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Abstract

A recent and effective approach to probabilistic inference calls for reducing the
problem to one of weighted model counting (WMC) on a propositional knowledge
base. Specifically, the approach calls for encoding the probabilistic model, typically
a Bayesian network, as a propositional knowledge base in conjunctive normal form
(CNF) with weights associated to each model according to the network parameters.
Given this CNF, computing the probability of some evidence becomes a matter of
summing the weights of all CNF models consistent with the evidence. A number of
variations on this approach have appeared in the literature recently, that vary across
three orthogonal dimensions. The first dimension concerns the specific encoding
used to convert a Bayesian network into a CNF. The second dimensions relates
to whether weighted model counting is performed using a search algorithm on the
CNF, or by compiling the CNF into a structure that renders WMC a polytime
operation in the size of the compiled structure. The third dimension deals with the
specific properties of network parameters (local structure) which are captured in
the CNF encoding. In this paper, we discuss recent work in this area across the
above three dimensions, and demonstrate empirically its practical importance in
significantly expanding the reach of exact probabilistic inference. We restrict our
discussion to exact inference and model counting, even though other proposals have
been extended for approximate inference and approximate model counting.
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1 Introduction

Standard algorithms [4–8] for exact inference on Bayesian networks exploit
only topological structure and are known to be Θ(n2w), where n is the number
of network variables, and w is the treewidth of the network. That is, they are
both worst case and best case bounded exponentially by treewidth. In recent
years, the types of problems considered in probabilistic reasoning have often
yielded networks with large treewidths, calling into question the applicability
of exact inference methods, and shifting interest more towards approximate
inference algorithms. It has long been believed though that a network exhibit-
ing high treewidth may not necessarily be difficult for exact inference, if it also
exhibits a certain amount of local structure in the form of determinism [9] and
context–specific independence (CSI) [10]. A typical algorithm that can exploit
both topological and local structure is O(n2w). That is, only its worst case
is exponential in treewidth (e.g., when no local structure exists), but where
there is sufficient local structure, its performance can be significantly better.

A number of approaches have been proposed in the literature for exploiting
local structure, e.g., [11,12,10,13–15,1,16,9,17]. Our aim in this paper is to
survey and provide further results on a particular class of these approaches,
which works by reducing the problem of probabilistic inference into one of
weighted model counting (WMC) on a propositional knowledge base. In par-
ticular, the approach commences by encoding the Bayesian network into a
knowledge base in conjunctive normal form (CNF), and then assigns weights
to the CNF variables based on the network probabilities. These assignments
of weights to variables induce a weight for each CNF model, allowing one to
represent the probability of some evidence as the sum of weights for models
consistent with the evidence. A number of variations on this model counting
approach have appeared in the literature recently, and they vary across three
orthogonal dimensions. The first dimension concerns the specific encoding used
to convert a Bayesian network into a CNF. The second dimension relates to
whether WMC is performed using a search algorithm on the CNF [18,19,16],
or by compiling the CNF into a structure that renders WMC a polytime oper-
ation in the size of the compiled structure [15,20]. 1 The third dimension deals
with the specific properties of network parameters (local structure) which are
captured in the CNF encoding.

Probabilistic inference by WMC can be powerful for several reasons. First, the
encoding of Bayesian networks into logical knowledge bases presents oppor-
tunities to effectively reveal local structure in the form of determinism and

1 This does not escape the complexity of WMC since the compilation and size of
resulting structure can in the worst case be exponential in the treewidth of the
network.
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context–specific independence. Second, it provides a very natural framework
for exploiting the computational power of evidence [2]. Finally, it can lever-
age highly refined techniques for solving satisfiability, which form the basis for
both search and knowledge compilation approaches to WMC. Such techniques
are especially effective, as we shall see, on encodings of Bayesian networks that
contain large amounts of determinism. In recent years, these advantages have
lead to several breakthroughs in exact probabilistic inference that have chal-
lenged common perceptions of what exact inference can do. In this paper, we
present a survey of these works by placing them along the three dimensions
discussed earlier, and then demonstrate empirically their practical importance
in significantly expanding the reach of exact inference.

The remainder of this paper is organized as follows. In Section 2, we provide
background material. The paper then addresses each of the three orthogonal
dimensions that differentiate approaches that utilize WMC: encodings in Sec-
tion 3, search vs. knowledge compilation in Section 4, and local structure in
Section 5. We briefly discuss what happens to WMC techniques in the absence
of local structure in Section 6. The paper ends with conclusions in Section 7.

2 Probabilistic Inference by WMC

In this section, we review some fundamental concepts from probabilistic in-
ference, show one way to reduce probabilistic inference to WMC, and provide
some historical perspective.

2.1 Probabilistic inference

Within the area of probabilistic reasoning, one typically models a situation as
a joint distribution on a set of random variables and uses this distribution to
answer probabilistic queries. In this paper, all variables have finite domains.
Suppose that X is a set of variables. 2 An instantiation of X is an assignment
to each X ∈ X of some value in X’s domain. Evidence on X is similar but
need assign only some of the variables in X. A joint distribution over X is a
function Pr that maps each instantiation of X to a probability in [0, 1] such
that the sum of the probabilities is equal to 1. For example, suppose that we

2 We are using the standard notation: variables are denoted by upper–case letters
(A) and their values by lower–case letters (a). Sets of variables are denoted by
bold–face upper–case letters (A) and their instantiations are denoted by bold–face
lower–case letters (a). For a variable A with values false and true, we use ā to denote
A=false and a to denote A=true.

3



Table 1
A joint distribution over three variables.

A B C Pr

a1 b1 c1 0.001

a1 b1 c2 0.002

a1 b1 c3 0.007

a1 b2 c1 0.009

a1 b2 c2 0.018

a1 b2 c3 0.063

a2 b1 c1 0.0018

a2 b1 c2 0.0162

a2 b1 c3 0.162

a2 b2 c1 0.0072

a2 b2 c2 0.0648

a2 b2 c3 0.648

are dealing with variables X = {A,B,C}, where A and B have two values,
and C has three values. Then Table 1 depicts one possible joint distribution
on X.

An important query one might wish to answer with respect to the joint is the
probability of evidence e, denoted Pr(e). To answer this query, we first remove
rows from the joint that contradict e, and then sum the remaining probabil-
ities. For example, using Table 1 as the model, one computes Pr(a1, c2) by
summing the two consistent instantiations (second and fifth rows) for a result
of 0.02. Although the joint distribution contains the information necessary to
answer queries, its size is exponential in the number of variables. As a result,
there is a need to specify a joint compactly. One common class of model-
ing language is probabilistic graphical models, which include Markov networks
and Bayesian networks [21]. This paper will focus on the popular Bayesian
network, but much of the description applies to other modeling languages, in-
cluding Markov networks and ground instances of some first order probabilistic
models [22].

A Bayesian network represents a specific joint distribution and is a pair (G,P ),
where G is a directed–acyclic graph and P is a set of factors. The nodes in
G are the variables X in the joint, and the edges in G imply certain proba-
bilistic independence relationships among the variables. For each X ∈ X with
parents U, P contains a factor f , which is a function over instantiations of
U ∪ {X} such that f(u, x) = Pr(x | u). We refer to X and its parents as a
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A

B C

A Pr

a1 0.1

a2 0.9

A B Pr

a1 b1 0.1

a1 b2 0.9

a2 b1 0.2

a2 b2 0.8

A C Pr

a1 c1 0.1

a1 c2 0.2

a1 c3 0.7

a2 c1 0.01

a2 c2 0.09

a2 c3 0.9

Fig. 1. A small Bayesian network specifying the joint in Table 1.

network family. The semantics of Bayesian networks imply the following joint
distribution:

Pr(x1, x2, . . . , xk) =
∏
i

Pr(xi | ui) (1)

where ui is the instantiation of Xi’s parents as they appear in x1, x2, . . . , xk.
Figure 1 depicts a simple Bayesian network, which induces the joint distribu-
tion in Table 1.

A factor is simply a function and can be represented in various ways. Very
often, a factor is represented as a conditional probability table (CPT), sev-
eral of which are shown in Figure 1. In such cases, we refer to each table
entry Pr(x | u) as a network parameter. In addition to tables, other repre-
sentations of factors are also possible, including decision trees/graphs, noisy
or/and/min/max, and logical rules. In this paper, we deal only with CPTs,
although WMC techniques can also be very powerful in the context of other
representations.
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2.2 Probabilistic Inference as WMC

In this section, we provide an example that illustrates how computing the
probability of evidence for a particular Bayesian network can be reduced to
WMC. To generate an instance of the WMC problem, one needs to define a
logical theory ∆ and to assign a weight W (`) to each literal `. The weights
for the literals induce a weight for each model ω of ∆ as follows:

W (ω) =
∏
ω|=`

W (`)

Finally, computing WMC for ∆, which we shall denote WMC(∆), is comput-
ing the sum of the weights of all models of ∆:

WMC(∆) =
∑

ω|=∆

W (ω)

The reduction scheme described in this section is based on the one proposed in
[15]. Given a Bayesian network and evidence, the scheme constructs a weighted
knowledge base ∆, whose weighted model count corresponds to the probability
of evidence with respect to the network. An intuition for the scheme can be
attained by relating the models of ∆ to the rows of the joint distribution of the
network. In particular, the models will be in one–to–one correspondence with
the rows, and the variable weights will be assigned in such a way that each
model will have a weight equal to the probability of the corresponding row
in the joint. Weighted counting of the models is then equivalent to summing
all probabilities in the joint. The last step required to compute probability
of evidence is a way to exclude appropriate models from being counted. We
provide details of this reduction scheme next.

Consider again the Bayesian network N in Figure 1 and suppose that we
wish to compute the probability of evidence e = {a1, c2} with respect to this
network. To perform the reduction, we require five tasks.

