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Abstract. We introduce a new branch-and-bound Max-SAT solver, Clone,
which employs a novel approach for computing lower bounds. This ap-
proach allows Clone to search in a reduced space. Moreover, Clone is
equipped with novel techniques for learning from soft conflicts. Experi-
mental results show that Clone performs competitively with the leading
Max-SAT solver in the broadest category of this year’s Max-SAT evalu-
ation and outperforms last year’s leading solvers.

1 Introduction and Background

The maximum satisfiability problem (Max-SAT) is one of the optimization coun-
terparts of the Boolean satisfiability problem (SAT). In Max-SAT, given a Boolean
formula in conjunctive normal form (CNF), we want to determine the maximum
number of clauses that can be satisfied by any complete assignment.1

Two important variations of the Max-SAT problem are the weighted Max-
SAT and the partial Max-SAT problems. The weighted Max-SAT problem is
the Max-SAT problem, in which each clause is assigned a positive weight. The
objective of this problem is to maximize the sum of weights of satisfied clauses
by any assignment. The partial Max-SAT problem is the Max-SAT problem, in
which some clauses cannot be left falsified by any solution.2 The combination
to both variations is called the weighted partial Max-SAT problem. For the rest
of this paper, we use the term Max-SAT to refer to any variation of the Max-
SAT problem, while noting that our solver is meant for the broadest category:
weighted partial Max-SAT.

There are two main approaches used by contemporary exact Max-SAT solvers:
the satisfiability-based approach and the branch-and-bound approach. The for-
mer converts each Max-SAT problem with different hypothesized maximum
weights into multiple SAT problems and uses a SAT solver to solve these SAT
problems to determine the actual solution. Examples of this type of solver are
ChaffBS, ChaffLS [1] and SAT4J-MaxSAT [2]. The second approach, which

1 A clause is a disjunction of literals and a literal is simply a variable or its negation.
2 In practice, a madatory clause is represented by a clause with a sufficiently large

weight.



seems to dominate in terms of performance based on recent Max-SAT evalua-
tions [3, 4], utilizes a depth-first branch-and-bound search in the space of possible
assignments. An evaluation function which computes a bound is applied at each
search node to determine any pruning opportunity.

The methods used to compute bounds vary among branch-and-bound solvers
and often give rise to difference in performance. Toolbar utilizes local consisten-
cies to aid bound computations [5, 6]. Lazy, MaxSatz, and MiniMaxSat compute
bounds using some variations of unit propagation and disjoint component detec-
tion [7–10]. In this paper, we introduce a method of bound computation based
on formula compilation. Our approach can be thought of as a new paradigm that
combines search and compilation together. A recently developed solver, Sr(w),
by Ramı́rez and Geffner [11] employs a very similar approach for computing
bounds. Clone and Sr(w) were developed independently and both participated in
this year’s Max-SAT evaluation [4]. The performance of both solvers in the evalu-
ation is available at http://www.maxsat07.udl.es/ms07.pdf, showing that Clone
dominated Sr(w) in most of the evaluation categories. We note, however, that
the version of Clone described here is an improved version whose performance
is significantly better than the one that participated in the Max-SAT evaluation
2007.

For the remaining of this paper, we describe the components of our Max-
SAT solver. Clone consists of two main components. The first is the preprocessor
which takes a Max-SAT problem as an input and produces a data structure
necessary for computing bounds. The second is the branch-and-bound search
engine that takes advantage of the data structure and many inference techniques
to aid the search. None of the techniques used by Clone are specific to any
particular type of problem, making Clone applicable to any variation of Max-
SAT.

In the next section, we discuss the preprocessor and our approach for com-
puting bounds. In Section 3, we describe the search component and the inference
techniques used. Experimental results are presented in Section 4 and we close
with some remarks in Section 5.

2 Bound Computation

In the literature, the Max-SAT problem is often viewed as the problem of mini-
mizing the costs (weights) of falsified clauses of any assignment. We will follow
this interpretation and use the term cost to refer to the sum of weights of clauses
that cannot be satisfied. Moreover, we will use UB (upper bound) to denote the
best cost of any complete assignment found so far and LB (lower bound) to de-
note the guaranteed cost of the current partial assignment. Branch-and-bound
search algorithm can prune all children of a node whenever LB ≥ UB.

