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Abstract

We analyze, in this work, the performance of a recently introduced weighted Max-SAT
solver, Clone, in the Max-SAT evaluation 2007. Clone utilizes a novel bound computation
based on formula compilation that allows it to search in a reduced search space. We study
how additional techniques from the SAT and Max-SAT literature affect the performance of
Clone on problems from the evaluation. We then perform further investigations on factors
that may affect the performance of leading Max-SAT solvers. We empirically identify two
properties of weighted Max-SAT problems that can be used to adjust the difficulty level of
the problems with respect to the considered solvers.

1. Introduction and Background

The maximum satisfiability problem (Max-SAT) is one of the optimization counterparts of
the Boolean satisfiability problem (SAT). In Max-SAT, given a Boolean formula in con-
junctive normal form (CNF), we want to determine the maximum number of clauses that
can be satisfied by any complete assignment, where a clause is a disjunction of literals
and a literal is simply a variable or its negation. Recently, the study of Max-SAT has
been growing in popularity, as demonstrated by the quickly increasing number of Max-SAT
solvers [2, 3, 4, 5, 6, 7]. The Max-SAT problem has also been used as a model for many ap-
plications in areas such as databases [8], FPGA routing [9], and automatic scheduling [10].
The annual Max-SAT evaluation has played an important role in advancing this field of
study [11, 12].

Two important variations of the Max-SAT problem are the weighted Max-SAT and the
partial Max-SAT problems. The weighted Max-SAT problem is the Max-SAT problem, in
which each clause is assigned a positive weight. The objective of this problem is to maximize
the sum of weights of satisfied clauses by any assignment. The partial Max-SAT problem
is the Max-SAT problem, in which some clauses cannot be left falsified by any solution. In
practice, a clause that cannot be falsified is represented by a clause with a sufficiently large
weight. The combination of both variations is called the weighted partial Max-SAT problem.

*This work extends our previous work in [1]



For the rest of this paper, we use the term Max-SAT to refer to any variation of the Max-
SAT problem.

There are two main approaches used by contemporary exact Max-SAT solvers: the
satisfiability-based approach and the branch-and-bound approach. The former converts
each Max-SAT problem with different hypothesized maximum weights into multiple SAT
problems and uses a SAT solver to solve these SAT problems to determine the actual solu-
tion. Examples of this type of solver are ChaffBS, ChaffLS [13] and SAT4J-MaxSAT [14].
The second approach, which seems to dominate in terms of performance based on recent
Max-SAT evaluations [11, 12], utilizes a depth-first branch-and-bound search in the space
of possible assignments. An evaluation function which computes a bound is applied at each
search node to determine any pruning opportunity.

The methods used to compute bounds vary among branch-and-bound solvers and often
give rise to difference in performance. Toolbar utilizes local consistencies to aid bound
computations [4, 15]. Lazy, MaxSatz, PMS, LB-SAT, and MiniMaxSAT compute bounds
using some variations of unit propagation and disjoint component detection [6, 16, 17, 7, 3,
2]. Moreover, solvers such as MiniMaxSAT and PMS also use Max-SAT inference rules to
improve bound quality.'

Our solver, Clone, uses a completely different approach for computing bounds. Clone
compiles a relaxed version of the Max-SAT problem into a tractable form and computes
bounds from the compiled formula. This approach allows our solver to better take advantage
of problem structure. Moreover, it can be thought of as an approach that combines search
and compilation together. Note that the Max-SAT solver Sr(w) by Ramirez and Geffner [5]
uses the same approach for bound computation. Both solvers were developed independently
and both participated in the Max-SAT evaluation 2007 [12].

In this work, we experimented with additional techniques for improving our Max-SAT
solver and evaluated their impact on problems from the Max-SAT evaluation. We analyzed
the performance of our solver and performed further experiments that revealed a class of
problems on which our solver significantly outperformed other Max-SAT solvers. This result
demonstrates the benefits of our approach. Our investigation also led us to identify some
properties of Max-SAT problems that can be used to indicate their difficulty. We report
empirical results that show how these properties can be manipulated for different difficulty
levels of Max-SAT problems.

In the next section, we discuss the preprocessor of Clone and our approach for computing
bounds. In Section 3, we describe the search component and the inference techniques used
in Clone. Evaluation of our solver on problems from the Max-SAT evaluation is presented in
Section 4. In Section 5, we carefully analyze the performance of our solver and discuss some
properties of problems used in the evaluation. In Section 6, we present a series of results
from our additional investigations that allow us to identify some properties of weighted
Max-SAT problems that are good indicators of solvers’ performance. Finally, we conclude
with some remarks in Section 7.

1 Local consistency and Max-SAT inference are two highly-related concepts (see [18]).



2. Bound Computation

In the literature, the Max-SAT problem is often viewed as the problem of minimizing the

costs (or weights) of falsified clauses of any assignment. We will follow this interpretation

and use the term cost to refer to the sum of weights of clauses that are not satisfied. More-

over, we will use U B (upper bound) to denote the best cost of any complete assignment found
so far and LB (lower bound) to denote the lower bound on the cost of any assignment that

extends the current partial assignment. Branch-and-bound search algorithm can prune all

children of a node whenever LB > UB.

To compute lower bounds, we take advantage of a tractable language called deterministic
decomposable negation normal form (d-DNNF) [19, 20]. The key property of d-DNNF that
we utilize here is the fact that, for each conjunction in a d-DNNF formula, the conjuncts
share no variable. This property is called decomposability [21]. Many useful queries can
be answered about sentences in d-DNNF' in time linear in the size of these sentences. One
of these queries is (weighted) minimum cardinality, which is similar to Max-SAT, except
that weights are associated with variables instead of clauses. Our approach is indeed based
on reducing Max-SAT on the given CNF to minimum cardinality on a d-DNNF equivalent
of the CNF. If this compilation is successful, the Max-SAT problem is solved immediately
since minimum cardinality can be solved in time linear in the d-DNNF size. Unfortunately,
however, the compilation process is often difficult. Our solution to this problem is then
to compile a relaxation of the original CNF. The relaxed CNF is generated carefully to
make the compilation process feasible. The price we pay for this relaxation is that solving
minimum cardinality on the resulting d-DNNF (of the relaxed CNF) will give lower bounds
instead of exact solutions. Our approach is then to use these lower bounds for pruning in
our branch-and-bound search.

We show how a Max-SAT problem can be reduced to a minimum cardinality problem in
Section 2.1. We will then discuss problem relaxation in Section 2.2, followed by compilation
in Section 2.3. A method for computing bounds from the compiled formula is discussed in
Section 2.4.

2.1 Reducing Max-SAT to Minimum Cardinality

Given a CNF formula and a cost for each literal of the formula, the weighted minimum
cardinality problem asks for a satisfying assignment that costs the least. This problem is
also known as the MinCostSAT problem [9] and the binate covering problem [22]. The cost
of an assignment is the sum of the costs of all literals that it sets to true. To reduce a
Max-SAT problem into a minimum cardinality problem, we introduce a distinct selector
variable to each clause of the Max-SAT problem and assign the clause’s cost to the positive
literal of the selector variable [23]. All other literals are assigned zero cost. For example,
the clause C'= (a VbV ¢) becomes C' = (s Va VbV ¢) after the selector variable s is added.
If C originally had cost w associated with it, then w is assigned to s and any assignment
that set s = true will incur this cost. After this conversion, the formula will be trivially
satisfiable, because every clause contains a distinct selector variable. Nevertheless, finding a
satisfying assignment with the lowest cost is not easy. The minimum cardinality problem is
NP-hard for CNF formulas. However, it can be solved efficiently once we have the formula



in d-DNNF. Any solution to this problem can be converted back to a solution for the original
Max-SAT problem by ignoring assignments of the selector variables.