Define logical variables: The first task is to define the variables that will
be used in the logic. For each value x of each network variable X, we define
an indicator variable λx in the CNF. For network N , we obtain the following
indicator variables:

Variable A: λa1 , λa2

Variable B: λb1 , λb2

Variable C: λc1 , λc2 , λc3
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Table 2
Variable instantiations for the network in Figure 1; definitions for the corresponding
models; weights without evidence; and the weights after incorporating evidence
e = a1, c2.

Network Sets these CNF vars to Weight Weight

Instantiation true and all others to false without e with e

a1b1c1 λa1 λb1 λc1 θa1 θb1|a1
θc1|a1

0.1 · 0.1 · 0.10 = 0.001 0

a1b1c2 λa1 λb1 λc2 θa1 θb1|a1
θc2|a1

0.1 · 0.1 · 0.20 = 0.002 0.002

a1b1c3 λa1 λb1 λc3 θa1 θb1|a1
θc3|a1

0.1 · 0.1 · 0.70 = 0.007 0

a1b2c1 λa1 λb2 λc1 θa1 θb2|a1
θc1|a1

0.1 · 0.9 · 0.10 = 0.009 0

a1b2c2 λa1 λb2 λc2 θa1 θb2|a1
θc2|a1

0.1 · 0.9 · 0.20 = 0.018 0.018

a1b2c3 λa1 λb2 λc3 θa1 θb2|a1
θc3|a1

0.1 · 0.9 · 0.70 = 0.063 0

a2b1c1 λa2 λb1 λc1 θa2 θb1|a2
θc1|a2

0.9 · 0.2 · 0.01 = 0.0018 0

a2b1c2 λa2 λb1 λc2 θa2 θb1|a2
θc2|a2

0.9 · 0.2 · 0.09 = 0.0162 0

a2b1c3 λa2 λb1 λc3 θa2 θb1|a2
θc3|a2

0.9 · 0.2 · 0.90 = 0.162 0

a2b2c1 λa2 λb2 λc1 θa2 θb2|a2
θc1|a2

0.9 · 0.8 · 0.01 = 0.0072 0

a2b2c2 λa2 λb2 λc2 θa2 θb2|a2
θc2|a2

0.9 · 0.8 · 0.09 = 0.0648 0

a2b2c3 λa2 λb2 λc3 θa2 θb2|a2
θc3|a2

0.9 · 0.8 · 0.90 = 0.648 0

In addition, for each parameter Pr(x|u) in the Bayesian network, we define a
corresponding parameter variable θx|u in the CNF. For network N , this step
yields the following parameter variables:

CPT 1: θa1 , θa2

CPT 2: θb1|a1 , θb2|a1 , θb1|a2 , θb2|a2

CPT 3: θc1|a1 , θc2|a1 , θc3|a1θc1|a2 , θc2|a2 , θc3|a2

Define the KB semantics: The second task is to define the knowledge base
∆ that will represent N . The models of ∆ are in one–to–one correspondence
with the instantiations of the network variables. If w is an instantiation of
the network variables, then the corresponding model sets to true each CNF
variable whose subscript is consistent with w and sets all other CNF variables
to false. For the networkN , the first two columns of Table 2 show instantiations
of network variables and definitions for the corresponding models.

Define the CNF: In general, it will not be possible to define ∆ by listing
models and instead we will generate a CNF that represents ∆. As we shall
see, obtaining a CNF that represents ∆ can be done by processing each net-
work variable and each parameter. We will be describing CNF encodings of
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a Bayesian network in more detail below. For now, we simply present one of
these encodings for network N without describing how it was generated:

Variable A: λa1 ∨ λa2 ¬λa1 ∨ ¬λa2

Variable B: λb1 ∨ λb2 ¬λb1 ∨ ¬λb2

Variable C: λc1 ∨ λc2 ∨ λc3 ¬λc1 ∨ ¬λc2

¬λc1 ∨ ¬λc3

¬λc2 ∨ ¬λc3

CPT 1: λa1 ⇔ θa1 λa2 ⇔ θa2

CPT 2: λa1 ∧ λb1 ⇔ θb1|a1 λa2 ∧ λb1 ⇔ θb1|a2

λa1 ∧ λb2 ⇔ θb2|a1 λa2 ∧ λb2 ⇔ θb2|a2

CPT 3: λa1 ∧ λc1 ⇔ θc1|a1 λa2 ∧ λc1 ⇔ θc1|a2

λa1 ∧ λc2 ⇔ θc2|a1 λa2 ∧ λc2 ⇔ θc2|a2

λa1 ∧ λc3 ⇔ θc3|a1 λa2 ∧ λc3 ⇔ θc3|a2

Assign weights: The fourth task requires that we associate a weight W (`)
with each CNF literal `. With each positive literal of a parameter variable, we
associate a weight equal to the corresponding parameter, and with all other
literals, we associate a weight of 1. That is, W (θx|u) = Pr(x|u), W (¬θx|u) = 1,
W (λx) = 1, and W (¬λx) = 1. For the CNF variables defined for network N ,
all variable weights therefore become 1 except the following:

W (θa1) = 0.1 W (θa2) = 0.9

W (θb1|a1) = 0.1 W (θb2|a1) = 0.9

W (θb1|a2) = 0.2 W (θb2|a2) = 0.8

W (θc1|a1) = 0.1 W (θc2|a1) = 0.2 W (θc3|a1) = 0.7

W (θc1|a2) = 0.01 W (θc2|a2) = 0.09 W (θc3|a2) = 0.9

Given this assignment of weights to variables, each model ω assumes a weight
that is the product of the weights of the positive parameter literals in ω (other
literals in ω have weight 1). The third column of Table 2 shows the weights of
models for network N . An important observation is that each model is now
guaranteed to have weight that is equal to the probability of the corresponding
row in the joint distribution (compare weights in Table 2 to probabilities in
Table 1).

Incorporating evidence and computing WMC: At this point, ∆ does
not incorporate evidence, and computing WMC(∆) is equivalent to summing
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all probabilities in the joint distribution, which would yield an answer of 1.0.
Recall that to compute the probability of evidence, one removes from the
joint those rows that contradict the evidence before summing. There are two
ways we can incorporate the evidence into our WMC computation. First,
we can change the weight associated with each indicator λx whose subscript
contradicts the evidence from 1 to 0. The result of this change for network
N and evidence {a1, c2} is shown in the fourth column of Table 2. Setting
the indicators in this way has the effect of zeroing out those rows that are
inconsistent with the evidence. Now Pr(e) = WMC(∆) = 0.002 + 0.018 =
0.02. A second way to eliminate the proper rows from the computation is
to remove from the theory being counted those models that contradict the
evidence. We do so by computing Pr(e) = WMC(∆ ∧∆e) = 0.02, where ∆e

is a conjunction of indicators that encodes the evidence; in the case where
e = {a1, c2}, ∆e = λa1 ∧ λc2 . Each of the two methods has advantages, which
will be discussed later in the paper.

2.3 Related Work

The relationship between probabilistic inference and WMC was highlighted
in [23], where it was shown that, like model counting, exact probabilistic in-
ference is #P–complete (however [23] did not address weights directly). This
connection was further discussed in [24], which shows, among other things,
that a DPLL–style [25] SAT solver can be adapted to solve both Bayesian
network inference and model counting by adding memoization.

An approach to probabilistic inference based on compiling a CNF encoding of
a Bayesian network and then performing polytime WMC (in the size of the
compiled representation) was introduced in [15], although this work did not
use the term weighted model counting. By making use of determinism, this
approach was shown in [15,22] to perform exact inference very efficiently on
many networks having large amounts of determinism, in spite of very large
treewidth. The encoding was later enhanced to utilize other types of local
structure [1], allowing it to be effective on a larger class of networks (e.g.,
ones having lesser amounts of determinism). The ability of WMC to capital-
ize on available evidence while computing marginals was introduced in [2].
Here, WMC by compilation was shown to efficiently solve many problems
with evidence, where they could not be compiled without evidence and where
they could not be solved by algorithms that exploit only topological structure,
with or without evidence, even after applying classical evidence–exploitation
techniques. Methods for increasing the decomposability of the generated CNF
by applying structured resolution were described in [3]. The increase in de-
composability allowed many networks to be compiled for the first time and
significantly decreased the time and space required to compile networks that
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were accessible previously. Many of the algorithms for this compilation ap-
proach are implemented in a publicly available tool called Ace, 3 which uses
the c2d compiler [26]. 4

A system described in [16] leverages a state–of–the–art model counter called
Cachet 5 to perform inference in a Bayesian network. This work uses a search
algorithm rather than compilation and, like [15], performs WMC on a CNF
constructed from a Bayesian network. Among the novel aspects of this work is
a new encoding of the network into CNF, which is smaller than the encoding
described in [15] in many cases. This search–based algorithm has also been able
to significantly outperform algorithms that exploit only topological structure
on many networks with large amounts of determinism.

Classical approaches to probabilistic inference, based on conditioning and vari-
able elimination, have also been extended to exploit local structure. For exam-
ple, a class of conditioning algorithms [8,27,12] proceed in a way that is very
similar to that of DPLL–style SAT solvers and model counters that use compo-
nent analysis. A clear connection between these types of algorithms was made
in [12], which also describes how to incorporate additional advances from SAT
solvers, including nogood learning and unit propagation, into an algorithm
called value elimination. In this approach, search is performed on instanti-
ations of network variables, and the logical techniques, many of which are
also used by WMC algorithms, are utilized to capitalize on determinism and
context–specific independence. The approach allows for dynamic ordering of
variables, has the same guarantees as algorithms that exploit only topological
structure, outperforms such algorithms in many circumstances, and is capa-
ble of trading time for space, similar to recursive conditioning [8]. In a sense,
this class of conditioning approaches is quite similar in spirit to the WMC
approaches we discuss in this paper, as they are both based on top-down, re-
cursive conditioning and decomposition techniques. Yet, the WMC approaches
we discuss have empirically appeared to be more scalable in general, as they
operate directly on CNF representations, putting them at a greater advantage
when exploiting satisfiability-based techniques.