To compute lower bounds, we take advantage of a tractable language called
deterministic decomposable negation normal form (d-DNNF) [12, 13]. Many use-
ful queries can be answered about sentences in d-DNNF in time linear in the
size of these sentences. One of these queries is (weighted) minimum cardinality,



which is similar to Max-SAT, except that weights are associated with variables
instead of clauses. Our approach is indeed based on reducing Max-SAT on the
given CNF to minimum cardinality on a d-DNNF compilation of the CNF. If
this compilation is successful, the Max-SAT problem is solved immediately since
minimum cardinality can be solved in time linear in the d-DNNF size. Unfortu-
nately, however, the compilation process is often difficult. Our solution to this
problem is then to compile a relaxation of the original CNF, which is generated
carefully to make the compilation process feasible. The price we pay for this
relaxation is that solving minimum cardinality on the relaxed d-DNNF compi-
lation will give lower bounds instead of exact solutions. Our approach is then to
use these lower bounds for pruning in our brand-and-bound search.

We show how a Max-SAT problem can be reduced to a minimum cardinality
problem in Section 2.1. We will then discuss problem relaxation in Section 2.2,
followed by compilation in Section 2.3.

2.1 Reducing Max-SAT to minimum cardinality

Given a CNF formula and a cost for each literal of the formula, the weighted
minimum cardinality problem asks for a satisfying assignment that costs the
least. The cost of an assignment is the sum of costs of all literals that it sets to
true. To reduce a Max-SAT problem into a minimum cardinality problem, we
introduce a distinct selector variable to each clause of the Max-SAT problem
and assign the clause’s cost to the positive literal of the selector variable [14].
All other literals have zero cost. For example, the clause C = (a∨ b∨ c) becomes
C ′ = (s ∨ a ∨ b ∨ c) after the selector variable s is added. If C originally had
cost w, then w is assigned to s and any assignment that set s = true will
incur this cost. After this conversion, the formula will be trivially satisfiable,
because every clause contains a distinct selector variable. Nevertheless, finding a
satisfying assignment with the lowest cost is not easy. The minimum cardinality
problem is NP-hard for CNF formulas. However, it can be solved efficiently once
we have the formula in d-DNNF. Any solution to this problem can be converted
back to a solution for the original Max-SAT problem by ignoring assignments of
the selector variables.

At this point, we are almost ready to compile the CNF formula. The only
remaining issue is the time complexity of the compilation, which is, in the worst
case, exponential in the treewidth of the constraint graph of the CNF formula.
In most cases, straight compilation will be impractical. As a result, we need to
relax the formula to lower its treewidth.

2.2 Problem relaxation by variable splitting

The approach we use to relax the problem is called variable splitting, which was
inspired by the work of Choi et al in [15]. In general, splitting a variable v involves
introducing new variables for all but one occurrence of v in the original CNF



formula. 3 For example, splitting a in the CNF (a∨ b)∧ (¬a∨ c)∧ (a∨ d)∧ (b∨
¬c)∧(c∨¬d) results in the formula (a∨b)∧(¬a1∨c)∧(a2∨d)∧(b∨¬c)∧(c∨¬d).
In this case, a is called the split variable. The new variables (a1 and a2 in this
case) are called the clones of the split variable. Figure 1 illustrates the constraint
graph of the above CNF before and after the split.
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a1 a2 Fig. 1. (left) The constraint graph of
(a∨ b)∧ (¬a∨ c)∧ (a∨ d)∧ (b∨¬c)∧
(c∨¬d). (right) The constraint graph
after splitting a. The treewidth is re-
duced from 2 to 1.

After splitting, the resulting problem becomes a relaxation of the original
problem because any assignment in the original problem has an assignment in
the split problem with the same cost.4 Therefore, the lowest cost of any split
formula is a lower bound of the lowest cost of the original formula. The strategy
we use for selecting split variables is the same as the one described in [15].

2.3 CNF to d-DNNF compilation

Once the treewidth of the problem is low enough, the problem can be practically
compiled. The process of compiling a CNF formula into a d-DNNF formula is
performed by a program called C2D [13, 16]. C2D takes a CNF formula as input
and produces an equivalent sentence in d-DNNF. The output formula is fed to
the search engine and will be used for later bound computations.