At this point, we are almost ready to compile the CNF formula. The only remaining
issue is the time complexity of the compilation, which is, in the worst case, exponential in
the treewidth of the constraint graph [24] of the CNF formula. The treewidth of a graph
is a theoretic parameter, which measures the extent to which a graph resembles a tree (the
lower the treewidth, the more tree-like) [25]. In most cases, straight compilation will be
impractical. As a result, we need to relax the formula to lower its treewidth.

2.2 Problem Relaxation by Variable Splitting

The approach we use to relax the problem is called variable splitting, which was inspired
by the work of Choi et al in [26]. In general, splitting a variable v involves introducing
new variables for all but one occurrence of v in the original CNF formula.? For example,
splitting @ in the CNF (aVb) A (maVe)A(aVd)A(bV—c)A(cV—d) results in the formula
(aVb)A(ma1Ve)A(aaVd)A(bV —c)A(eV—d). In this case, a is called the split variable. The
new variables (a1 and ag in this case) are called the clones of the split variable. Figure 1
illustrates the constraint graph of the above CNF before and after the split.

Figure 1: (left) The constraint graph of
° a e e (aVb)A(—aVe)A(aVd)A(bV=ec)A(cV
G‘.@ —d). (right) The constraint graph after
Q a G a splitting a. The treewidth is reduced

from 2 to 1.

After splitting, the resulting problem becomes a relaxation of the original problem,
because any assignment in the original problem has an assignment in the split problem
with the same cost. Such an assignment can be obtained by setting the value of every
clone according to its split variable. Therefore, the lowest cost of any split formula is a
lower bound of the lowest cost of the original formula. The strategy we use for selecting
split variables is the same as the one described in [26]. Identifying variables to split is closely
related to the problem of finding a loop cutset (or cycle cutset) [27, 28], except that we do
not necessarily insist on splitting variables until the constraint graph becomes a tree.

2.3 CNF to d-DNNF Compilation

Once the problem has a sufficiently low treewidth, it can be practically compiled. The
process of compiling a CNF formula into a d-DNNF formula is performed by a program
called C2D [20, 29]. C2D takes a CNF formula as input and produces an equivalent formula
in d-DNNF. The output formula is fed to the search engine and will be used for later bound
computations.

2 This type of splitting is called full splitting. While other degrees of splitting are possible, we focus our
attention only to this method.



Figure 2: The DAG of the d-DNNF formula (aA((bAc)V(=bA=c)))V(maA((bV—c)V(—bVc))).
Each node in this graph is also labeled with the value used to compute the minimum
cardinality of the root.

2.4 Computing Bounds from d-DNNF

Every d-DNNF formula can be represented as a rooted DAG. Each node in the DAG is
either a Boolean constant, a literal, or a logical operator (conjunction or disjunction). The
root of the DAG corresponds to the formula. For example, consider the DAG of a d-DNNF
formula (a A (bA¢)V (mbA =)V (maA((bV —c)V (=bVc))) in Figure 2. In this figure,
the cost of every positive literal is set to 1 and the cost of every negative literal is set to
2. The minimum cardinality of the formula is simply the value of the root node, which is
defined recursively as [23]:

1. The value of a literal node is the value of the literal
2. The value of an AND node is the sum of the values of all its children
3. The value of an OR node is the minimum of the values of its children

Note that Step 2 is possible because the formula satisfies decomposability. If the formula
is a relaxed formula, then the computed minimum cardinality becomes a lower bound of
the minimum cardinality of the formula before relaxation (hence a lower bound of the
optimal cost of the original Max-SAT problem). The d-DNNF formula can also be efficiently
conditioned on any partial or complete assignment of its variables. Conditioning only affects
the values of the nodes whose literals are set to false. False literals can no longer contribute
to any solution of the problem. Hence, the values of such nodes are set to oo, which may
in turn affect the values of their parents or ancestors. The resulting bound computed from
the conditioned formula will be a lower bound of the optimal cost of any assignment that
extends the conditioning assignment.

In the branch-and-bound search, we need to compute a bound at every search node
under the partial assignment at that node. To make this process efficient, bounds are



computed incrementally as follows. For each node, we stored the most recent computed
value and maintain a touched bit. A literal node is touched if and only if its truth value has
changed since the last bound computation. When a new bound needs to be computed, we
traverse the formula in a bottom-up manner and only re-evaluate touched nodes, because
the stored values of untouched nodes are still correct. Once a touched node is evaluated,
we reset its touched bit (to untouched), mark its parents as touched and continue. As a
result, we need to set touched bits of different literals appropriately as we explore the search
space. A literal is marked touched whenever its value changes; when it is assigned a value
or backtracked past.

Min. card. problem -
— Relaxer Relaxed CNF C2D d-DNNF
Max-SAT to (CNF formula)
Weighted CNF min. card.
converter o Selector-cost
mapping

Figure 3: A system diagram of Clone’s preprocessor.

We close this section by summarizing in Figure 3 the relationship between different
parts of Clone’s preprocessor. The input is a Max-SAT problem (weighted CNF formula).
The preprocessor produces a d-DNNF formula and information about the costs of selector
variables. These outputs are passed on to the branch-and-bound search engine, which we
describe in the next section.

3. Search and Inference

The next component of Clone is the branch-and-bound search engine. The engine uses
bounds computed from the d-DNNF formula for pruning. The search algorithm only
branches on variables in the original Max-SAT problem (as opposed to clones or selectors).
Every time a split variable is assigned a value, the algorithm ensures that all its clones are
set to the same value. Otherwise, a solution in this search space may be meaningless in the
original problem.

Next, we describe some techniques that are utilized in Clone to improve the efficiency
of the search. Some of these techniques require access to the clauses in the original Max-
SAT problem. Hence, although we compile the CNF formula into a d-DNNF| the original
formula (weighted CNF) is also given to the search engine.

3.1 Reducing the Size of the Search Space

Given our method for computing bounds, it is possible to reduce the size of the search
space that the algorithm needs to explore. Since the relaxed problem differs from the
original problem only on split variables and their clones, as soon as every split variable
(and its clones) is set to a value, the two problems become identical under the current
assignment (recall that we ensure that every clone is set according to its split variable).
Therefore, the bound computed from the d-DNNF formula at this point must be the exact
Max-SAT optimal cost of the original problem under the current assignment.



Figure 4: An example search space with each node labeled with the last branch variable.

For example, consider the search space of a problem with 3 split variables—a, b, and c-in
Figure 4. The bound computed at each node is a lower bound of the optimal cost of any
complete assignment that extends the assignment at the node. However, once all three split
variables are instantiated, the bound becomes exact. Therefore, there is no need to visit
any node below depth 3 in this search tree, regardless of the number of other variables. This
realization suggests a natural way of reducing the size of the search space; we only need
to search in the space of assignments of split variables. A problem with a large treewidth
is likely to require many variables to be split, yielding a small reduction in the size of the
search space. On the other extreme, a problem that can be compiled without any splitting
can be solved without any search, because the bound computed without any conditioned
variable is already equal to the exact optimal cost.

For the remaining of this section (3.2-3.6), we will only discuss techniques that deal with
the original weighted CNF formula. Therefore, a clause always refer to an original clause
of the problem (as opposed to that in the minimum cardinality or the relaxed problem).

3.2 Unit Propagation

Unit propagation is a predominant inference rule in SAT solvers. The rule states that
whenever a unit clause (¢) exists in the formula, the literal ¢ must essentially be set to
true. However, this rule cannot be applied to all clauses in a Max-SAT problem, because
not every clause needs to be satisfied. Unit propagation can be applied to a unit clause
C only if C has a sufficiently large weight (> UB) to be considered mandatory under the
current assignment. These mandatory clauses are called hard clauses and applications of
unit propagation on hard clauses generate hard implications.