Another class of approaches for exploiting local structure is based on variable
elimination algorithms (and the closely related jointree algorithm). For exam-
ple, the technique of zero–compression can be used to exploit determinism in
the jointree framework [9], yet this technique requires one to initially perform
inference on the jointree before it is zero–compressed. Hence, the technique ini-
tially takes time and space exponential in the network treewidth, potentially
realizing savings in future runs, but making many of our data sets inaccessible

3 Available for download at http://reasoning.cs.ucla.edu/ace.
4 Available for download at http://reasoning.cs.ucla.edu/c2d.
5 Available for download at http://www.cs.rochester.edu/u/kautz/Cachet.

10



to this method. More sophisticated extensions to variable elimination algo-
rithms have also been proposed recently, including [11], [14], and [17], which
propose non-tabular representations of factors, to avoid the exponential com-
plexity in treewidth. Significantly, [17] is a compilation approach that is able
to compile many networks in much less time than WMC compilation tech-
niques described later, while matching WMC online performance. Yet, all of
the networks on which these approaches (and zero–compression) have reported
are solvable by methods that are exponential in network treewidth.

A third, more specialized, class of algorithms for exploiting local structure in-
clude Quickscore [13] and superlink. 6 These algorithms have demonstrated
exponential improvements over classical algorithms by solving problems that
have very large treewidths. The Quickscore algorithm applies only to a partic-
ular class of networks (two-level, noisy-or networks), and superlink includes
domain-specific techniques for genetic linkage networks. WMC techniques were
shown in [2] to be more efficient than Quickscore, and in many cases signif-
icantly more efficient than superlink. We repeat some of these empirical
comparisons in Section 5.3. Another example of an algorithm for exploiting
local structure, which is able to handle networks with very high treewidth,
is value elimination [12]. As mentioned earlier, this algorithm is closest to
the WMC algorithms we discuss in this paper. However, the WMC approach
based on Cachet was shown to dominate value elimination on a wide class of
networks [16].

Any method that is capable of approximating model counting can poten-
tially be applied to approximate answers to probabilistic queries. One such a
method, called ApproxCount, was proposed in [28] and is based on work from
[29]. This method samples from the solution space of a CNF near–uniformly,
by combining random walk with Metropolis moves. An advantage of the ap-
proach is that it can provide an approximation in cases where exact inference is
not practical. Another advantage is that the time required can be adjusted by
trading accuracy. Although this is an interesting area, we will only be covering
exact probabilistic inference and exact model counting in this paper.

3 CNF Encodings

CNF encoding is the first dimension that has differentiated WMC approaches
to probabilistic inference. It consists of defining the reduction to WMC, both
semantically, by specifying variables, models, and weights, and syntactically,
by specifying a CNF that captures the set of models. Encodings are important
as the amount of local structure they capture can have a significant impact

6 For more information, see http://bioinfo.cs.technion.ac.il/superlink.
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on the performance of model counters, as we describe later.

3.1 Encoding ENC1

The first encoding technique, which we will refer to as ENC1, was presented in
[15]. Section 2.2 discussed most of what is involved in this encoding, including
the semantic mapping and an example CNF. We now fill in the remaining
pieces, which are how to produce the clauses of the CNF and how to capture
determinism. First, we describe the clauses. For each network variable X with
domain x1, x2, . . . , xk, we have:

Indicator Clauses:

λx1 ∨ λx2 ∨ . . . ∨ λxk

¬λxi
∨ ¬λxj

, for i < j

For example, variable C from Figure 1 generates the following indicator clauses:

λc1 ∨ λc2 ∨ λc3 , ¬λc1 ∨ ¬λc2 , ¬λc1 ∨ ¬λc3 , ¬λc2 ∨ ¬λc3 (2)

These clauses ensure that exactly one indicator variable for C is set to true in
each model. For each parameter Pr(xi|u1, u2, . . . , un), we produce the following
clauses:

ENC1 Parameter Clauses:

λu1 ∧ λu2 ∧ . . . ∧ λun ∧ λxi
⇔ θxi|u1,u2,...,un

For example, parameter θc1|a1 in Figure 1 generates the following clauses:

λa1 ∧ λc1 ⇒ θc1|a1 , θc1|a1 ⇒ λa1 , θc1|a1 ⇒ λc1 (3)

These clauses ensure that θc1|a1 is set to true in a model iff λa1 and λc1 are set
to true in that model.

ENC1 as discussed does not capture information about parameter values (lo-
cal structure). We will be discussing encoding local structure in more detail in
Section 5. However, from the very beginning, ENC1 effectively utilized deter-
minism, which is quite easy to encode. Consider again Figure 1 and imagine
that the parameter θc1|a1 were 0. Given that this parameter is known to be 0,
all models that set this parameter variable to true will have weight 0. There-
fore, for this parameter variable, we can replace the clauses in Equation 3 by
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the single clause: ¬λa1∨¬λc1 . This clause has the effect of eliminating all CNF
models which contain the parameter θc1|a1 , which, like assigning them weight
0, also prevents them from influencing the result of the WMC computation.
Furthermore, the parameter variable θc1|a1 has been rendered superfluous and
can be eliminated from the encoding. Although encoding determinism will
not change the answer to the WMC computation, it can greatly improve the
efficiency of WMC algorithms.

3.2 Encoding ENC2

The second encoding technique, which we will refer to as ENC2, is based on
the encoding presented in [16]. To describe ENC2, we assume that for each
network variable, there is an ordering on its values. If value x′ comes earlier
in the ordering than value x, we say x′ < x. We describe ENC2 referring to
the Bayesian network N in Figure 1.

Define logical variables: ENC2 produces the same indicator variables as
ENC1. For each network parameter Pr(x|u) such that x is not X’s last value,
ENC2 will produce a parameter variable ρx|u. For example, for network N ,
ENC2 produces the following parameter variables.

CPT 1: ρa1

CPT 2: ρb1|a1 , ρb1|a2

CPT 3: ρc1|a1 , ρc2|a1 , ρc1|a2 , ρc2|a2

Define the KB semantics: Each instantiation w of the network variables
generates a set Ω of models. Ω is formed by requiring fixed values for certain
CNF variables and leaving others as don’t cares. In particular:

(1) Indicator Rule: w requires that indicator variable λx be fixed to true if x
is compatible with w and fixed to false otherwise.

(2) Incompatible Parent Rule: w makes parameter variable ρx|u a don’t care
if u is incompatible with w.

(3) Compatible Parent Rule: Let xw be the value that w assigns variable X;
for each parameter variable ρx|u such that u is compatible with w, (a) w
requires that ρx|u be fixed to false if x < xw, (b) w requires that ρx|u be
fixed to true if x = xw, and (c) w makes ρx|u a don’t care if x > xw.

For nework N , Table 3 lists network instantiations and corresponding sets
of models. For network N , each network instantiation fixes either 10 or 11
CNF variables. Because there are a total of 14 CNF variables, each network
instantiation therefore induces a set of 23 or 24 models.
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Table 3
ENC2 models for the network in Figure 1.

Network Fixes these CNF Fixes these CNF

Instantiation vars to false vars to true

a1b1c1 λa2 , λb2 , λc2 , λc3 λa1 , λb1 , λc1 , ρa1 , ρb1|a1
, ρc1|a1

a1b1c2 λa2 , λb2 , λc1 , λc3 , ρc1|a1
λa1 , λb1 , λc2 , ρa1 , ρb1|a1

, ρc2|a1

a1b1c3 λa2 , λb2 , λc1 , λc2 , ρc1|a1
ρc2|a1

λa1 , λb1 , λc3 , ρa1 , ρb1|a1

a1b2c1 λa2 , λb1 , λc2 , λc3 , ρb1|a1
λa1 , λb2 , λc1 , ρa1 , ρc1|a1

a1b2c2 λa2 , λb1 , λc1 , λc3 , ρb1|a1
, ρc1|a1

λa1 , λb2 , λc2 , ρa1 , ρc2|a1

a1b2c3 λa2 , λb1 , λc1 , λc2 , ρb1|a1
, ρc1|a1

, ρc2|a1
λa1 , λb2 , λc3 , ρa1

a2b1c1 λa1 , λb2 , λc2 , λc3 , ρa1 λa2 , λb1 , λc1 , ρb1|a2
, ρc1|a2

a2b1c2 λa1 , λb2 , λc1 , λc3 , ρa1 , ρc1|a2
λa2 , λb1 , λc2 , ρb1|a2

, ρc2|a2

a2b1c3 λa1 , λb2 , λc1 , λc2 , ρa1 , ρc1|a2
, ρc2|a2

λa2 , λb1 , λc3 , ρb1|a2

a2b2c1 λa1 , λb1 , λc2 , λc3 , ρa1 , ρb1|a2
λa2 , λb2 , λc1 , ρc1|a2

a2b2c2 λa1 , λb1 , λc1 , λc3 , ρa1 , ρb1|a2
, ρc1|a2

λa2 , λb2 , λc2 , ρc2|a2

a2b2c3 λa1 , λb1 , λc1 , λc2 , ρa1 , ρb1|a2
, ρc1|a2

, ρc2|a2
λa2 , λb2 , λc3

Define the CNF: For each network variable, ENC2 defines the same in-
dicator clauses as ENC1. ENC2 produces a single clause for each network
parameter Pr(xi|u1, u2, . . . , un). Let the ordered domain of X be x1, x2, . . . , xk.
If i 6= k, then ENC2 produces the following parameter clause:

ENC2 Normal Parameter Clause:

λu1 ∧ . . . ∧ λun ∧ ¬ρx1|u ∧ . . . ∧ ¬ρxi−1|u ∧ ρxi|u ⇒ λxi

Otherwise, ENC2 produces the following parameter clause:

ENC2 Final Parameter Clause:

λu1 ∧ . . . ∧ λun ∧ ¬ρx1|u ∧ . . . ∧ ¬ρxk−1|u ⇒ λxk

For example, the parameter variable ρc1|a1 in network N produces the clause:

λa1 ∧ ρc1|a1 ⇒ λc1
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Following is the entire CNF produced by ENC2 for network N :

Variable A: λa1 ∨ λa2 ¬λa1 ∨ ¬λa2

Variable B: λb1 ∨ λb2 ¬λb1 ∨ ¬λb2

Variable C: λc1 ∨ λc2 ∨ λc3 ¬λc1 ∨ ¬λc2

¬λc1 ∨ ¬λc3

¬λc2 ∨ ¬λc3

CPT 1: ρa1 ⇒ λa1 ¬ρa1 ⇒ λa2

CPT 2: λa1 ∧ ρb1|a1 ⇒ λb1 λa2 ∧ ρb1|a2 ⇒ λb1

λa1 ∧ ¬ρb1|a1 ⇒ λb2 λa2 ∧ ¬ρb1|a2 ⇒ λb2

CPT 3: λa1 ∧ ρc1|a1 ⇒ λc1 λa2 ∧ ρc1|a2 ⇒ λc1

λa1 ∧ ¬ρc1|a1 ∧ ρc2|a1 ⇒ λc2 λa2 ∧ ¬ρc1|a2 ∧ ρc2|a2 ⇒ λc2

λa1 ∧ ¬ρc1|a1 ∧ ¬ρc2|a1 ⇒ λc3 λa2 ∧ ¬ρc1|a2 ∧ ¬ρc2|a2 ⇒ λc3

We also point out that determinism can be encoded in ENC2 as it was in
ENC1. Specifically, we can replace a parameter clause corresponding to a 0
parameter with a shorter clause involving indicators only and remove param-
eter variables corresponding to 0 parameters.