¬ c (2) b (1)¬ b (2) c (1)

AND (2)AND (4) AND (3) AND (3)

a (1)OR (2) ¬ a (2)OR (3)

AND (3) AND (5)

OR (3)

Fig. 2. The DAG of the d-
DNNF formula (a ∧ ((b ∧ c) ∨
(¬b∧¬c)))∨ (¬a∧ ((b∨¬c)∨
(¬b ∨ c))). Each node in this
graph is also labeled with the
value used to compute the
minimum cardinality of the
root.

2.4 Computing bounds from d-DNNF

Every d-DNNF formula can be represented as a rooted DAG. Each node in the
DAG is either a Boolean constant, a literal, or a logical operator (conjunction
3 This type of splitting is called full splitting. While other degrees of splitting are

possible, we focus our attention only to this method.
4 This can be obtained by setting the value of every clone according to its split variable.



or disjunction). The root of the DAG corresponds to the formula. For example,
consider the DAG of a d-DNNF formula (a ∧ ((b ∧ c) ∨ (¬b ∧ ¬c))) ∨ (¬a ∧ ((b ∨
¬c) ∨ (¬b ∨ c))) in Figure 2. Let the cost of every positive literal be 1 and the
cost of every negative literal be 2. The minimum cardinality of the formula is
simply the value of the root [14], which is defined recursively as:

1. The value of a literal node is the value of the literal
2. The value of an AND node is the sum of the values of all its children
3. The value of an OR node is the minimum of the values of its children

If the formula is a relaxed formula, then the computed minimum cardinality
becomes a lower bound of the minimum cardinality of the formula before relax-
ation (hence a lower bound of the optimal cost of the original Max-SAT problem).

The d-DNNF formula can also be efficiently conditioned on any partial or
complete assignment of its variables. Conditioning only affects the values of
the nodes whose literals are set to false. The values of such nodes become ∞,
which may in turn affect the values of their parents or ancestors. In practice,
bound computation can be done incrementally. Only the nodes whose values
have changed since the last evaluation need to be inspected. The resulting bound
computed from the conditioned formula will be a lower bound of the optimal
cost of any assignment that extends the conditioning assignment.

Relaxer Relaxed CNF
Max-SAT to
 min. card.
converter

Min. card. problem
(CNF formula)

Selector-cost
mapping

C2D d-DNNF

Weighted CNF

Fig. 3. A system diagram of Clone’s preprocessor.

Figure 3 summarizes the relationship between different parts of the prepro-
cessor. The system’s input is a Max-SAT problem (weighted CNF formula). The
system produces a d-DNNF formula and information about the costs of selector
variables. These outputs are passed on to the branch-and-bound search engine.

3 Search and Inference

The next component of Clone is the branch-and-bound search engine. The en-
gine uses bounds computed from the d-DNNF formula for pruning. The search
algorithm only branches on variables in the original Max-SAT problem (as op-
posed to clones or selectors). Every time a split variable is assigned a value,
the algorithm ensures that all its clones are set to the same value. Otherwise, a
solution in this search space may be meaningless in the original problem.

Apart from standard inference techniques such as unit propagation, non-
chronological backtracking [17–19], and conflict clause learning [18, 20], the search
engine of Clone employs many novel techniques to improve the efficiency of the



search. We describe them next. Some of these techniques require access to the
clauses in the original Max-SAT problem. Hence, although we compile the CNF
formula into a d-DNNF, the original formula is also given to the search engine.

3.1 Reducing the size of the search space

Given our method for computing bounds, it is possible to reduce the size of
the search space that the algorithm needs to explore. Since the relaxed problem
differs from the original problem only on split variables and their clones, as soon
as every split variable (and its clones) is set to a value, the two problems become
identical under the current assignment. Therefore, the bound computed from
the d-DNNF formula at this point must be the exact Max-SAT optimal cost of
the original problem under the current assignment.
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b b c c

c c c c b b b b

                

Fig. 4. An example search space with each node labeled with the last branch variable.