A soft clause, on the other hand, is a clause with weight less than UB. A soft clause
may become a hard clause over time as the value of UB decreases. Whenever a soft clause
becomes unit over literal ¢, we add the cost of the clause to the cost of £.? This represents the
fact that falsifying ¢ will automatically falsify the clause and will incur the associated cost.
As soon as the cost of a literal is greater than or equal to U B, the literal is implied to true.
This is called a soft implication, which is similar to the application of node consistency [30].
Moreover, as soon as a soft clause becomes unit over ¢, it is added to the list of unit soft
clauses of . This list will be used later when Clone tries to derive a conflict clause. In our

3 This cost is used only for the implementation of unit propagation and not for bound computation.



implementation, the two-watched literal scheme [31] is used to efficiently implement unit
propagation.

3.3 Dealing with Hard Conflicts

A hard conflict is a conflict in which a hard clause gets violated. This type of conflict may
arise during unit propagation and presents the solver with a pruning opportunity. Clone
employs non-chronological backtracking, which is common in CSP and SAT [32, 33, 34].
Conflict analysis as described in [35] is performed upon every hard conflict. As a result,
an earlier search level is identified as the target of the subsequent backtrack. This form of
backtracking allows Clone to prune the search tree efficiently.

In addition to non-chronological backtracking, Clone also employs an important tech-
nique from SAT called conflict clause learning. Upon each conflict, the solver derives a
conflict clause using the 1-UIP scheme as described in [36]. A conflict clause helps prune
some parts of the search tree that do not contain the optimal solution. To derive a conflict
clause, the solver needs to construct an implication graph associated with the conflict [36].
During this process, the reasons of some (hard and soft) implications need to be analyzed.
The reason of a hard implication is the hard clause in which the implied literal becomes unit.
The reason of a soft implication, on the other hand, needs to be recovered by traversing
the list of soft clauses in which the implied literal appears alone after simplification (recall
that we maintain a list of unit soft clauses for each literal). The disjunction of these clauses
is a reason of the soft implication. For example, if soft implication ¢ appears in clauses
({vz),{VyVz),(Vw)and z,y,z,w are all set to false, then ({VwVzVyV z) is a reason
of £. Once the conflict clause is learned by the solver, unit propagation will guarantee that
the solver will not run into the same conflict again. Other Max-SAT solvers that learn
conflict clauses upon hard conflicts include MiniMaxSAT [2], PMS [7], and Sr(w) [5].

3.4 Dealing with Soft Conflicts

Recall that whenever the current lower bound is greater than or equal to the current upper
bound (LB > UB), the solver can prune the current branch of the search. This situa-
tion is called a soft conflict, because no hard clause is actually violated. Traditionally,
a branch-and-bound search algorithm backtracks chronologically (flip the most recent un-
flipped decision) when a soft conflict is found. The standard SAT techniques for dealing
with conflicts do not apply directly to this type of conflict, because no hard clause is violated
in this case. However, in some cases, we could efficiently construct a violated hard clause
from a soft conflict.

Upon each soft conflict, clearly LB > UB. Moreover, some soft clauses may already
be falsified by the current partial assignment. However, it is not necessary that the sum
S of the costs of the violated soft clauses be greater than or equal to UB. This is simply
because the method used for computing lower bounds may be able to implicitly identify
certain clauses that can never be satisfied at the same time, even when their truth values are
still in question. In any case, whenever S > UB, a violated hard clause can be artificially
constructed. In particular, let {C7,Cy,...,Cy} be a set of violated soft clauses whose sum
of costs exceeds (or equal) UB. Then, C = \/leCi is a violated hard clause. The clause C
simply makes explicit the fact that C1, ..., Cy cannot all be false at the same time.



Figure 5: (a) A search tree in which
a has been flipped by chronological
backtracking. (b) The search tree
after non-chronological backtracking
and learning conflict clause (—c).

(a) (b)

To perform conflict analysis on a soft conflict, we just need to find a minimal set of
violated soft clauses whose sum of costs is greater than UB. The disjunction of the literals
of these clauses is a violated hard clause, which can be used by the standard conflict analysis
algorithm to generate a conflict clause, which is a hard clause, and to compute a level to
non-chronologically backtrack to. In other cases, in which S < U B, Clone simply backtracks
chronologically without learning any clause.

Note that this is not the first time a learning scheme for soft conflicts is proposed. A
similar scheme was proposed in the partial Max-SAT solver PMS [7]. The learning scheme of
PMS utilizes Max-SAT resolution rule [18] and, according to [7], has not been coupled with
non-chronological backtracking. Another solver that attempts to learn from soft conflicts
is Sr(w) [5]. It generates a violated hard clause by traversing the compiled formula and
applies standard conflict analysis procedure to the clause.

3.5 Avoiding Work Repetition

Both chronological and non-chronological backtracking are employed by Clone. The former
is used when the solver encounters a soft conflict for which no violated hard clause can be
easily constructed. In this case, no new clause is learned by the solver. Non-chronological
backtracking is used for the other pruning opportunities and a new conflict clause is learned
every time.

Combining these two types of backtracking naively may lead the solver to repeat a lot
of work in some situations. For example, consider the search tree in Figure 5 (a). In this
search tree, the variable a was flipped to —a by a chronological backtrack, which indicates
that the whole subtree under ¢ = true had been exhausted. After a few more decisions
(b and ¢, in this example), the solver may run into a hard conflict and derive a conflict
clause (—¢). As a result, non-chronological backtracking will erase every assignment and
set ¢ = false at the very top level (level 0). The search tree after backtracking is shown
in Figure 5 (b). The assignment a = false had been erased in the process and there is no
way to recover the fact that the branch a = true had been fully explored. To the best of
our knowledge, this problem had never been dealt with before in any Max-SAT solver that
employs both chronological and non—chronological backtracking.

To solve this problem, every time Clone non-chronologically backtracks past any chrono-
logically flipped assignment, it records a blocking clause, which is a hard clause that captures
that information. More formally, let £ be a current literal assignment that was flipped by



a chronological backtrack at level k. If the solver non-chronologically backtracks past £, it
will learn C' = (£V —=dy V —da V...V —dg_1), where d; is the decision assignment at level 7. In
the above example, (—a) would be learned since it was the very first decision in the search
tree. The use of blocking clauses here is similar to those employed in other contexts such
as SAT-based model checking [37].

As we can see, Clone constantly adds new clauses to the formula as it is solving the
problem. These clauses could represent a considerable memory overhead and must be
deleted to ensure that Clone does not exhaust the memory too quickly. As a result, Clone
periodically deletes inactive learned clauses from the formula. The activity of each clause
is heuristically determined by its participation in recent conflict analysis as normally done
in modern clause-learning DPLL-based SAT solvers (see [38], for example).

3.6 Other Improvements

Apart from the above techniques, Clone computes an initial upper bound by calling Maxwalk-
sat [39], which is a local search solver. Clone uses the best cost found by Maxwalksat after
a fixed number of trials as the initial upper bound.

Clone utilizes a dynamic variable ordering heuristic that is a combination of the two-
sided weighed Jeroslow-Wang (JW) [40] and VSIDS [31] heuristics. In our implementation
of weighted JW, we prefer the literal with the highest weight. The weight of a literal ¢, in the
simplified formula, is defined to be Y, w(C)2/°l, where w(C) is the weight of clause C. In
general, JW performs well on weighted problems as it takes into account both clause lengths
and clause weights. However, we found that VSIDS tends to outperform JW dramatically on
problems with many hard clauses, which usually result in many hard conflicts experienced
by the solver. A similar observation was reported in [2]. Clone always starts by using JW
heuristic and dynamically switches to VSIDS if hard conflicts are detected sufficiently often.