Assign weights: ENC2 assigns weights to indicator variables in the same
way as ENC1. For each positive literal of a parameter variable ρxi|u, we assign
a weight that represents the probability that X = xi given u and given X 6= xj

for any xj < xi. In particular, if the ordered domain of X is x1, x2, . . . , xk,
then W (ρx1|u) = Pr(x1|u); W (ρx2|u) = Pr(x2|u)/(1 − Pr(x1|u)); W (ρx3|u) =
Pr(x3|u)/(1−Pr(x1|u)−Pr(x2|u)), etc. Finally, W (¬ρxi|u) = 1−W (ρxi|u). For
example, the weights of indicator variables for N are all 1, and the weights of
parameter variables are set as follows:

W (ρa1) = 0.1 W (¬ρa1) = 0.9

W (ρb1|a1) = 0.1 W (¬ρb1|a1) = 0.9

W (ρb1|a2) = 0.2 W (¬ρb1|a2) = 0.8

W (ρc1|a1) = 0.1 W (¬ρc1|a1) = 0.9

W (ρc2|a1) = 0.2/(1− 0.1) = 0.222 W (¬ρc2|a1) = 0.778

W (ρc1|a2) = 0.01 W (¬ρc1|a2) = 0.99

W (ρc2|a2) = .09/(1− 0.01) = 0.091 W (¬ρc2|a2) = 0.909
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Incorporating evidence and computing WMC: Given the above knowl-
edge base and assignment of weights, we can now compute probability of
evidence by incorporating evidence in the same manner as for ENC1. Both
setting weights of incompatible indicators to zero and conjoining with a term
encoding the evidence work as before.

3.3 On the Difference between ENC1 and ENC2

ENC2 is like ENC1 in its handling of network variables, which correspond
to indicator variables in the CNF. In particular, ENC2 defines the same set
of indicator variables, produces the same set of indicator clauses, defines the
same weights on indicator literals, and can utilize indicators to encode deter-
minism and incorporate evidence in the same way. However, ENC2 differs
significantly in its dealing with network parameters. One of the most obvious
differences is that ENC2 will produce fewer parameter variables than ENC1.
The major reason that ENC2 is able to produce fewer parameter variables
is that, unlike ENC1, ENC2 encodes information in the weights of negative
parameter literals. By packing more information into the two weights of each
parameter variable, ENC2 is able to use fewer such variables. ENC2 also pro-
duceds fewer parameter clauses than ENC1. However, ENC2 produces larger
clauses than ENC1 when variables have more than two values. Moreover, the
encoding of information into negative literals causes ENC2 to be arguably
less intuitive. Both encodings generate a CNF whose size is polynomial in the
size of the Bayesian network.

The most striking difference between ENC1 and ENC2 is in the set of models
included in the knowledge base. For each instantiation w of network variables,
ENC1 defined a single model with weight equal to w’s probability from the
joint distribution. In contrast, ENC2 defines many models Ω for w, in such
a way that the sum of their weights will equal w’s probability from the joint.
When w is inconsistent with evidence, the weights of all models Ω must there-
fore be excluded from the sum of the WMC computation. Note that the sets of
models corresponding to two different network instantiations are guaranteed
to be disjoint, since each will fix a different instantiation of indicator variables.

We close this section with an empirical comparison of ENC1 and ENC2,
which has not previously been performed in the literature. Table 4 shows
two groups of networks which were used in [16], [22], and [1] to evaluate
WMC techniques. The first group consists of networks that have only Boolean
variables and large amounts of determinism. Many of the networks in the
second group contain non–Boolean variables, large CPTs, and lesser amounts
of determinism. For each of these networks, we encoded the network into CNF
using both encodings, including encoding for determinism. We then compiled
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the resulting CNFs using a 1.6GHz Pentium M with 2GB of memory and
the c2d compiler [26], upon which Ace is built. However, our experiments
deviate from other published results in the following ways. First, c2d uses a
data structure called a dtree to drive the compilation. To isolate differences
in encoding only, we used a method of producing a dtree [1] that has proven
more successful than other methods on many networks, and we ensure that
the same dtree is used for both encodings. Second, we have added a few small
enhancements to both encodings to make them more compact. 7 Let the size
of a clause be the number of literals in the clause and the size of a CNF
to be the sum of the sizes of its clauses. Table 4 shows results by listing,
for each encoding, the CNF size, the compile time, and the compilation size.
In general, ENC2 produces smaller CNFs, but this becomes less true when
variables are non–binary, as in the case of mildew, or there is a massive amount
of determinism, as in the case of the bm, mm, and st networks. On the first
group of networks, ENC2 produces slightly faster compilations, and on the
second, ENC2 is faster by a factor between two and five. However, the sizes of
the compilations are roughly equivalent. Also note that both encodings failed
on the same networks, as indicated by dashes. The main point is that ENC2
is somewhat more efficient than ENC1 in producing the compilation, but the
compilation produced is about the same. Another dimension for comparing the
two encodings relates to their flexibility in encoding network local structure,
an issue that we discuss in a later section.

4 Search vs Knowledge Compilation

In the previous section, we discussed two different ways one can convert the
probabilistic inference problem to WMC on a CNF. In this section, we discuss
the second dimension on which WMC approaches differ. Specifically, we review
how model counting can be performed using search or knowledge compilation.

4.1 WMC by Search

Consider the problem of counting the models in the CNF shown at the top
of Figure 2. It was observed in [30] that if one can decompose the CNF into
components that do not share variables, then one can count the components
independently. Because all of the clauses in this CNF contain variable A, we

7 For example, letX be a network variable. IfX has two values, then both encodings
can use a single indicator variable for X instead of two. If X is a root, both encodings
can omit the production of CNF parameter variables for X’s CPT by assigning
appropriate weights to X’s indicator variables.
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Table 4
Comparison of ENC1 and ENC2; compilation performed using the Ace compiler.
Experiments ran on a 1.6GHz Pentium M with 2GB of memory. Dash indicates
failure.

ENC1 ENC2 ENC1 ENC2 ENC1 ENC2

CNF CNF Comp. Comp. Comp. Comp.

Network Size Size Time (s) Time (s) Edges Edges

Grid-50-16-1 10,568 5,112 147.09 127.97 15,075,826 14,869,887

Grid-50-16-2 11,252 5,316 223.46 207.22 20,855,797 21,872,882

Grid-50-16-3 10,048 4,960 63.80 53.20 6,121,365 6,052,060

Grid-50-16-4 10,748 5,164 192.72 162.44 17,313,216 16,703,733

Grid-50-16-5 11,000 5,240 186.82 150.67 13,599,834 13,867,070

Grid-50-16-6 10,768 5,168 74.72 57.60 5,394,504 5,294,194

Grid-50-16-7 10,412 5,068 135.54 115.70 12,110,197 12,366,429

Grid-50-16-8 10,592 5,120 64.25 52.50 5,754,715 5,817,835

Grid-50-16-9 12,088 5,560 79.13 67.60 6,207,120 6,199,093

Grid-50-16-10 11,416 5,368 118.66 98.18 10,648,704 10,670,540

bm-5-3 10,132 10,012 0.21 0.20 19,082 18,982

mm-3-8-3 12,096 11,880 1.19 1.26 275,754 284,901

st-3-2 5,717 4,323 0.28 0.23 36,371 28,342

alarm 8,310 4,111 0.21 0.14 5,002 5,621

diabetes 1,823,267 1,498,051 – – – –

hailfinder 41,009 20,052 1.37 0.53 23,118 25,676

mildew 1,723,852 1,619,395 5,014.87 2,713.99 3,555,313 2,752,047

munin2 376,168 294,528 2,671.08 1,518.62 6,248,456 6,144,328

munin3 385,809 303,670 2,279.14 671.36 5,337,629 5,344,186

munin4 440,449 335,422 – – – –

pathfinder 590,631 325,890 77.47 14.94 137,350 159,716

pigs 40,987 24,689 90.52 47.49 2,207,573 2,207,534

tcc4f 71,840 26,056 3.06 0.69 39,708 38,938

water 143,338 75,778 39.21 8.19 291,354 265,141

cannot decompose the CNF immediately. To force decomposition, we split on
some variable; for example, A. Following the split, we perform unit resolution,
and perhaps some other simplifications, and generate the two CNFs at the
middle of Figure 2. At this point, we solve each of the two subproblems re-
cursively. We see that in each of the two subproblems, we can now decompose
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A ∨ B ∨ C ¬A ∨ ¬B ∨ C
A ∨ D ∨ E ¬A ∨ ¬D ∨ E

B ∨ C
D ∨ E

A

3 3

9 case

D ∨ EB ∨ C

decompose

3 3

9
¬ B ∨ C
¬ D ∨ E

case

¬ D ∨ E¬ B ∨ C

decompose

18

CNF

A¬A

Fig. 2. An example of a search algorithm that performs model counting.

into two sets of clauses that share no variables. The four resulting sets are
shown at the bottom of the figure. Computing the model count for each CNF
at the bottom of the figure constitutes a base case in the recursion, and each
is assigned a count of 3, as indicated in the figure. From the counts at the
bottom, we can compute counts for the CNFs in the middle, both 9 in this
case. And from these counts, there is a formula to compute the count for the
CNF at the top of the figure, 18 in this case, which is the answer to the orig-
inal problem. Performing weighted model counting is a simple generalization
of the described procedure which accounts for weights in the base case of the
recursion.