For example, consider the search space of a problem with 3 split variables–
a, b, and c–in Figure 4. The bound computed at each node is a lower bound of
the optimal cost of any complete assignment that extends the assignment at the
node. However, once all three split variables are instantiated, the bound becomes
exact. Therefore, there is no need to visit any node below depth 3 in this search
tree. This realization suggests a natural way of reducing the size of the search
space; we only need to search in the space of assignments of split variables.

3.2 Dealing with soft conflicts

Whenever LB ≥ UB, the solver can prune the current branch of the search. This
situation is called a soft conflict, because no hard clause is violated. A hard clause
is one whose cost is greater than or equal to UB. A soft clause is a clause that
is not hard. A hard clause cannot be falsified by any optimal solution.5 Tra-
ditionally, branch-and-bound search algorithm backtracks chronologically (flip
the most recent unflipped decision) when a soft conflict is found. The standard
SAT techniques for dealing with conflicts do not apply directly to this type of
conflicts, because of the lack of a violated hard clause. However, in some cases,
we could efficiently construct a violated hard clause.
5 Violation of a hard clause results in a hard conflict, which is handled by normal

conflict analysis as in [20, 21].



Upon each soft conflict, clearly LB ≥ UB. Moreover, some soft clauses may
already be falsified by the current assignment. However, it is not necessary that
the sum S of the costs of the violated soft clauses be greater than or equal to
UB. This is simply because the method used for computing lower bounds may be
able to implicitly identify certain clauses that can never be satisfied at the same
time, even when their truth values are still in question. In any case, whenever
S ≥ UB, a violated hard clause can be artificially constructed. In particular, let
{C1, C2, ..., Ck} be a set of soft clauses whose sum of costs exceeds (or equal)
UB. Then, C = ∨k

i=1Ci is a hard clause. The clause C simply makes explicit the
fact that C1, ..., Ck cannot all be false at the same time.

To perform conflict analysis on a soft conflict, we need to find a minimal set
of violated soft clauses whose sum of costs is greater than UB. The disjunction
of the literals of these clauses is a violated hard clause, which can be used by
the standard conflict analysis algorithm to generate a conflict clause, which is a
hard clause, and to compute a level to non-chronologically backtrack to.

A similar learning scheme for soft conflicts was proposed in the solver PMS [22].
This learning scheme utilizes Max-SAT resolution rule [23] and, according to [22],
has not been coupled with non-chronological backtracking.

3.3 Avoiding work repetition

Both chronological and non-chronological backtracking are employed by Clone.
The former is used when the solver encounters a soft conflict for which no vio-
lated hard clause can be easily constructed. In this case, no new clause is learned
by the solver. Non-chronological backtracking is used for the other pruning op-
portunities and a new conflict clause is learned every time.

Combining these two types of backtracking naively may lead the solver to
repeat a lot of work in some situations. For example, consider the search tree in
Figure 5 (a). In this search tree, the variable a was flipped to ¬a by a chronolog-
ical backtrack, which indicates that the whole subtree under a = true had been
exhausted. After a few more decisions (b and c), the solver may run into a hard
conflict and derive a conflict clause (¬c). As a result, non-chronological back-
tracking will erase every assignment and set c = false at the very top level (level
0). The search tree after backtracking is shown in Figure 5 (b). The assignment
a = false had been erased in the process and there is no way to recover the fact
that the branch a = true had been fully explored. MiniMaxSAT [9] is the only
other solver employing both chronological and non-chronological backtracking
that we are aware of and it may suffer from this inefficiency.6

To solve this problem, every time Clone non-chronologically backtracks past
any chronologically flipped assignment, it records a blocking clause, which is a
hard clause that captures that information. More formally, let ` be a current
literal assignment that was flipped by a chronological backtrack at level k. If the
solver non-chronologically backtracks past `, it will learn C = (` ∨ ¬d1 ∨ ¬d2 ∨
6 Based on the paper and communication with one of the authors.



c

aa

b

(a)

c

(b)

Fig. 5. (a) A search tree in which
a has been flipped by chronological
backtracking. (b) The search tree
after non-chronological backtrack-
ing and learning conflict clause
(¬c).

...∨¬dk−1), where di is the decision assignment at level i. In the above example,
(¬a) would be learned since it was the very first decision in the search tree.

