.

marking a node n cover all variables that mark node n. There is an additional
requirement on constraint markings which leads to a distinction between gen-
eralized hypertree decompositions and standard hypertree decompositions, but
this distinction is not important for our current discussion [11].1 The width of a
hypertree decomposition is the size of its largest constraint marking. The width
of the hypertree decomposition in Figure 2 is then 2. The formal definition of
hypergraph decomposition is given in the Appendix.

It then follows that every hypertree decomposition embeds a jointree. In
particular, one can obtain a jointree from a hypertree decomposition by simply
ignoring the constraint marking of a hypertree decomposition. Similarly, one can
easily convert a jointree into a hypertree decomposition by adding a constraint
marking. These observations are key to identifying the conditions under which
the hypertree width can be significantly smaller than the treewidth. To iden-
tify these conditions, let us examine again the requirements on the constraint
markings of a hypertree decomposition.

Let n be a node in a hypertree decomposition and let cM(n) and vM(n) be
its constraint and variable markings, respectively. It is required that every vari-
able X in the variable marking vM(n) appear in the scope of some constraint c
in cM(n).2 Given this requirement, the only case in which the width of a hyper-
tree decomposition may be significantly better then the width of its embedded
jointree is when we have constraints that involve many variables (constraints of
bounded and unbounded scopes were formally studied in [12]). In that case, a
few constraints will be able to cover a large variable marking. These observations
are made more formal by the following result.

Theorem 1. For a particular CSP P , let m be the largest number of variables
involved in any constraint. Let wt be the treewidth of P ’s interaction graph and
let wh be the hypertree width of P ’s hypergraph. We than have

m− 1 ≤ wt ≤ m · wh − 1.

Proof.

– m−1 ≤ wt: Given that we have a constraint with m variables, the interaction
graph must have a clique over these m variables. Hence, the treewidth of the
interaction graph must be no less than m− 1.

– wt ≤ m·wh−1: Suppose we have an optimal hypertree decomposition and let
wt
′ be the width of its embedded jointree. We must then have wt

′ ≥ wt. Let n
be a node in the hypertree decomposition with variable marking vM(n) and
constraint marking cM(n). It then follows that vM(n) must have at most
wt
′ + 1 variables, |vM(n)| ≤ wt

′ + 1. Since each one of these variables must
be covered by a constraint in cM(n), the minimum number of constraints in

1 The additional requirement is formalized in the second condition of Definition 5.
2 Again, this defines a generalized hypertree decomposition. For regular hypertree

decomposition, an additional requirement (second condition of Definition 5) needs
to be imposed on the constraint marking cM(n).

cM(n) is (wt
′ + 1)/m, |cM(n)| ≥ (wt

′ + 1)/m. Since wh ≥ |cM(n)|, we have
wh ≥ (wt

′ + 1)/m and m · wh − 1 ≥ wt
′.

The above result has a key implication: The only way to get an asymp-
totic difference between treewidth and hypertree width is to have constraints
with unbounded scopes. In fact, as we show next, even though the existence of
constraints with unbounded scope is necessary for inducing an asymptotic dif-
ference between treewidth and hypertree width, it is not sufficient for inducing
an asymptotic difference between the complexity bounds based on treewidth and
those based on hypertree width. To see this, let us first note that a CSP is typ-
ically represented by enumerating the tuples of each constraint; see Definition 1
in the Appendix. Consider for example SAT problems, where each constraint is a
clause l1∨ l2∨ . . .∨ lm with li being a literal (a variable or its negation). A clause
of size m has 2m − 1 tuples. If we have n clauses, the size of the CSP is then
O(n2m). The classical complexity bound based on treewidth wt is O(n2wt). The
classical complexity bound based on hypertree width has the form O(swh log s),
where s is the size of the CSP [8, 9]. Since s = O(n2m) in this case, the bound is
then O(nwh2m·wh(m+log n)). Since wt < m ·wh, the treewidth bound is indeed
tighter in this case regardless of whether m is bounded or not.

The key point however is that the general treewidth bound is independent of
the number of tuples for each constraint. That is, the bound remains the same
even if each constraint has a bounded number of tuples. This is not the case for
hypertree width. In particular, if each constraint has a bounded number of tuples,
the size of a problem will then be O(nm) and the corresponding complexity
bound based on hypertree width can be tighter. Hence, to obtain an asymptotic
difference between the complexity bounds based on treewidth and those based
on hypertree width, one needs to have constraints that have unbounded scope,
yet a non exponential number of tuples.