The steps we have described constitute solving WMC by search, as initially
proposed by [30]. Although we have illustrated the search in a breadth first–
fashion, it is normally performed depth–first [30]. In addition, advanced tech-
niques such as clause learning, component caching, and non–chronological
backtracking, are used to improve efficiency, but we do not detail them here;
see [18,31,26,32]. Two major advantages of search are that it typically has
lower space requirements than compilation and that it can exploit query–
specific structure.

Such a search was used in [16] to demonstrate the power of WMC in performing
probabilistic inference. Here, a state–of–the–art model counter called Cachet
[18] was applied to CNFs generated according to ENC2. Table 5, adapted from
[16], demonstrates some of these results, comparing Cachet times to times to
perform probabilistic inference using two algorithms that exploit only topo-
logical structure, jointree [4,5] and recursive conditioning [8]. An important
aspect of the networks used is the large amount of determinism. In this table,
each number represents the median time to perform inference for ten separate
experiments; a number n in parenthesis means that only n of the ten queries
were successfully answered; and an X means that no problems were solved
successfully. The main observation is that Cachet times were superior when
compared to jointree and recursive conditioning. In particular, jointree and
recursive conditioning could not answer most of the listed queries, and took
more than an order of magnitude longer than Cachet on many queries they
could answer. This performance of algorithms that exploit only topological
structure, however, is not too surprising as these methods take no advantage
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Table 5
Results adapted from [16] that demonstrate the effectiveness of WMC using search
and ENC2 on various highly deterministic networks. Each number represents the
median time to perform inference for ten separate experiments; a number n in
parenthesis means that only n of the ten queries were successfully answered; and
an X means that no problems were solved successfully.

Jointree RC Cachet

Network Time (s) Time (s) Time (s)

DQMR–60+60–0.05 52 (5) 5.7 (2) 1.7

DQMR–60+60–0.1 46 (3) 33 (3) 3.9

DQMR–60+60–0.2 45 (5) 60 (4) 54

DQMR–70+70–0.05 X X 12

DQMR–70+70–0.1 X X 60

DQMR–70+70–0.2 X X 136

Grid–0.75–10 0.02 0.87 0.3

Grid–0.75–14 20 15 4.7

Grid–0.75–18 X 1751 81

Grid–0.75–22 X X 1300

5–step 56 36 0.03

tire–2 X X 0.09

tire–4 X X 1.1

log–2 X X 7.9

log–4 X X 65

of the massive determinism available in these networks. Moreover, the findings
are consistent with those reported in [15], which presented similar experimen-
tal results on Bayesian networks with massive determinism. It was also shown
in [16] that in addition to probability of evidence, marginals on variables can
be computed by recording certain information during the search. However, in
this case, much of the space advantage over compilation goes away.

4.2 WMC by Knowledge Compilation

Knowledge compilation refers to a process whereby a logical theory is com-
piled from one logical form into a target logical form, which permits certain
queries to be answered in polytime (in the size of the target form). A knowl-
edge compilation map is given in [33], listing a number of target languages
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and classifying them according to their relative succinctness and the class
of operations they support in polytime. A strong connection between search
and knowledge compilation was presented in [34], showing that the trace of
a search algorithm can be interpreted as a compiled sentence of some target
language. Therefore, a search algorithm can be converted into a knowledge
compiler by extending it so it saves its trace. For example, it was shown in
[34] that the search algorithms for model counting, discussed in the previous
section, generate traces that are members of the d–DNNF language which we
will discuss later in this section; see Figure 3. Hence, the search and knowledge
compilation approaches to WMC are indeed very closely related.

In fact, the knowledge compiler used in the experiments in this paper, called
c2d, is based on the search algorithm described in the previous section. The
main difference between c2d and Cachet is that c2d records a trace of its
operations in the manner described in [34]. Other differences include different
methods for implementing decompositions, variable splitting, and caching. It is
interesting to note that Cachet could likely be easily converted into a compiler
by modifying it to keep a trace of its operations.

The main advantage of compilation is that a significant amount of the work
required for inference is performed once offline, which can then be amortized
over many online queries. Repeated online inference is often much more effi-
cient using knowledge compilation than search. One disadvantage of knowl-
edge compilation is that the compiled theory could end up being too large for
available memory. In these cases, a search, which requires less overhead and
can trade off time for space, might be able to succeed where compilation fails.
However, much of this space disadvantage disappears when computing mul-
tiple counts simultaneously [16]. Another disadvantage is that query–specific
information can often be utilized to simplify a search, but since knowledge
compilation is usually performed with a goal of being able to answer any query,
it typically cannot take advantage of query–specific information (however, see
Section 5.3).

The first application of knowledge compilation to probabilistic inference (and
weighted model counting) was given in [15,20]. In this work, the CNF of a
Bayesian network, encoded according to ENC1, was compiled into a target
language called d–DNNF, which is known to support weighted model counting
in polytime [33] in the size of the compiled form (this does not escape the
complexity of WMC since the compilation and size of resulting structure are
exponential in treewidth in the worst case). Among the results presented are
compilation times and sizes for various networks generated from ISCAS 85
and ISCAS 89 circuits, which were later improved upon in [26], as shown
in Table 6. For each network, the table first lists the maximum cluster size
for a jointree generated for the network. This metric is important, because
methods that exploit only topological structure for probabilistic inference run
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Table 6
Results from [26] that demonstrate the effectiveness of WMC using compilation and
ENC1 on circuits.

Max Compile Compilation

Network Cluster Time (s) Size

c432 28 0 13,767

c499 23 6 2,214,814

c880 24 80 20,676,927

c1355 23 15 2,748,340

c1908 45 187 18,376,664

s1423 25 3 467,935

s3330 43 13 2,496,907

*

+ W(c)

W(¬b)+

W(b) W(a) W(¬a)

**

^

v c

¬bv

b a ¬a

^^

b v c

¬b v c

a v ¬b

a v c

Fig. 3. Compiling CNF into a smooth d–DNNF and then extracting an AC by:
replacing conjunctions with multiplications, disjunctions with additions, and literals
with their weights.

in time that is exponential in maximum cluster size. From these sizes, it is
clear that many of these networks are beyond the reach of algorithms that
exploit only topological structure. However, compilation was successful in a
reasonable amount of time in each case. Because d–DNNF sizes (measured in
number of edges) are also quite reasonable, online inference, which is linear in
d–DNNF size, will be very efficient.

More evidence for the effectiveness of compilation was presented in [22], which
used Ace and reported on the successful compilation of networks generated
from relational Bayesian networks [35] and encoded according to ENC1. A
sampling of results for these highly deterministic networks are shown in Ta-
ble 7. Again, the most striking observation is the success of compilation in
spite of large maximum cluster size. We will discuss the last two columns of
Table 7 below.

A d–DNNF is a rooted DAG with internal nodes labeled with disjunctions
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Table 7
Results from [22] that demonstrate the effectiveness of WMC using compilation and
ENC1 on ground instances of relational Bayesian networks. Dash indicates failure.
Online time is averaged over thirty–one evidence sets, where for each evidence set,
we compute probability of evidence and a posterior marginal for every network
variable.

Avg. Online Avg. Jointree

Max Compile Compile Inference Inference

Network Cluster Time (min) Size Time (s) Time (s)

mastermind

04–08–03 26 1 541,356 0.0516 57.48

06–08–03 37 1 1,523,888 0.1518 –

10–08–03 54 3 4,315,566 0.6835 –

04–08–04 39 5 19,457,308 1.7341 –

03–08–05 40 10 55,417,639 4.3253 –

students

03–12 59 1 113,876 0.0175 –

04–16 101 3 815,461 0.0930 –

05–20 148 7 5,236,257 1.8439 –

06–24 233 33 36,450,231 12.9663 –

blockmap

05–03 23 1 20,636 0.0068 27.39

10–03 52 2 974,817 0.0582 –

15–03 68 6 7,643,307 0.3799 –

20–03 92 30 40,172,434 2.4529 –

22–03 104 61 76,649,302 4.6651 –

and conjunctions, and its leaf nodes labeled with propositional literals (or
the constants true and false). A d–DNNF satisfies the decomposition property
(conjuncts cannot share variables) and the determinism property (disjunctions
must be logically disjoint). Another property is needed for model counting,
called smoothness (disjuncts mention the same set of variables). Figure 3 de-
picts a CNF and a corresponding d–DNNF that is smooth. By compiling the
CNF to a d–DNNF, one can perform WMC by simply traversing the d–DNNF
and performing simple multiplication and addition operations at its nodes.

The approach in [15], however, further maps the d–DNNF into an arithmetic
circuit (AC) that explicates these arithmetic operations, leading to a WMC
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circuit as given in Figure 3. In particular, the AC inputs can be used to capture
the weights of literals and its output will provide the weighted model count for
the given literal weights. For example, given the weights W (a) = .2,W (¬a) =
1,W (b) = .5,W (¬b) = .5,W (c) = .9,W (¬c) = 1 for the CNF literals in
Figure 3, one can simply evaluate the AC given in the same figure under these
weights, leading to a weighted model count of 0.63. Mapping the CNF into
an AC has a major advantage: by computing the partial derivatives of the
AC, one can compute marginal model counts, in time linear only in the AC
size [20,36]. This allows the AC to simultaneously compute the probability of
evidence and posterior marginals over all network variables, in time linear in
the AC size [36]. A main point is that this process may then be repeated for as
many evidence sets as desired, without need to recompile. We note here that
many of the results on probabilistic inference by WMC, using the compilation
approach, are reported in terms of the compilation size, which refers to the
number of edges in the AC for given CNF encoding. We also note that the
AC can be given an alternative algebraic semantics: it is a factorization of
an exponentially–sized polynomial that captures the probability distribution
induced by the given Bayesian network [36].