4 Experimental Results

In this section, we present experimental results that compare Clone against other
leading weighted Max-SAT solvers that are publicly available. The first solver
is Toolbar (version 3.1), which was the best solver in the weighted category of
the Max-SAT evaluation 2006 and also participated in the Max-SAT evaluation
2007. The second solver is Lazy, which was outperformed by only Toolbar in
the same category in 2006. The last solver is MiniMaxSat, which outperformed
others in the weighted partial Max-SAT category of the 2007 evaluation.
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Fig. 6. Running time profile of solvers on Max-SAT problems from Max-SAT evaluation 2006 (left) and 2007
(weighted partial Max-SAT category) (right).

The version of Clone used here is an improved version of the one in the
Max-SAT evaluation 2007. In addition to the techniques for handling soft con-
flicts described earlier, this version of Clone uses MaxWalkSat [24] to find initial
seeds. Moreover, it utilizes an improved variable ordering heuristic which al-
ways starts with the Jeroslow-Wang heuristic [25] and dynamically switches to
the VSIDS [26] heuristic if hard conflicts are encountered frequently enough.
To make memory usage sustainable, Clone periodically deletes inactive learned
clauses in the manner that maintains the completeness of the solver.

In all experiments, every Max-SAT problem is relaxed until its treewidth
is less than or equal to 8, which we found to be empirically optimal. All ex-
periments were run on two Intel Pentium 4 machines, each with 3.79GHz and



4GB of RAM. The time-out is 1,200 seconds per problem. We considered all
non-random weighted Max-SAT problems from the 2006 evaluation and all non-
random weighted partial Max-SAT problems from the 2007 evaluation.7

Suite (Max-SAT eval. 2006) Pb. Ct. Toolbar Lazy Clone

AUCTION (PATHS) 30 26 20 28
AUCTION (REGIONS) 30 30 30 30
AUCTION (SCHED.) 30 30 30 28
MAXONE 45 44 24 33
MAXCLIQUE 62 33 29 19
MAXCSP 180 120 53 169
QCP 25 10 6 24
RAMSEY 48 35 28 36
SPOT5 42 9 5 12
WMAXCUT 67 59 60 28
WQUEENS 7 5 5 5
Total 566 401 290 412

Suite (Max-SAT eval. 2007) Pb. Ct. Toolbar MiniMaxSat Clone

AUCTION (PATHS) 88 88 88 88
AUCTION (REGIONS) 84 84 84 84
AUCTION (SCHED.) 84 82 84 78
QCP 25 10 20 24
PLANNING 71 52 71 71
PSEUDO MIPLIB 16 7 5 5
PSEUDO FACTOR 186 8 186 186
SPOT5 42 9 7 12

Total 596 340 545 548

Table 1. Number of solved problems by suite (left) from the Max-SAT evaluation 2006 and (right) from the Max-
SAT evaluation 2007

Figure 6 shows performance profiles of solvers on different set of benchmarks.
In each plot, problems from each Max-SAT evaluation are used to compare Clone
against solvers that participated in the evaluation. The left plot of Figure 6
shows that the performance of Clone is comparable to that of Toolbar and better
than that of Lazy on problems from the 2006 evaluation. The right plot shows
that Clone is comparable to MiniMaxSat, which does significantly better than
Toolbar on problems from the 2007 evaluation. Table 1 reports the number of
solved problems by suite. According to the left table, out of 566 problem, Clone
solved 11 problems more than Toolbar and 122 problems more than Lazy. The
right table shows that Clone solved roughly the same number of problems as
MiniMaxSat on most suites and solved 3 more problems overall.

5 Conclusions

We presented in this paper a new weighed Max-SAT solver, Clone, which employs
(1) a new approach for computing lower bounds, (2) a corresponding technique
for reducing the search space, and (3) some novel techniques for handling soft
conflicts. The performance of Clone on non-random problems used in the recent
Max-SAT evaluations is competitive with those of other leading solvers, which
are based on more mature approaches for Max-SAT. Our results demonstrate
the potential of the new techniques adopted by Clone, some of which are quite
different from the techniques adopted by classical Max-SAT solvers.
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7 In 2006, unweighted Max-SAT was the only other evaluation category. In 2007, there
were 3 other categories. Here, we consider the broadest, most general category.
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