4. Experimental Results

In this section, we present experimental results that compare different versions of Clone
in order to analyze the contributions of different techniques. We focus on non-random
problems from the weighted and unweighted partial Max-SAT categories of the latest Max-
SAT evaluation [12].

The version of Clone that participated in the Max-SAT evaluation 2007 is a basic solver
that did not incorporate most techniques described in Section 3. It had no initial upper
bound computation and only used the JW heuristic for ordering variables. It also did not
have any technique for handling soft conflicts. In this experiment, we consider the following
versions of Clone.

1. The version of Clone that participated in the Max-SAT evaluation 2007 (S1).
2. Version 1 + initial upper bound computation using Maxwalksat (S2).
3. Version 2 + learning from soft conflicts and avoiding work repetition (S3).

4. Version 3 + a variable ordering heuristic that combines JW with VSIDS (S4).

10



Family Total Solved problems (median running time (s))

S1 |S2 1S3 [S4 |S5
atction paths 88[88 (2.65) |38 (2.23) |88 (2.01) |88 (1.98) |88 (1.16)
atction regions 84[84 (7.97) |84 (6.47) |84 (5.70) |84 (5.83) |84 (0.24)
auction scheduling| 84|77 (19.89)[77 (18.95)78 (15.09)|78 (15.09) |84 (2.92)
pseudo factor 186/186 (2.26)[186 (1.9) |186 (1.81)[186 (1.76) |186 (0.086)
pseudo miplib 16/5 (0.62) |5 (0.36) |5 (0.36) |5 (0.36) |5 (0.10)
qcp 25/0 () 0() 23 (11.87)[24 (12.28)[20 (0.36)
planning 7171 (7.94) |71 (7.45) |71 (6.93) |71 (6.39) |71 (0.051)
spot5 dir 216 (0.83) |6 (0.5) |6 (0.6) |6 (0.55) |3 (0.49)
spoth log 21[6 (1.19) |6 (0.78) |6 (0.69) |6 (0.67) |4 (2.93)
Total 596|523 523 547 548 545

Table 1: The number of solved weighted partial Max-SAT problems from the Max-SAT
evaluation 2007. The median running time (on solved problems) are shown in parentheses.

Family Total Solved problems (median running time (s))

S1 \52 S3 |S4 S5
maxclique random 06[81 (11.72)[80 (12.29)[81 (9.40) |30 (8.98) |96 (0.12)
maxclique structured 62(17 (16.70)(19 (43.26)(18 (56.44) (17 (14.67)(36 (3.76)
maxone 3sat 80[54 (58.83)[50 (44.68)[62 (39.06) |59 (40.03)[80 (4.21)
maxone structured 60(31 (17.14)|31 (16.14)[37 (20.17) |36 (19.65)|60 (2.87)
pseudo garden 7/5 (0.11) [5(0.1) |5 (0.1) 5(0.1) |5 (0.088)
pseudo logic-synthesis 1710 (-) 1 (265.90)|1 (1072.98)|1 (905.87)|2 (177.03)
pseudo primes-dimacs-cnf| 148|104 (3.21)|106 (2.11)|103 (2.06) [103 (2.01)|107 (0.030)
pseudo routing 155 (4.72) |5 (5.51) |5 (6.794) |7 (4.22) |14 (37.39)
maxcsp dense-loose 20(1 (776.41)(1 (622.10)(1 (723.32) |1 (568.73)(20 (0.18)
maxcsp dense-tight 20[20 (19.84)[20 (10.18)[20 (10.67) |20 (10.59)[20 (5.01)
maxcsp sparse-loose 20(14 (18.70)(16 (21.68)[15 (16.39) |17 (23.14)|20 (0.027)
maxcsp sparse-tight 20(20 (6.97) |20 (4.31) (20 (4.47) 0 (4.57) |20 (0.017)
wqueens 714 (1.56) |4 (1.93) |5(1.72) [5(1.69) |7 (0.18)
Total | 572[356 1367 1373 1371 1487 \

Table 2: The number of solved partial Max-SAT problems from the Max-SAT evaluation
2007. The median running time (on solved problems) are shown in parentheses.

In all experiments, Clone relaxes every Max-SAT problem until its treewidth is less than or
equal to 8, which we found to be empirically optimal on the large set of problems.

In what follows, we also report the performance of MiniMaxSAT (S5) on the considered
set of problems as a point of reference. MiniMaxSAT is one of the most successful solvers
in the evaluation. It outperformed others in the weighted and unweighted partial Max-
SAT categories. All experiments were run on two Intel Pentium 4 machines, each with
3.79GHz and 4GB of RAM. The time-out is 1,200 seconds per problem.
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Figure 6: (a) Running time profile of all solvers on weighted partial Max-SAT problems
and (b) on partial Max-SAT problems.

Tables 1 and 2 show the performance of the solvers on the weighted partial Max-SAT and
partial Max-SAT categories, respectively. In each of the five rightmost columns, the number
of solved problems are shown, with the median running time in parentheses. Figure 6
shows the performance profiles of all solvers on these two categories of problem. The results
from both tables and the plots confirm that the additional techniques utilized by Clone
considerably boost the solver’s performance. In the weighted partial Max-SAT category,
although using a local search solver did not allow Clone to solve more problems, it tends
to reduce the running time on these problems, as indicated by lower median running time.
Soft conflict handling technique and the new ordering heuristic, on the other hand, are very
effective, allowing 25 more problems to be solved by Clone.

The main difference in performance of different versions of Clone lies in the QCP family.
A closer look at this set of problems reveals something interesting. Let the term soft weight
refer to the weight of a soft clause. Each problem in the QCP family contains a set of
hard clauses and a set of soft clauses. There are only two small, distinct soft weights
in each QCP problem. For most problems, it turns out that the local search algorithm
used by Clone is able to find good upper bounds. As a result, most soft clauses turn
into hard clauses, rendering the Max-SAT problem very similar to a normal SAT problem.
When Clone solves this type of problem, it runs into many hard conflicts and performs
non-chronological backtracking often. As a result, it benefited significantly from learning
upon soft conflicts and from the technique for avoiding work repetition. The use of VSIDS
heuristic also lowered the running time and allowed one additional problem to be solved.
Notice that a good initial upper bound alone is not sufficient to allow Clone to solve problems
in this family. It is interesting to note that SAT4Jmaxsat [14], which utilizes a SAT-based
approach, performs relatively well on this family in the Max-SAT evaluation (only second

to MiniMaxSAT) [41].

Overall, even though the best version of Clone solves 3 more problems than Mini-
MaxSAT, the running time of Clone tends to be larger than that of MiniMaxSAT. Note
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that, because of the modular structure of our system, overhead incurred due to file I/O is
significant for easy problems.

In the partial Max-SAT category, the same trend, though more limited, can be seen
in the performance of Clone. Clone with soft conflict handling and new ordering heuristic
solves 15 problems more than the Max-SAT evaluation version, while the version without
the new ordering heuristic solves 17 problems more than the base version. The improvement
scatters throughout many problem families. In this category, however, even the best version
of Clone still performs considerably worse than MiniMaxSAT. We expected Clone to perform
relatively poorly on problems in which soft clauses are unweighted. The reason for this is
because Clone is yet to incorporate any technique that takes advantage of this additional
information (that all soft clauses have the same weight).