We close this section with two additional comparisons, to put the compile/search
times in some more perspective. Examine once more Table 7, which shows the
key discrepancy between offline compile time (shown in minutes) and online
inference time (shown in seconds). The compilation can be costly as shown
in the table, but that cost can be amortized over many online queries, which
become very efficient, and which may correspond to differing evidence. Each
time reported for online inference is the average over many experiments. In
each experiment, a different evidence set was generated and probability of evi-
dence and a posterior marginal for each network variable were computed. The
jointree algorithm cannot answer most queries (as indicated by the dashes),
because of cluster size, and WMC is many orders of magnitude more efficient
in cases where jointree is successful.

We now provide a second comparison not previously addressed in the lit-
erature, between WMC by search (performed by the Cachet model counter
version 2.0 [16]) and WMC by compilation (performed by Ace v2.0 [3]). For
each network in Table 8, we encoded the network using Cachet and then ap-
plied both Ace and Cachet to the generated CNF. The resulting search and
compilation times can be seen in the second and third columns of Table 8,
where a dash represents a timeout (2000s) or other failure, and where each
row marked with a star (*) indicates an average over ten similar networks. The
networks with which we experimented were drawn from the WMC literature.
The networks in the first group, presented in [16] and [22], are highly determin-
istic and have small CPTs. These are the types of networks on which WMC
performs particularly well. In general, Ace compilation times appear roughly
equal to Cachet search times on the grid and OR networks and superior on
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Table 8
Times to search using Cachet and to compile and perform online inference using
Ace. A star (*) indicates an average over ten networks. Online time is averaged over
ten evidence sets, where for each evidence set, we compute probability of evidence
and a posterior marginal for every network variable. Experiments were performed
on a 2.8GHz processor with 4GB of memory.

Cachet Encoding Ace Encoding

Avg.

Ace Comp. Cachet Srch. Ace Comp. Ace Online

Network Time (s) Time (s) Time (s) Time (s)

grid-50-14-* 22.9 426.6 7.0 0.076

grid-50-16-* 231.9 761.2 94.0 0.959

grid-90-30-* 92.8 111.1 37.0 0.064

grid-90-34-* 449.3 467.9 90.3 0.114

or-60-10-*-10 2.8 2.8 7.7 0.001

or-60-20-*-10 30.7 30.3 109.1 0.004

blockmap-15-02 47.5 187.5 110.9 0.066

blockmap-20-02 303.0 1332.8 709.2 0.245

blockmap-22-02 473.1 - 1701.7 0.403

mastermind-03-08-03 3.1 - 2.9 0.021

mastermind-03-08-04 50.2 - 15.8 0.190

mastermind-03-08-05 716.5 - 345.7 4.104

mastermind-04-08-03 7.0 - 7.4 0.053

mastermind-04-08-04 346.4 - 115.8 1.181

alarm 0.2 29.9 0.1 0.003

hailfinder 2.3 5.1 0.5 0.013

munin2 - - 1930.8 0.625

munin3 - - 784.1 0.365

munin4 - - 541.5 0.528

pathfinder - 59.9 4.7 0.009

pigs 89.6 - 49.9 0.163

tcc 0.5 - 0.9 0.012

water 5.4 75.3 0.9 0.010
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Table 9
Similar to Table 8 but using a faster computer applied to networks on which Ace
sometimes had more difficulty than Cachet. Note that each row corresponds to a
single network, unlike Table 8, in which some rows correspond to an average over ten
networks. Online time is averaged over ten evidence sets, where for each evidence
set, we compute probability of evidence and a posterior marginal for every network
variable.

Cachet Encoding Ace Encoding

Avg.

Ace Comp. Cachet Srch. Ace Comp. Ace Online

Network Time (s) Time (s) Time (s) Time (s)

grid-75-24-02 2.4 0.5 2.0 0.004

grid-75-24-04 333.9 882.9 39.0 0.127

grid-75-24-06 555.0 1,467.8 134.3 0.623

grid-75-24-08 69.3 258.9 33.5 0.129

grid-75-24-10 - - 97.9 0.426

grid-90-42-02 - 126.4 22.9 0.022

grid-90-42-04 - - - -

grid-90-42-06 - 1,918.2 865.2 1.490

grid-90-42-08 - - - -

grid-90-42-10 - - 1,455.9 2.718

or-070-20-02-10 6.1 12.8 19.5 0.154

or-070-20-04-10 129.1 181.6 - -

or-070-20-06-10 20.8 37.6 208.1 1.252

or-070-20-08-10 288.5 172.3 - -

or-070-20-10-10 27.8 33.0 120.2 0.820

or-100-20-02-20 108.8 106.5 - -

or-100-20-04-20 26.8 126.8 70.1 0.523

or-100-20-06-20 243.5 197.7 - -

or-100-20-08-20 127.9 94.9 1,110.9 4.761

or-100-20-10-20 55.3 225.4 365.6 2.350

the blockmap and mastermind networks. The networks in the second group,
from [1], contain multi–valued variables, lesser amounts of determinism, and
in some cases, large CPTs. On these networks, both Cachet and Ace struggle.
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It is important to realize that the goal in these initial columns was to isolate
differences as much as possible to those resulting from search vs. compilation.
Consequently, we used the same CNF encoding for both tools, even though
each tool most naturally prefers its own encoding. 8 Moreover, we disabled
in Ace many features for exploiting other types of local structure beyond
determinism, which often improve efficiency (e.g., encoding equal parame-
ters, structured resolution, eclauses, etc.), because Cachet does not implement
them. Finally, we used precisely those options recommended by the authors of
the programs in all experiments. 9 Even with all of these measures, it turns out
to be difficult to compare search to compilation using current tools, because
Cachet and Ace differ in many additional ways that could not be excluded
from the experiments. For example, each tool implements different methods
for decomposition, variable splitting, and caching.

We also ran Ace using its own native encoding and turning on all of its
additional features for exploiting local structure, which we will describe more
in Section 5. Compilation times in this case are shown in the fourth column of
Table 8. Finally, once compilation is complete, we can use the compiled form
to answer many queries. The fifth column shows the time to compute, for
given evidence, the probability of evidence and a posterior marginal on each
network variable, averaged over ten different evidence sets. Once compilation
is complete, this online inference may be repeated for as many evidence sets
as desired, and the variance in the time required is very small. For networks
in the first group, using Ace’s own encoding sometimes reduces compilation
times significantly, as in the grid networks, but it also sometimes increases
compilation time, as in the OR and blockmap networks. One reason for these
losses is that Ace applies many techniques to exploit local structure other
than determinism. When such other structure does not exist, these techniques
serve to increase overhead. For the networks in the second group, utilizing
other forms of local structure than determinism benefits compilation time
significantly. In both groups, the advantages of compilation become apparent,
when one examines the online times, which are orders of magnitude faster
than the search times.

For each of the grid, OR, blockmap, and mastermind networks, there were a
large number of networks from which to choose, providing a range of difficul-
ties. In general, the results presented in Table 8 are representative across all
difficulties. However, some of the grid and OR networks were more problem-
atic for Ace. Results for some of these more problematic networks are shown

8 We used Cachet’s encoding, because Cachet does not work currently with Ace’s
default encoding.
9 Thanks to Tian Sang for suggesting Cachet’s settings and for other assistance.
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in Table 9, 10 where each row represents a single experiment, in contrast to
Table 8, in which some rows correspond to averages over similar networks.

In general, one would expect search to be somewhat more efficient than com-
pilation, since it does not need to keep a trace of its actions as compilation
does. In these experiments, this was not always the case, because we were not
able to do a pure comparison of search vs. compilation. Nevertheless, these
numbers should give some insight into the current stat–of–the–art tools for
performing inference by WMC.

5 Local Structure and Evidence

The WMC approaches discussed thus far perform well on networks where
variables are binary, CPTs are small, and where there is massive determinism.
However, on other types of networks, the generated CNF encodings can be
quite large, challenging state of the art WMC systems. In this section, we
review work that enhances ENC1 and scales the WMC approach to perform
well on a much wider variety of networks and problems. In previous sections,
we discussed the encoding of determinism, which can be very effective. In this
section, we discuss the encoding of other forms of structure, including equal
parameters, decomposability, and evidence.

5.1 Equal Parameters

Table 10, repeated from [1], lists a set of benchmark networks, some having
variables with large cardinalities, others having very large CPTs, and where
the amount of determinism is not necessarily excessive. Table 11, also repeated
from [1], provides statistics on the CNFs generated for some of these networks,
according to ENC1, which includes encoding of determinism as discussed in
Section 3.1. These CNFs are quite large, but the striking property is the large
percentage (up to 99% in some cases) of Boolean variables that represent pa-
rameters as opposed to those representing indicators. Some of these CNFs
proved initially challenging to compile, some taking too long and others run-
ning out of memory.

Consider the CPT depicted in Table 12, which has 12 parameters, yet only
5 of these are distinct. One would want to exploit parameter equality, at
least to reduce the number of Boolean variables one must generate. Table 10

10 We used a faster computer for these experiments, because both Cachet and Ace
often timed out using the slower computer.
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Table 10
Information from [1] on the networks utilized in experiments.