We now consider another important case, where the constraints can have
scope and number of tuples not bounded by a constant, yet they can be repre-
sented compactly in space linear in their scope size. The prototypical example of
this class of CSPs is SAT, where a constraint is represented by a clause. As we
shall see next, neither bounds based on treewidth nor those based on hypertree
width can recognize the tractability of the subclass of these problems containing
clauses of the length that is not bounded by a constant. In particular, the size of
a SAT problem is typically taken as O(m · n), where m is the size of the largest
clause and n is the number of clauses. As we have seen earlier, the treewidth
complexity bound for such a problem is O(n2wt), where wt ≥ m− 1. Moreover,
the complexity bound based on hypertree width is O(nwh2m·wh(m+log n)). Both
bounds are indeed exponential in m, the size of the largest clause, even when
the hypertree width is bounded by a constant. The same analysis applies to any
CSP that has constraints with neither scope nor number of tuples bounded by a
constant, yet the constraints can be represented compactly as discussed above.

We close this section by noting that the complexity bound based on hypertree
width depends in a fundamental way on representing each constraint as a set

of tuples, as this representation is essential for the working of algorithms that
prove the bound [9, 2].

3 Recognizing tractability using auxiliary variables

We propose in this section the use of a classical technique for converting any
SAT problem into one where no clause has more than three literals. We also
show that the conversion can never worsen the complexity bounds based on
treewidth, but can lead to converting a problem with treewidth not bounded by
any constant into one with bounded treewidth. Proposed conversion produces the
problem no more than seven times larger than the original problem, while linearly
increasing the number of variables and constraints.3 The significance of this
result is two fold. First, since the resulting CNF has clauses with bounded size,
it will correspond to a CSP in which hypertree width cannot be asymptotically
better than treewidth. Hence, we can restrict our attention to complexity bounds
based on treewidth without loss of generality on these SAT problems. Second,
since the conversion is proven not to worsen treewidth bounds, the proposed
conversion can only help in recognizing easy problems. In fact, for the reasons
discussed thus far, this method leads to bounds that are tighter than those based
on treewidth or hypertree width (of the original problem), and can therefore
recognize tractable classes that neither method can.

Since Charles Sanders Pierce [13] there is a tradition of introducing auxiliary
variables in order to control constraint scope [1, 3, 15]. However, the main purpose
of introducing variables in the constraint satisfaction community was to make n-
ary constraints into binary constraints to enable usage of the methods developed
for binary constraints. The standard technique for introducing auxiliary variables
into a CSP insists on preserving the satisfaction of the given CSP. That is, the
original CSP is solvable iff the augmented CSP is also solvable [3].4 The method
for introducing auxiliary variables that we shall adopt provides an even stronger
guarantee: the new and augmented problems have the same number of solutions.

The classical technique [6] for reducing a clause c = x1 ∨ . . . ∨ xk, k > 3, is
to introduce an auxiliary variable y and replace the clause c by the two clauses:

(x1 ∨ x2 ∨ ¬y) ∧ (y ∨ x3 ∨ . . . ∨ xk).

The clause (y ∨ x3 ∨ . . . ∨ xk) can then be reduced similarly, by introducing a
new auxiliary variable, and the process repeated until every clause has no more
than three literals. The above technique will guarantee the following. If ∆ is the

3 If the original problem has n variables and q constraints, with m being the scope size
of the largest one, then the new problem will have no more than 3qm constraints
and n + qm variables.

4 The method proposed in [3] is not applicable for our purpose, however, since it
would require for each unbounded relation either auxiliary variables with unbounded
domains (exponential in the number of variables in the relation) or if we insist on
bounded domains, an unbounded number of auxiliary variables.

original CNF, and ∆′ is the resulting CNF from introducing auxiliary variables
y1, . . . , yn, we will then have

∃y1, . . . , yn∆′ ≡ ∆.

This does not, however, preserve the model count of the original CNF. A stronger
method [16], which preserves the model count is to replace each clause x1∨ . . .∨
xk, k > 3, by the following four clauses:

(¬x1 ∨ y) ∧ (¬x2 ∨ y) ∧ (x1 ∨ x2 ∨ ¬y) ∧ (y ∨ x3 ∨ . . . ∨ xk). (1)

Note that the first three clauses correspond to the constraint y ≡ (x1 ∨ x2).
Following is the guarantee on the proposed conversion method.

Theorem 2. Let ∆ be a CNF with treewidth w, and let ∆′ be a CNF which
results from reducing the clauses of ∆ as given by (1), until every clause has no
more than three literals. The CNF ∆′ will then have treewidth w′ ≤ w + 1.

Proof. By recursively decomposing all the clauses of length greater than three
in ∆, we will decompose clause c = X1 ∨ . . . ∨ Xk into the set of clauses that
correspond to the following equations:

Y1 ≡ X1 ∨X2

Y2 ≡ Y1 ∨X3

Y3 ≡ Y2 ∨X4

· · ·
Yk−3 ≡ Yk−4 ∨Xk−2

Yk−3 ∨ Xk−1 ∨Xk

(2)

Figure 3 depicts a jointree Tc that correspond to all the clauses in (2).