5. Further Analysis of Results

In this section, we performed further analysis on the results presented in the previous
section in order to understand why Clone performed well or poorly on some problems. The
technique used to compute bounds in Clone makes the solver sensitive to the treewidth
of the problem. In particular, problems with high treewidth are likely to require many
variables to be split, while problems with low treewidth may require none or only a few
split variables. A large number of split variables has two adverse effects on Clone. First,
it makes the size of Clone’s search space large, because Clone searches in the space of split
variables’ assignments. Second, a large number of split variables means that the relaxed
problem could be very different from the original problem. Hence, bounds computed from
the compiled formula tend to be rather loose and, thus, contribute little to pruning.

To quantify this, we measured the treewidths of all problems used in our experiments.
Since computing the treewidth of a graph is intractable in general, we present here only
an upper bound of the treewidth of each problem. This upper bound is computed using
the min-fill and min-size heuristics [42, 43]. In our future discussion, we will use the term
computed treewidth to refer to this treewidth upper bound. Tables 3 and 4 report the
computed treewidth information of all problem families. The first column in each table is
the family name. The second column is the average computed treewidth of the problems in
the family. The remaining columns, which are labeled with versions of Clone, contain the
average computed treewidths of the problems that each solver could solve in the family.

In almost all families, all versions of Clone found the problems with low treewidths
easier to solve. This is reflected by the fact that the average treewidth of solved problems
are (much) smaller than the average treewidth of all problems in each family. For example,
the average treewidth of the family “pseudo miplib” is 183, while the average treewidth of
those solved by Clone is only 13. Similar patterns can also be found in families “spot5 dir”,
“spotb log”, “maxclique structured”, “pseudo garden”, and “wqueens”. On the other end,
families with sufficiently low treewidths tend to be solved almost completely or completely
by Clone. Examples of such families are “auction paths”, “pseudo factor”, “maxcsp dense-
tight”, “maxcsp sparse-tight”, or even “maxcsp sparse-loose”. Notice that Clone was able
to solve some problems with high treewidths in some families. Such results are possible,
as other factors, such as problem size and weights, need to be considered carefully when
comparing problems with different structures.
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Family Avg Avg solved TW
TW | S1 | S2 [ S3 ] 54
auction paths 39 39 39 39 | 39
auction regions 109 | 109 | 109 | 109 | 109
auction scheduling | 98 95 95 95 | 95
pseudo factor 38 38 38 38 | 38
pseudo miplib 186 13 13 13 | 13
qcp 362 | N/A | N/A | 351 | 364
planning 136 | 136 | 136 | 136 | 136
spotb dir 77 16 16 16 | 16
spoth log 79 16 16 16 | 16

Table 3: Treewidth information of weighted partial Max-SAT problems solved by Clone.
All treewidths reported are upper bounds of actual treewidths.

Family Avg Avg solved TW
TW | S1 [ S2]S3 ] sS4
maxclique random 126 | 131 | 132 | 132 | 132
maxclique structured 329 | 132 | 189 | 180 | 121
maxone 3sat 84 87 86 | 86 | 86
maxone structured 69 51 51 | 59 | 58
pseudo garden 59 11 11 | 11 | 11
pseudo logic-synthesis 566 | N/A | 255 | 255 | 255
pseudo primes-dimacs-cnf | 141 | 101 | 100 | 101 | 100
pseudo routing 166 | 105 | 105 | 105 | 138
maxcsp dense-loose 62 49 49 | 49 | 49
maxcsp dense-tight 30 30 30 | 30 | 30
maxcsp sparse-loose 45 42 43 | 43 | 44
maxcsp sparse-tight 27 27 27 | 27 | 27
wqueens 131 68 68 | 86 | 86

Table 4: Treewidth information of partial Max-SAT problems solved by Clone. All
treewidths reported are upper bounds of actual treewidths.

Prior to this experiment, we did not know whether MiniMaxSAT was sensitive to prob-
lem structure or not. We expected MiniMaxSAT, however, to be less sensitive (if at all) to
the treewidths of the problems. Nevertheless, for most problem families, similar treewidth
pattern can be found in problems solved by MiniMaxSAT. That is, the average treewidths
of solved problems are smaller than the average treewidths of the family.* Nevertheless,
when we took a close look at the performance of MiniMaxSAT on some problems, we found
evidence to the contrary. For example, consider Table 5, in which the running time (in

4 In fact, MiniMaxSAT solved many families completely. Hence, the average treewidth of solved problems
is the same as the family’s average treewidth on each of these families.
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Problem Vars| Cls |Computed Running time (s)
TW SL [ S2 [ S3 ] S4 [S5

29.wesp.dir 139 | 711 28 0.49 | 0.82 | 0.82 | 0.79 |T/O
404.wcsp.dir 187 |1066 23 4.89 | 5.26 | 5.77 | 4.87 |T/O
404.wcsp.log 129 (1037 23 24.4124.49|23.30|18.52|T/O
503.wesp.dir 317 | 992 12 29.84130.32(33.65| 4.93 |T/O
MANN_a27.clq 378 11080 26 10.07(10.49 {11.80(12.04 |T/O
normalized-ssa7552-158.opb.msat {2726 |6798 16 8.656 |7.402|14.09|9.044 |T/O

Table 5: Running time of all solvers on some weighted and unweighted partial Max-SAT
problems with low treewidths.

seconds) of each solver on selected problems are shown, along with the computed treewidth
of each problem. All versions of Clone were able to solve these problems relatively easily,
because of the low treewidths. However, MiniMaxSAT could not solve any of them within
the time-out limit.

Next, in Tables 6 and 7, we report the average problem size and the average percentages
of different clause types in each family of the weighted and unweighted partial Max-SAT
categories from the evaluation. We categorize clauses into the following categories:

1. Hard clauses. These clauses are mandatory, according to the problem description.
2. Unit soft clauses. These clauses represents weighted constraints imposed on literals.

3. Non-unit soft clauses. These clauses are the remaining clauses in the problem.

Family Average Average clause percentage
Vars | Cls Hard | Unit soft | Non-unit soft
auction paths 121 1,497 | 90.74 9.26 0.00
auction regions 167 9,409 | 97.98 2.02 0.00
auction scheduling | 160 5,760 | 97.10 2.90 0.00
pseudo factor 1,083 | 3,060 | 99.69 0.31 0.00
pseudo miplib 7,948 | 31,358 | 96.03 3.97 0.00
qcp 576 6,575 | 34.42 0.34 65.22
planning 658 18,442 | 76.37 2.75 20.88
spoth dir 924 10,155 | 91.71 8.29 0.00
spotb log 553 9,970 | 91.02 5.04 3.93

Table 6: Average problem size and percentages of clause types in each family of the weighted
partial Max-SAT problems from the evaluation.

These results reveal one interesting fact: most problems in these categories are over-
whelmed with hard clauses. In 7 out of 9 families in the weighted partial Max-SAT category,
more than 90 percent of the clauses are hard on average. The same pattern occurs in 7
out of 13 families of the partial Max-SAT category. This observation partially explains why
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Family Average Average clause percentage
Vars | Cls Hard | Unit soft | Non-unit soft
maxclique random 150 5,738 | 95.33 4.67 0.00
maxclique structured 484 50,093 | 94.23 5.77 0.00
maxone Jsat 150 575 72.80 27.20 0.00
maxone structured 504 2,624 | 80.87 19.13 0.00
pseudo garden 1,486 | 2,972 | 50.00 50.00 0.00
pseudo logic-synthesis 1,948 | 3,413 | 49.34 50.66 0.00
pseudo primes-dimacs-cnf | 1,252 | 10,785 | 73.65 26.36 0.00
pseudo routing 2,502 | 7,244 | 92.57 7.43 0.00
maxcsp dense-loose 124 941 37.25 0.00 62.75
maxcsp dense-tight 68 817 23.05 0.00 76.95
maxcsp sparse-loose 159 993 45.90 0.00 54.10
maxcsp sparse-tight 75 778 26.95 0.00 73.05
wqueens 160 2,600 | 93.30 6.70 0.00

Table 7: Average problem size and percentages of clause types in each family of the partial
Max-SAT problems from the Max-SAT evaluation.

solvers that heavily employ SAT techniques, such as MiniMaxSAT, and PMS, performed
well in these categories of the evaluation.” Moreover, for many families in both categories,
there are many soft unit clauses. The presence of many unit soft clauses should benefit
those Max-SAT solvers that based their bound computation heavily on unit propagation,
because they give more opportunities for unit propagation to be applied initially (which
could substantially contribute to bounds computed later). Examples of such solvers are
MiniMaxSAT [2], PMS [7], W-MaxSatz [41], and LB-SAT [3]. Note that unit propagation
does not directly affect the bounds computed by Clone. Clone only uses unit propagation

as a mechanism for deriving forced assignments (see Section 3.2).