Max Ave

Max Ave Total CPT CPT

Network Clust Vars Card Card Parms Parms Parms %Det %DP

alarm 7.2 37 2-4 2.8 752 108 20 0.9 24.6

bm 20.0 1005 2-2 2.0 6972 8 7 99.6 100.0

diabetes 17.2 413 3-21 11.3 461069 7056 1116 78.2 17.6

hailfinder 11.7 56 2-11 4.0 3741 1188 67 15.7 26.9

mildew 21.4 35 3-100 17.6 547158 280000 15633 93.2 25.1

mm 23.0 1220 2-2 2.0 8326 8 7 98.7 75.0

munin1 26.8 189 1-21 5.3 19466 600 103 66.5 61.2

munin2 18.6 1003 2-21 5.4 83920 600 84 63.3 69.5

munin3 17.8 1044 1-21 5.4 85855 600 82 63.1 71.3

munin4 21.4 1041 1-21 5.4 98183 600 94 64.5 65.3

pathfinder 15.0 109 2-63 4.1 97851 8064 898 56.1 5.1

pigs 17.4 441 3-3 3.0 8427 27 19 56.2 23.9

students 22.0 376 2-2 2.0 2616 8 7 90.7 79.3

tcc4f 10.0 105 2-2 2.0 3236 512 31 0.4 35.6

water 19.9 32 3-4 3.6 13484 3072 421 54.0 57.0

Table 11
Information from [1] on CNFs generated by ENC1 (determinism encoded).

Network CNF Vars Parm Vars Clauses Literals

pathfinder 55,229 54,781 300,576 821,814

water 6,630 6,514 49,367 152,686

mildew 38,540 37,924 683,552 1,958,952

munin1 9,551 8,556 49,363 129,358

munin4 48,864 43,216 247,582 641,839

diabetes 113,527 108,845 814,412 2,196,008

shows the extent to which parameter equality can help. In particular, the table
reports as %Det the percentage of parameters that are extreme (0 or 1) and as
%DP the percentage of non–extreme parameters that would remain if, for each
CPT, one collapsed equal parameters into a single parameter. The dramatic
example is pathfinder, where roughly have of its parameters are extreme, and
therefore benefit by encoding determinism, and where only 5% of the non–
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Table 12
A CPT showing local structure in the form of determinism and CSI.

row A B C Pr(c | a, b)

1 a1 b1 c1 θc1|a1b1 = 0

2 a1 b1 c2 θc2|a1b1 = 0.5

3 a1 b1 c3 θc3|a1b2 = 0.5

4 a1 b2 c1 θc1|a1b2 = 0.2

5 a1 b2 c2 θc2|a1b1 = 0.3

6 a1 b2 c3 θc3|a1b1 = 0.5

7 a2 b1 c1 θc1|a2b2 = 0

8 a2 b1 c2 θc2|a2b2 = 0

9 a2 b1 c3 θc3|a2b1 = 1

10 a2 b2 c1 θc1|a2b1 = 0.2

11 a2 b2 c2 θc2|a2b2 = 0.3

12 a2 b2 c3 θc3|a2b2 = 0.5

extreme parameters would remain after collapsing.

A key observation is that for ENC1, no two parameter variables generated for
the same CPT can both be set to true in the same model, since they correspond
to inconsistent network instantiations. This observation suggests that we can
use the same Boolean variable to represent multiple parameters, provided that
such parameters have equal values and appear in the same CPT. However,
the idea will not work when applied directly to ENC1. Consider again the
CPT in Table 12. If we use the same CNF variable θ to represent parameters
Pr(c2|a1, b1) and Pr(c3|a1, b2), which are both equal to 0.5, we would get the
following parameter clauses in the CNF:

λa1 ∧ λb1 ∧ λc2 ⇔ θ λa1 ∧ λb2 ∧ λc3 ⇔ θ (4)

θ then implies incompatible configurations of the variables A, B, and C, as
enforced by the indicator clauses for those variables. The undesired result is
the removal from the theory of all models that set variable θ to true. The
solution adopted in [1] is to convert the equivalence in the parameter clauses
of ENC1 to an implication. The clauses in Equation 4 are therefore changed
to the following:

λa1 ∧ λb1 ∧ λc2 ⇒ θ λa1 ∧ λb2 ∧ λc3 ⇒ θ (5)

For the moment, assume that we have not merged parameter variables. For
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each parameter variable θxi|u1,u2,...,un , rather than asserting ENC1 parameter
clauses, we assert the following clause:

ENC3 Parameter Clause:

λu1 ∧ λu2 ∧ . . . ∧ λun ∧ λxi
⇒ θxi|u1,u2,...,un

Changing the equivalence to an implication is equivalent to introducing addi-
tional (unintended) models into the logical theory. However, these unintended
models can be filtered since their cardinalities (the number of variables they
set to true) are larger than the cardinality of original models (which all have
the same cardinality) [1]. An operation called minimization performs exactly
the desired filtering operation. We now provide an example of how minimiza-
tion restores the theory by removing unintended models. Consider a Bayesian
network having just a single binary variable X with values x1 and x2, where
Pr(x1) = 0.1. For ENC3, the CNF variables are Ix1 , Ix2 , Px1 , and Px2 . The
weights are as follows:

W (¬Ix1) = 1.0 W (Ix1) = 1.0

W (¬Ix2) = 1.0 W (Ix2) = 1.0

W (¬Px1) = 1.0 W (Px1) = 0.1

W (¬Px2) = 1.0 W (Px2) = 0.9

The ENC3 CNF consists of four clauses as follows:

Ix1 ∨ Ix2 ¬Ix1 ∨ ¬Ix2

Ix1 ⇒ Px1 Ix2 ⇒ Px2

The logic therefore has four models having the weights shown below:

Model Weight

(1) Ix1 , ¬Ix2 , Px1 , ¬Px2 1 ∗ 1 ∗ 0.1 ∗ 1 = 0.1

(2) Ix1 , ¬Ix2 , Px1 , Px2 1 ∗ 1 ∗ 0.1 ∗ 0.9 = 0.09

(3) ¬Ix1 , Ix2 , Px2 , ¬Px1 1 ∗ 1 ∗ 0.9 ∗ 1 = 0.9

(4) ¬Ix1 , Ix2 , Px2 , Px1 1 ∗ 1 ∗ 0.9 ∗ 0.1 = 0.09

Observe that the models are not in one–to–one correspondence with instan-
tiations of network variables. Since no evidence has been incorporated, we
would want a weighted model count to be 1.0. However, the sum of the counts
for these four models is 1.18. Now consider what happens when we minimize
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the theory described by the CNF. In this case, we remove models that set
more than two variables to true, leaving us with models (1) and (3). Now the
models are indeed in one–to–once correspondence with the instantiations of
network varibles. In fact, the set of models is the same as would be produced
by ENC1. Moreover, the weighted model count is now 1.0.

By using ENC3 parameter clauses, we can now safely represent all equal pa-
rameters within the same CPT by a single Boolean variable in the CNF encod-
ing, provided that we minimize also. For the pathfinder network for example,
this drops the number of Boolean variables needed to represent non–extreme
parameters from 42, 946 to 2, 186, a 95% reduction! Similar reductions are ob-
tained for many other networks; see Table 10. In general, minimizing a logical
theory is expensive. However, minimizing a d–DNNF is linear in the size of the
d–DNNF [33]. Consequently, minimizing increases compilation time by only a
constant factor. The hope is that gains from encoding equal parameters will
outweigh this modest loss by reducing compilation time and the size of the
compiled representation (for more efficient online inference).

In addition to equal parameters, several other techniques are presented in [1]
for improving performance, which we summarize next. The CNF compilation
algorithm employs two key techniques. The first is variable splitting, which
can be thought of as doing case analysis. The second is caching, so that one
can avoid factoring the same CNF subset multiple times. Which variables the
algorithm ends up splitting on can very much affect its running time, and
the size of factorizations it generates. Moreover, the complexity of the caching
scheme is proportional to the number of variables appearing in the cached CNF
subset, as the state of such variables are used to generate keys that uniquely
define CNFs. The following observations state interesting properties of our
CNF encodings, which if passed to the factoring algorithm can significantly
improve both the splitting and caching processes.

First, if two clauses share a parameter variable, then their indicators must
be over the same network variables. This property allows the CNF factor-
ing algorithm to restrict its splitting to indicator variables, which would be
sufficient to decompose the problem into independent components (hence, no
splitting/case analysis is needed on parameter variables). Second, given the
structure of indicator and parameter clauses, the state of indicator variables
are sufficient to characterize the state of parameter variables. This property
allows us to only involve indicator variables when generating CNF keys dur-
ing the caching process. Both of the above optimizations can be exploited by
simply identifying parameter variables to the factoring algorithm.

Another technique involves the construction of a decomposition tree (dtree)
for the given Bayesian network, and then converting it into a dtree for its
CNF encoding, which is used to drive the compilation algorithm. A dtree for
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a Bayesian network is simply a binary tree whose leaves correspond to the
network CPTs [8]. A dtree for a CNF is also a binary tree, but its leaves
correspond to the CNF clauses. Since each clause in the CNF encoding is
generated by a CPT, we can convert a network dtree into a CNF dtree by
simply unfolding each dtree node corresponding to a CPT into a subtree whose
leaves correspond to the clauses generated by that CPT. The main point of this
technique is to more efficiently generate dtrees for very large CNF encodings
that are generated by Bayesian networks with a small number of CPTs (this
happens when the network contains very large CPTs).

Our CNF encodings utilize some additional enhancements, two of which are
described next. First, we define a new type of clause, called an eclause, which
has the same syntax as a regular clause but stronger semantics: it asserts that
exactly one of its literals is true. We use eclauses for representing indicator
clauses, therefore reducing the size of CNFs considerably in networks hav-
ing multi–valued variables. Moreover, we outfit the DPLL procedure used in
factoring the CNF to work directly with eclauses, without having to unfold
them into regular clauses. For another optimization example, the indicators
and parameters corresponding to the same state of a root variable are logi-
cally equivalent, making it possible to delete the parameter variables and the
corresponding parameter clauses, which establish the equivalence.