Fig. 3. A jointree corresponding to the clauses that result form decomposing a clause
c = X1 ∨ . . . ∨Xk into clauses with no more than three literals.

Since the treewidth of ∆ is w, there must exist a jointree with the width w,
let T be one of those jointrees. By definition of a jointree, T must have a node

Nc that contain all the variables mentioned in clause c. We will attach jointree
Tc for the set of clauses from equations (2) to the optimal jointree T for ∆, by
connecting by an edge node Nc form T with the node labeled {X1, . . . , Xk, Y1}
from Tc.

Analogously, we will construct jointrees for the sets of clauses that result
form reducing all other clauses in ∆; and will attach those jointrees to T . The
resulting tree T ′ is a jointree for CNF ∆′ with width

w′ ≤ max(m,w) ≤ w + 1,

where m is the length of the longest clause in ∆. This should be obvious since
the largest cluster in jointrees that we have constructed has size m + 1.

4 Example and discussion

We will consider in this section a class of CNFs with bounded hypertree width
and unbounded treewidth. This immediately implies that the CNF must have
some clause of unbounded length. Since a clause, viewed as a constraint, has
an exponential number of tuples, neither treewidth not hypertree width can be
used to recognize the tractability of this class of CNFs.

The class of CNF has k clauses, each of which has size n + 1:

∆ =
∧

i=0...k−1

Ci, where Ci = Xi·n ∨ . . . ∨Xi·n+n.

If k = 3 and n = 5 then

∆ = C0 ∧ C1 ∧ C2, where

C0 = X0 ∨X1 ∨X2 ∨X3 ∨X4 ∨X5

C1 = X5 ∨X6 ∨X7 ∨X8 ∨X9 ∨X10

C2 = X10 ∨X11 ∨X12 ∨X13 ∨X14 ∨X15

The optimal hypertree decomposition and optimal jointree in the general
case look respectively as in Figure 4. The problem has the following parameters:

– Hypertree width wh = 1
– Treewidth wt = n
– Number of clauses (constraints) k
– Maximum clause length n + 1
– Size of a CSP (tuples enumerated) Isize = k · 2n+1 − k
– Size of a SAT instance k · (n + 1)

Therefore, the complexity bound induced by the hypertree decomposition is
O(k · 2(n+1)(log k + n)) and the complexity bound induced by the jointree is
O(k · 2n).

Fig. 4. Optimal hypertree decomposition(left) and optimal jointree decomposi-
tion(right) for CNF ∆ =

V
i=0...k−1 Ci, where Ci = Xi·n ∨ . . . ∨Xi·n+n.

If we introduce auxiliary variables as in Theorem 2, we will increase the
number of clauses to k(3n − 5), but we will decrease treewidth wt to 2, and
therefore the extended problem is solvable in O(kn).

Figure 5 depicts a jointree for the problem with width 2. The augmented CNF
was obtained by substituting each clause Ci with a set of clauses as follows:

Ci = Xi·n ∨ . . . ∨Xi·n+n becomes





Yi·n+1 ≡ Xi·n ∨Xi·n+1

Yi·n+2 ≡ Yi·n+1 ∨Xi·n+2

Yi·n+3 ≡ Yi·n+2 ∨Xi·n+3

. . .
Yi·n+n−2 ≡ Yi·n+n−3 ∨Xi·n+n−2

Yi·n+n−2 ∨Xi·n+n−1 ∨Xi·n+n

(3)

For readability we didn’t expand equivalences (each equivalence will produce
three clauses) and introduced auxiliary variables, skipping Y ’s with indexes i ·n
and i · n− 1.

5 Conclusion

We investigated the relationship between treewidth and hypertree width as the
basis for bounds on the complexity of solving CSPs. Our conclusion is that an
asymptotical difference between these bounds is only possible in the presence
of constraints over number of variables that are not bounded by a constant
and whose number of tuples is bounded by a constant. We have also observed
that neither measure of complexity can recognize class of problems containing
constraints with the scope not bounded by a constant and an exponential number
of tuples (this includes SAT) as tractable. We have finally proposed a method
for introducing auxiliary variables into a CNF which allows us to recognize the
tractability of a class of problems that could not be recognized based on either
treewidth or hypertree width (of the original CNFs).

Fig. 5. Jointree that corresponds to the problem in Figure 4 after introduction of the
auxiliary variables according to equation (3).

Appendix

Definition 1. An instance of a CSP is a triple I = (V ar,D,C), where V ar =
{x1, . . . , xn} is a finite set of variables, D = {D1, . . . , Dn} respective finite do-
mains of values, and C = {C1, C2, . . . Cq} is a finite set of constraints.