6. Effects of Other Properties on Performance

The results in the previous section guided us to undergo further investigations on how
treewidths, clause types, and other aspects of Max-SAT problems affect solvers’ perfor-
mance. In the following experiments, we consider weighted partial Max-SAT problems with
relatively small treewidths. One of the main goals of these experiments is to confirm Mini-
MaxSAT’s insensitivity to problem structure. All problems used in the following experiment
were converted from the Most Probable Explanation (MPE) query on randomly generated
Bayesian networks [27].° The method used for generating these networks is described in the
Appendix.

In this experiment, we considered the version of Clone with all techniques included (S4)
and two other available Max-SAT solvers: MiniMaxSAT, and Toolbar [44], which was one

5 MiniMaxSAT was the best solver in both of these categories, while PMS, which is an unweighted partial
Max-SAT solver, was the third-best solver in the unweighted partial Max-SAT category.

6 The problems and generater used in this experiment are available at
http://www.cs.ucla.edu/~thammakn/mpe-maxsat-benchmarks.
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of the best-performing solvers in the 2006 evaluation [11]. Note that both MiniMaxSAT
and Toolbar utilize bound computation approaches that are different from the one used by
Clone. This experiment was performed on a machine with 2.4 GHz processor and 4GB of
RAM. The time-out limit was set to 1800 seconds per problem. We ran MiniMaxSAT with
-F=2 option and Toolbar with -f2 (WCNF) option. We use their default settings for other
options.

Family Average Solved problems (median running time (s))
Var \ Cls \ TW | Clone \ MiniMaxSAT \ Toolbar
random-net-30-2 | 83.4 | 5843 | 10.4 | 10(2.78) | 9(59.75) 1(1293.41)

random-net-30-3 | 83.5 | 1264.8 | 13.3 | 10(214.69) | 6(207.04)
random-net-30-4 | 82.6 | 2516.4 | 16.7 | 7(167.40) 10(415.27)
random-net-30-5 | 84.7 | 4564.9 | 19.7 | 4(326.89) 5(165.17)
random-net-40-2 | 112.2 | 807.8 | 10.4 | 10(35.50) | 2(420.68)

)

)

o

o

random-net-40-3 | 111.5 | 1681.3 | 13.4 | 5(434.81) | 0(-) 0(-
random-net-40-4 | 114.5 | 4006.5 | 17.3 | 0(-) 0(-) 0(-
random-net-50-2 | 136.9 | 955 | 10.5 | 10(36.69) | 0(-) 0(
random-net-50-3 | 144.9 | 2437.2 | 14.2 | 0(-) 0(-) 0(-
random-net-60-1 | 153 | 528.1 | 7 | 10(1.64) | 10(2.55)

random-net-60-2 | 168.6 | 1179.4 | 10.6 | 5(44.76) | 0() 0
random-net-60-3 | 169.9 | 2516.7 | 14 | 0(-) 0(-) 0(-

o

random-net-80-1 | 205.9 | 721.2 7 |10(1.96) 10(29.01)

random-net-140-1 | 364.6 | 1278.9 7 10(2.70) 1(1478.33)
)

Table 8: Performance of solvers on MPE problems with low treewidths.

e I e e e e N R
e e g N I R g I I g g I D g N | g

)

random-net-80-2 | 225.1 | 1577.1 | 10.9 | 1(13.12) 0(-) 0(-
random-net-100-1 | 247.8 | 860.7 7 110(2.12) 8(433.13) 0(-
random-net-100-2 | 284.6 | 2049.8 | 10.9 | 0(-) 00) 0
random-net-120-1 | 307.3 | 1076.2 | 7 | 10(2.34) | 1(14.53) 0
(
(

random-net-160-1 | 420 | 1464.2 | 7 | 10(2.93) 0

Table 8 shows the performance of the solvers on some representative families. The name
of each family has the format “random-net-N-C”, where N is the number of variables in the
Bayesian network, and C'is the maximum number of parents of any node in the network (the
higher this value, the higher the treewidth). In this table, the number of problems solved
by each solver in each family is shown, along with some information about problems in the
family. The second and third columns in this table show the average number of variables
and clauses in each family. The fourth column contains the average computed treewidth.
Variations in problem sizes and treewidths are very low in each problem family, because
they are generated from Bayesian networks with very similar structures. All problems in
Table 8 are considered small Max-SAT problems and have very small treewidths. The
largest computed treewidth among all problems in this set is 21.7 Of all 190 problems

7 When C' = 1, the graph of the Bayesian network has treewidth 1. However, due to our conversion
method, the treewidth of the constraint graph of the corresponding Max-SAT problem is larger.
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shown in Table 8, Clone solved 122 problems, while MiniMaxSAT solved only 62 problems,
and Toolbar solved only 1 problem.

This result confirmed our hypothesis that MiniMaxSAT (and Toolbar in this case) is
not necessarily sensitive to the treewidth of the problem. For problems with low treewidths,
Clone only needs to split a small number of variables, resulting in very small search spaces.
Other solvers, on the other hand, were not aware of this aspect of the problems and ended
up searching in difficult search spaces.

In this experiment, we also observed that the Max-SAT problems that were converted
from the MPE problems tend to have a very large number of distinct soft weights. This is
because weights are translated from probabilities in the Bayesian network. Moreover, the
majority (> 75%) of clauses are non-unit soft clauses. According to the conversion approach
used here, the percentage of non-unit soft clauses increases as the maximum number of
parents increases. Table 9 reports the average number of distinct soft weights and average
clause percentages of problems in each family. The second column reports the number
of problems solved by MiniMaxSAT for the reader’s convenience. Based on the results
in Table 8, MiniMaxSAT seems to perform well on families “random-net-30-C”, which
contain relatively small number of variables. However, for other families, MiniMaxSAT
only solved problems in those families with relatively small number of distinct soft weights
and small percentage of non-unit soft clauses (e.g. “random-net-40-2”, “random-net-60-17,
“random-net-80-1”, and “random-net-100-1"). Even for the “random-net-30-C” groups, the
performance of MiniMaxSAT is worse on “random-net-30-5”, when the number of distinct
soft weights and the percentage of non-unit soft clauses are highest.

At this point, we hypothesized that either the large number of distinct soft weights or
the high percentage of non-unit soft clauses are responsible for the poor performance of
MiniMaxSAT and Toolbar. In order to test this hypothesis, we conducted the next set of
experiments.

6.1 Number of Distinct Soft Weights

The next experiment was designed for studying the effects of the number of distinct soft
weights on the performance of Max-SAT solvers. In this experiment, we selected a weighted
partial Max-SAT problem from the family “random-net-40-5” and varied the number of
distinct soft weights without altering its clause structure. The selected problem contains
85 variables and 1076 clauses. It has a computed treewidth of 13, > 800 distinct soft
weights, and contain 4.83% hard clauses, 1.21% unit soft clauses, and 93.96% non-unit soft
clauses.® These properties, except the number of distinct soft weights, are kept constant
in this experiment. In particular, every hard clause in the problem is kept hard. Then,
for a given number of distinct soft weights N, we randomly select N values from the set
{1,2,...,1500} to be used as soft weights. Then, each soft clause is randomly assigned a
weight from the set of selected soft weights with uniform probability. For each fixed value
of N, we generated 50 problems to be used in our experiment, which will focus on how
each solver reacts to the varied number of distinct weights. The time-out limit was set to
1200 seconds in this experiment, which was performed on a 3.79 GHz machine with 4GB
of memory.

8 We selected this problem because of its manageable treewidth and large number of soft clauses.
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Family MMS. Average
solved | # dsw | % hard | % unit soft | % non-unit soft

random-net-30-2 | 9 509.9 | 4.88 2.88 92.22
random-net-30-3 | 6 1024.3 | 2.37 1.49 96.15
random-net-30-4 | 10 1760.8 | 1.24 0.81 97.97
random-net-30-5 | 5 2494.2 | 0.78 0.48 98.75
random-net-40-2 | 2 683.4 4.71 2.68 92.62
random-net-40-3 | 0 1290.3 | 2.39 1.65 95.99
random-net-40-4 | 0 2399.8 | 1 0.51 98.5

random-net-50-2 | 0 797.1 4.83 2.72 92.44
random-net-50-3 | 0 1729.4 | 2.01 1.25 96.73
random-net-60-1 | 10 446.2 | 9.75 5.83 84.4

random-net-60-2 | 0 958.9 4.79 2.27 92.95
random-net-60-3 | 0 1760.9 | 2.33 1.33 96.34
random-net-80-1 | 10 597.8 | 9.49 5.49 85.05
random-net-80-2 | 0 1221 4.81 2.33 92.86
random-net-100-1 | 8 692.1 9.69 6.11 84.19
random-net-100-2 | 0 1495.3 | 4.68 2.03 93.3

random-net-120-1 | 1 843.9 | 9.51 5.27 85.23
random-net-140-1 | 1 983.7 | 9.46 4.93 85.62
random-net-160-1 | 0 1098.8 | 9.54 4.37 86.07

Table 9: Additional information on MPE problem families. Shown here are (i) the average
number of distinct soft weights (ii) the average percentage of hard clauses (iii) the average
percentage of unit soft clauses and (iv) the average number of non-unit soft clauses.

# soft | Total | Solved problems (median running time (s))
weights Clone \ MiniMaxSAT \ Toolbar
1 50 | 50 (88.09) | 0 (-) 0()
2 50 (47 71) | 24 (47.10) 2 (6.94)
10 50 | 50 (15.95) | 50 (21.76) 4 (98.63)
50 50 | 50 (17.10) | 50 (26.32) 4 (164.63)
100 50 | 50 (16.06) | 50 (17.24) 9 (130.19)
200 50 | 50 (16.28) | 50 (18.69) 0 (176.66)
500 50 | 50 (16.65) | 50 (22.80) 0 (186.42)

Table 10: Performance of solvers on problems with varied numbers of distinct soft weight.

The result of this experiment are shown in Table 10. This result seems to indicate that
Clone, MiniMaxSAT, and Toolbar find the problems hardest when the number of distinct
soft weights is small. Both solvers tend to solve more problems and have lower running
time as the number of distinct soft weights increases. Our experiments with several other
base problems also resulted in the same trend.
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Our explanation for this behavior is the fact that a problem with a large number of
distinct weights tends to have only small portion of clauses that are weighted heavily. This
allows the JW heuristic (in all of the above solvers) to perform really well, because it takes
clause weights into consideration. If only a small portion of clauses have large weights,
JW will tend to select variables appearing in these clauses first. This preference makes
subsequent bounds close to the actual optimal costs of the partial assignments, because
the remaining weights in the problem are relatively small; there is not much room for the
bounds to be inaccurate. This result suggests that the large number of distinct soft weights
may not be the reason why MiniMaxSAT and Toolbar performed poorly on problems in
Table 8.

Note that the results and analysis presented here are only with respect to specific al-
gorithms and do not contradict the fact that weighted Max-SAT is in a higher complexity
class than unweighted Max-SAT [45, 46].

6.2 Percentage of Non-Unit Soft Clauses

The next experiment investigates another potential factor—the percentage of non-unit soft
clauses. In this experiment, we used a problem from the weighted partial Max-SAT cate-
gory of the evaluation as the base problem (WCSP\SPOT5\LOG\29.wcsp.log.wenf). This
problem contains 101 variables and 692 clauses. It also contains many hard clauses with
2-4 literals and no unit hard clause. We then varied the amount of non-unit soft clauses
in the problem by randomly selecting a certain number of hard clauses and turning them
into soft clauses.” The number of distinct soft weights was fixed at 2 in all generated prob-
lems, because we wanted the problems to be relatively difficult (based on the results of the
previous experiment). The percentage of unit soft clauses is also fixed at 0.09%.'" In this
problem, the size of non-unit soft clauses ranges from 2 to 4. For each amount of non-unit
soft clauses, we generated 50 problem instances.

Table 11 reports the results of this experiment. The first column indicates the percentage
of non-unit soft clauses in each family. The number of problems solved by each solver,
along with the median running time on solved problems, is shown in the last three columns.
Let P denotes the percentage of non-unit soft clauses. The performance of Clone and
Toolbar clearly decreases as P increases. MiniMaxSAT, on the other hand, has a more
irregular behavior. When P is low (< 30%), problem hardness seems to increase with P.
However, MiniMaxSAT suddenly performs quite well once the value of P reaches 40%. Then,
after that point on, MiniMaxSAT performs more poorly as P increases. When P = 90%,
Clone solved all problems with median running time of 104 seconds, MiniMaxSAT solved
39 problems with median running time 478 seconds, and Toolbar solved 4 problems with
median running time of 935 seconds. In any case, these results seem to be consistent with
the behaviors of MiniMaxSAT and Toolbar reported in Table 8. All problems used in that
experiment have high percentage of non-unit soft clauses (70-90%), resulting in relatively
poor performance of both solvers.

9 If we picked a base problem with a low percentage of hard clauses, we would need to increase the number
of hard clauses instead. In this case, the resulting problems might not contain any solution.
10 We simply kept the unit soft clauses in the original problem. Since there was no unit hard clause in the
base problem, our problem generation could not produce more unit soft clauses.
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% non-unit | Total | Solved instances (median running time (s))

soft Clone MiniMaxSAT Toolbar

15 50 | 50 (2.06) | 50 (125.80) | 50 (244.88)
20 50 | 50 (2.30) (162.44) | 50 (255.11)
30 50 | 50 (3.40) 9 (246.89) 50 (349.19)
40 50 | 50 (5.20) 0 (8.55) 50 (437.61)
60 50 | 50 (16.93) 0 (37.17) 32 (825.11)
70 50 | 50 (28.99) | 50 (85.78) 14(918.94)
80 50 | 50 (51.81) (186.27) | 3(775.16)
85 50 | 50 (57.37) | 49 (203.58) | 3(1008.88)
90 50 | 50 (104.40) | 39 (478.07) | 4 (934.59)

Performance of Clone, MiniMaxSAT, and Toolbar on problems with varied

amount of non-unit soft clauses.