Definition 2. Each constraint Ci is a pair (Si,Ri). Si = (xi1 , ..., ximi
) is the

constraint scope. A constraint relation Ri is a subset of the Cartesian product
Di1 × · · · ×Dimi

denoting the variables’ simultaneous legal value assignments.

Definition 3. [9] Given a CSP I, the size of I is Isize, the number of bits
needed to encode I by listing for each constraint in I, its constraint scope and
all tuples occurring in its constraint relation.

Isize =
q∑

i=1

(mi + |ri|). (4)

Definition 4. A jointree for a CSP I is a tree, every node of which is marked
with the set of variables that satisfy the following conditions:

1. If a variable appears in the marking of two nodes N1 and N2, it should appear
in the marking of every node on the path connecting N1 and N2.

2. Every set of variables Si that belong to a constraint Ci must appear in the
marking of at least one of the jointree nodes.

The width of a jointree is the size of its largest cluster minus one. The
treewidth of the CSP is the width of its best jointree.

We can define a hypertree decomposition on top of a rooted jointree: a jointree
where some node is chosen as root, and each node is a child of its neighbor closest
to the root.

Definition 5. A hypertree decomposition is a rooted jointree in which each node
n is also labeled with a set of constraints, cM(n). Assuming that variables(cM(n))
denotes the variables appearing in the constraints of cM(n), the constraint mark-
ing cM(n) should satisfy the following two conditions at every node n:

1. vM(n) ⊆ variables(cM(n))
2. variables(cM(n)) ∩ vars(n) ≡ vM(n)

Here, vars(n) = vM(n) for a leaf node n, and vars(n) =
⋃

var(nch) for an
internal node n, where nch is a child of n in the oriented tree.

The width of a hypertree decomposition is measured by the maximum number
of constraints in cM(n) labeling among all nodes. The hypertree width of a CSP
is the minimum width over all its hypertree decompositions.

References

1. F. Bacchus and P. van Beek. On the conversion between non-binary and binary
constraint satisfaction problems. In Proceedings of the 15th National Conference
on Artificial Intelligence (AAAI-98) and of the 10th Conference on Innovative
Applications of Artificial Intelligence (IAAI-98), pages 311–318, Menlo Park, 26–
30 1998. AAAI Press.

2. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intel-
ligence, 38:353–366, 1989.

3. Rina Dechter. On the expressiveness of networks with hidden variables. In AAAI,
pages 556–562, 1990.

4. Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, Inc., San
Mateo, California, 2003.

5. Rina Dechter and Judea Pearl. Network–based heuristics for constraint satisfaction
problems. Artificial Intelligence, 34:1–38, 1987.

6. Michael R. Garay and David S. Johnson. Computers and Intractability. W. H.
Freeman and Company, New York, 1991.

7. G. Gottlob, L. Leone, and F. Scarcello. On tractable queries and constraints. In
Proceedings Conference on Database and Expert Systems Applications, DEXA-99,
Florence, volume 1677 of Lecture Notes in Computer Science, page 115. Springer-
Verlag, Berlin, 1999.

8. G. Gottlob, L. Leone, and F. Scarcello. A comparison of structural csp decompo-
sition methods. Artificial Intelligence, 124(2):243–282, 2000.

9. G. Gottlob, L. Leone, and F. Scarcello. Hypertree decompositions: A survey. In
Proceedings 26th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS01, volume 2136 of Lecture Notes in Computer Science, pages
37–57. Springer-Verlag, 2001.

10. G. Gottlob, L. Leone, and F. Scarcello. Hypertree decomposition and tractable
queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.

11. Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and
guards: game theoretic and logical characterizations of hypertree width. J. Comput.
Syst. Sci., 66(4):775–808, 2003.

12. Martin Grohe. The structure of tractable constraint satisfaction problems. In
Proceedings 31st International Symposium on Mathematical Foundations of Com-
puter Science, MFCS06, volume 4162 of Lecture Notes in Computer Science, pages
58–72. Springer-Verlag, 2006.

13. Charles Hartshorne and Paul Weiss, editors. Collected papers of Charles Sanders
Peirce, volume III. Cambridge : Harvard University Press, 1931-66.

14. N. Robertson and P. D. Seymour. Graph minors II: Algorithmic aspects of tree-
width. J. Algorithms, 7:309–322, 1986.

15. Francesca Rossi, Charles Petrie, and Vasant Dhar. On the equivalence of constraint
satisfaction problems. In Luigia Carlucci Aiello, editor, ECAI’90: Proceedings of
the 9th European Conference on Artificial Intelligence, pages 550–556, Stockholm,
1990. Pitman.

16. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8:410–421, 1979.