We believe the reason that Clone performs relatively well when P is low is because the
bounds produced by Clone in these problems tend to be tight. The source of inaccuracy in
Clone’s bound computation comes from the fact that, in a relaxed problem, constraints can
be satisfied too easily (by the clone variables, each of which appears in only one clause).
This directly results in bound inaccuracy whenever such constraints are soft. When these
constraints are hard, however, this situation should not have as much impact on bound in-
accuracy. This is because every hard constraint has to be satisfied in any solution. However,
it may cause variables mentioned in hard constraints to appear more flexible than they ac-
tually are. This may or may not affect the values of the bound computed. Therefore, when
most clauses in a Max-SAT problem are hard, we may expect Clone to perform relatively
better. Many SAT techniques used in Clone, such as unit propagation, should also become
most effective whenever P is low, as there are more hard clauses.

Toolbar utilizes local consistency algorithms to make costs more explicit. These explicit
costs eventually become bounds used during the search. Most local consistency algorithms
used are applicable only to very short clauses. The presence of hard clauses (which have
large weights) should have a positive impact on Toolbar’s performance, even though it
does not directly utilize unit propagation. Hard clauses increase the values of the bounds
significantly when violated and allow the solver to prune more often, thus reducing the
size of the search space that Toolbar needs to explore. The performance of Toolbar in this
experiment reflects the fact that its bound computation method is most effective when there
are fewer non-unit soft clauses.

In the case of MiniMaxSAT, the solver’s behavior is less straightforward to analyze.
Again, let P denotes the percentage of non-unit soft clauses in a problem. Intuitively,
it should be the case that as the number of non-unit soft clauses increases, it should be
more difficult for MiniMaxSAT to derive tight bounds. This is because problems with high
P reduce MiniMaxSAT’s chance of applying unit propagation in its bound computation
(see [2]). More assignments are then needed before unit propagation can be applied, which
means that the solver will spend more time deeper in the search tree. However, this does not
explain the sudden increase in performance when P = 40%. We hypothesize that, for this
particular base problem, when P reaches 40%, the underlying SAT problem (if we consider
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only the hard clauses) suddenly becomes easy. We noticed that the number of conflicts
reported by MiniMaxSAT dropped sharply (approximately by an order of magnitude) when
the value of P went from 30% to 40%. In our additional experiments with different base
problems, we found that all solvers exhibited the same trend (i.e. problems with more
non-unit soft clauses appeared harder) and that the performance of MiniMaxSAT degraded
consistently as the percentage of non-unit soft clauses increased.

This above analysis of MiniMaxSAT also explains why, in Table 8, MiniMaxSAT tends
to perform well on networks in which each node as a small number of parents. For such

problems, most clauses are either unit or binary, allowing the lower bound computation in
MiniMaxSAT to be effective.

6.3 Discussions

In this section, we have shown some key results that allow us to better understand how
various properties of weighted Max-SAT problems can affect their difficulty. First, we
showed that other state-of-the-art Max-SAT solvers (MiniMaxSAT and Toolbar) are not
necessarily sensitive to the treewidths of the problems. We gave examples of problem
families with very low treewidths that neither solvers could solve. Second, we showed
empirically how the number of distinct soft weights affect problem hardness as perceived
by the considered Max-SAT solvers. Lastly, our study on how the percentage of non-unit
soft clauses affect solvers’ performance revealed that a Max-SAT problem could be made
harder (for the solvers considered) by increasing the percentage of non-unit soft clauses. We
believe that most of the analysis presented here should generalize to other state-of-the-art
solvers that employ similar core techniques as well.

All these three properties (treewidth, number of distinct soft weights, and % non-unit
soft clauses) of Max-SAT problems could have significant impacts on the difficulty of prob-
lems. Hence, they could provide new perspectives for evaluating the difficulty and diversity
of weighted Max-SAT problems.

7. Conclusions

In this paper, we described our weighted Max-SAT solver, Clone, which participated in the
Max-SAT evaluation 2007. We performed careful analysis on the performance of our solvers
in the presence of new techniques on the problems used in the evaluation. Our analysis led
us to investigate how certain properties of Max-SAT problems affect solvers’ performance.
Our study has shown that, unlike Clone, other state-of-the-art solvers do not take advantage
of treewidth information. Moreover, we have identified two other properties that could be
used to adjust the difficulty level of weighted Max-SAT problems: number of distinct soft
weights and percentage of non-unit soft clauses.

A. Bayesian Networks and MPE

In this section, we give a formal definition of Bayesian networks and the most probable
explanation query, which was referred to in Section 6. The following definitions are taken
from [47].
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Definition A.1. An instantiation of a set of variables is a function that assigns a value to
each variable in the set. Two instantiations are compatible if they agree on the assignment
of all the variables that they have in common.

Definition A.2. A conditional probability table (CPT) T for a variable V' with a set of
parent variables P is a function that maps each instantiation of V U P to a real value in
[0,1] such that for any instantiation p of P, > T({v} Up) = 1 where v ranges over the
values of V.

Definition A.3. A Bayesian network is a pair (G,P) where G is a directed acyclic graph
whose nodes are variables and P is a set which contains the CPT of each variable in G,
where the parents of each CPT correspond to the parents of the corresponding variable in
the G.

Note that, in contrast to a propositional variable, a Bayesian network variable does
not need to be binary. Given a Bayesian network and an instantiation of a subset of the
network variables (the evidence), the most probable explanation (MPE) query asks for the
(not necessarily unique) complete variable instantiation with the highest probability that
is compatible with the evidence. We used the approach proposed in [47] to convert each
MPE problem into a weighted partial Max-SAT problem. According to this approach,
for each of the N variables V; in the Bayesian network (network variables) with domain
D = {di,ds, ...,d,}, we have Boolean variables v;;, for 1 <i < N,1 < j < n. v;; stands for
whether V; is assigned the value d;. We then need hard clauses to ensure that every network
variable is assigned exactly one value from its domain in any complete instantiation. The
evidence (a partial assignment) is asserted as another set of hard clauses. Probabilities
from the Bayesian network are translated into clause weights. In this approach, the optimal
weight in the resulting Max-SAT problem corresponds to the negative logarithm of the
maximum probability of any complete assignment.

B. Generation of Random Bayesian Networks, MPE Queries, and
Weighted Max-SAT Instances

In this section, we describe the method that we used for generating Bayesian networks
and MPE queries for the experiments in Section 6. As described earlier, each Bayesian
network consists of two major components: the network graph (DAG) and the conditional
probability tables (CPTs). The inputs of this process are the target number of network
variables and the maximum number of parents of each node. The network is generated
by first creating a node for each of network variables and ordering them arbitrarily. Each
node is then assigned a random number of parents between zero and the supplied maximum
number of parents with uniform probability. Once the number of parents of every node is
determined, each node’s parents are randomly chosen. To ensure that the graph remains
acyclic, the parents of a node are chosen randomly only from the set of nodes which precede
that given node in the ordering. After that, each network variable is given a random
domain size (the number of possible values the variable can take), which ranges uniformly
between 2-4. Finally, the CPT of each node is initialized with random probabilities and
then normalized appropriately. Once the Bayesian network is generated, each MPE query
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is obtained by asserting all the leaves variables with an random instantiation drawn from
their joint probability distribution.

These MPE queries are then converted into Max-SAT problems using the method de-
scribed in [47]. Max-SAT problems generated this way will have real-valued weights, because
clause weights come from (the negative logarithm of) real-valued probabilities. We need to
covert these values to integers in order to conform to the evaluation format [12]. To do so,
we simply multiply every weight in each problem by a large constant, while making sure
that the largest weight does not overflow an integer (23!). Then we round every weight
to the nearest integer. While some precisions are certainly lost in this conversion, in our
experiments, it did not change the solutions of the queries.
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