Experiments reported in [1] show that by incorporating equal parameters,
splitting on indicator variables only, caching only indicators, and generating
a dtree from the network, large improvements can be obtained over ENC1
both in offline compilation time and in online inference time. Note that the
purpose here is not simply to compare two encodings but to show what can
be gained by communicating additional structure to the WMC algorithm.
Table 13 shows some of the results from that paper. The most important
point is the improvement to compile times (vs. ENC1) and improvement in
online inference times (vs. jointree). Improvements are order–of–magnitude
or more in many cases. Moreover, in some cases, the additional use of local
structure allowed compilation to succeed, where it failed previously.

In the context of compilation, we have reviewed how ENC1 can be changed
into ENC3 to capture local structure in addition to determinism, most notably
by encoding equal parameters. A search algorithm could utilize ENC3 and
other advances discussed in this section in the same way that compilation does.
Although the same techniques cannot be applied as–is to ENC2, it is likely
that there exist other methods to capture equal parameters within ENC2.

We close this section with another empirical comparison that has not pre-
viously been addressed in the literature, between compilation using ENC2
and compilation using ENC3 and the other enhancements described in this
section, in the same manner as we compared ENC1 to ENC3. To make the
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Table 13
Results from [1] comparing ENC3 and other advances to ENC1 compile times and
ENC3 and other advances to jointree online inference times. Dash indicates failure.
Online time is averaged over sixteen evidence sets, where for each evidence set, we
compute probability of evidence and a posterior marginal for every network variable.

Offline Compile Time (s) Avg. Online Inf. Time (s)

Network ENC1 ENC3 Improv. Jointree ENC3 Improv.

alarm 0.93 0.52 1.8 0.004 0.001 6.4

bm-5-3 2.51 1.11 2.3 10.322 0.006 1,814.8

diabetes — 2269.05 — 2.318 1.017 2.3

hailfinder 2.26 0.86 2.6 0.008 0.004 2.2

mildew — 7483.8 — 0.837 0.209 4.0

mm-3-8-3 7.44 1.87 4 15.509 0.013 1,181.6

munin1 — 1534.97 — 82.605 2.807 29.4

munin2 3248.42 225.46 14.4 1.770 0.412 4.3

munin3 1553.43 151.72 10.2 1.168 0.228 5.1

munin4 2440.3 677.92 3.6 8.621 0.481 17.9

pathfinder 226.37 20.36 11.1 0.105 0.004 23.7

pigs 110.1 17.84 6.2 0.216 0.100 2.2

students-3-2 1.53 0.82 1.9 3.499 0.004 799.7

tcc4f.obfuscated 4.11 1.15 3.6 0.009 0.003 2.8

water 34.82 4.83 7.2 1.418 0.013 107.5

comparison as fair as possible, for each network evaluated, we use the same
dtree for both encodings and compile using the c2d compiler. Table 14 shows,
for two sets of networks and both encodings, the CNF size, the compile time,
and the compilation size. Recall that in general the CNF produced by ENC2
could be smaller than that produced by ENC1, and that there is a similar
decrease in compile time. Comparing ENC2 to ENC3 shows that in general
the CNF sizes are much more similar. Despite the similar size, ENC3 con-
sistently outperforms ENC2 in compile time, especially on the networks in
the second group, which have non–binary variables, larger CPTs, and lesser
amounts of determinism. Recall also that ENC2 produced compilations of
roughly the same size as ENC1 and failed on exactly the same networks. In
contrast, we see that when there is local structure other than determinism,
as in the case of the second set of networks, ENC3 is capable of producing
significantly smaller compilations and succeeds more often.
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Table 14
Comparison of ENC3 and other advances with ENC2; compilation performed using
the c2d compiler on a 1.6GHz Pentium M with 2GB of memory. Dash indicates
failure.

ENC2 ENC3 ENC2 ENC3 ENC2 ENC3

CNF CNF Comp. Comp. Comp. Comp.

Network Size Size Time (s) Time (s) Edges Edges

Grid-50-16-1 5,112 5,624 127.97 95.69 14,869,887 15,000,534

Grid-50-16-2 5,316 5,828 207.22 145.98 21,872,882 21,871,736

Grid-50-16-3 4,960 5,472 53.20 40.79 6,052,060 6,042,590

Grid-50-16-4 5,164 5,676 162.44 117.56 16,703,733 16,405,776

Grid-50-16-5 5,240 5,752 150.67 115.39 13,867,070 13,905,110

Grid-50-16-6 5,168 5,680 57.60 42.34 5,294,194 4,878,566

Grid-50-16-7 5,068 5,580 115.70 91.36 12,366,429 12,400,554

Grid-50-16-8 5,120 5,632 52.50 41.46 5,817,835 5,821,550

Grid-50-16-9 5,560 6,072 67.60 52.89 6,199,093 6,164,233

Grid-50-16-10 5,368 5,880 98.18 71.52 10,670,540 10,416,538

bm-5-3 10,012 12,011 0.20 0.26 18,982 18,770

mm-3-8-2 11,880 14,401 1.26 1.56 284,901 276,198

st-3-2 4,323 5,663 0.23 0.26 28,342 28,277

alarm 4,111 3,342 0.14 0.25 5,621 2,711

diabetes 1,498,051 1,261,325 – 2,308.67 – 15,388,737

hailfinder 20,052 16,546 0.53 0.27 25,676 15,780

mildew 1,619,395 1,494,824 2,713.99 1,583.02 2,752,047 2,601,210

munin2 294,528 217,470 1,518.62 293.68 6,144,328 3,757,857

munin3 303,670 222,687 671.36 185.86 5,344,186 2,542,759

munin4 335,422 261,017 – 409.58 – 8,217,229

pathfinder 325,890 337,901 14.94 7.76 159,716 35,852

pigs 24,689 26,187 47.49 22.63 2,207,534 1,606,319

tcc4f 26,056 26,287 0.69 0.41 38,938 23,052

water 75,778 77,524 8.19 3.69 265,141 101,061

5.2 Decomposability

We review work from [3] in this section, which introduced an encoding method
that retains the advantages of ENC3 while making it easier for algorithms to
benefit computationally from the encoded local structure. The work is based
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A B C Pr(c|a, b)

a1 b1 c1 0.7 (θ1)

a1 b1 c2 0.0 (false)

a1 b1 c3 0.3 (θ2)

a1 b2 c1 0.4 (θ3)

a1 b2 c2 0.3 (θ2)

a1 b2 c3 0.3 (θ2)

a2 b1 c1 0.333 (θ4)

a2 b1 c2 0.333 (θ4)

a2 b1 c3 0.333 (θ4)

a2 b2 c1 0.2 (θ5)

a2 b2 c2 0.3 (θ2)

a2 b2 c3 0.5 (θ6)

λa1 ∧ λb1 ∧ λc1 ⇒ θ1

¬λa1 ∨ ¬λb1 ∨ ¬λc2

λa1 ∧ λb1 ∧ λc3 ⇒ θ2

λa1 ∧ λb2 ∧ λc1 ⇒ θ3

λa1 ∧ λb2 ∧ λc2 ⇒ θ2

λa1 ∧ λb2 ∧ λc3 ⇒ θ2

λa2 ∧ λb1 ∧ λc1 ⇒ θ4

λa2 ∧ λb1 ∧ λc2 ⇒ θ4

λa2 ∧ λb1 ∧ λc3 ⇒ θ4

λa2 ∧ λb2 ∧ λc1 ⇒ θ5

λa2 ∧ λb2 ∧ λc2 ⇒ θ2

λa2 ∧ λb2 ∧ λc3 ⇒ θ6

λa1 ∧ λb1 ∧ λc1 ⇒ θ1

¬λa1 ∨ ¬λb1 ∨ ¬λc2

λa1 ∧ λc3 ⇒ θ2

λb2 ∧ λc2 ⇒ θ2

λa1 ∧ λb2 ∧ λc1 ⇒ θ3

λa2 ∧ λb1 ⇒ θ4

λa2 ∧ λb2 ∧ λc1 ⇒ θ5

λa2 ∧ λb2 ∧ λc3 ⇒ θ6

(a) (b) (c)

Fig. 4. (a) A CPT over three variables, (b) Clauses generated by the encoding from
[1] for the CPT, and (c) an equivalent encoding.

on the observation that CNF syntax can sometimes stand in the way of rec-
ognizing independent components when running a model counting algorithm,
since these algorithms typically depend on syntactic checks for identifying in-
dependent components. Hence, the approach tries to empower the syntactic
identification of components by preprocessing the encoding in order to simplify
it and make it more semantically revealing.

For an example, consider Figure 4(a) and observe that given values for certain
variables, other variables sometimes become irrelevant. For example, given
A = a2 and B = b1, the probability no longer depends upon C (C has a
uninform probability). Moreover, given values A = a1 and C = c3, variable
B becomes irrelevant to the probability. This phenomenon is similar to, but
more general than, context–specific–independence (CSI) [10] and can be very
powerful. Yet, search algorithms can fail to exploit this structure, even if it is
encoded correctly. For example, even though this structure is encoded by the
clauses in Figure 4(b) and the equivalent ones in Figure 4(c), it was shown
empirically and analytically in [3] that search algorithms will better exploit
this structure when applied to the simplified clauses in Figure 4(c). The main
reason is that the simplified clauses will tend to have fewer occurrences of
irrelevant variables as we set variables in search process, allowing one to more
easily recognize independent components based on syntactic checks.
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Before defining a general procedure for simplifying the clauses of a given CPT
as discussed above, we observe that because we are working with multi–valued
variables, it makes sense to use a multi–valued form of resolution. We therefore
define a logic over multi–valued variables X. The syntax of the logic is identical
to that of standard propositional logic, except that an atom is an assignment
to a variable in X of a value in its domain. For example, C = c2 is an atom.
The semantics is also like that of standard propositional logic, except that
a world, which consists of an atom for each variable, satisfies an atom iff it
assigns the common variable the same value. Within this logic, a term over
X′ ⊆ X is a conjunction of atoms, one for each variable in X′. Let Γ be a
disjunction of terms over X. An implicant γ of Γ is a term over X′ ⊆ X that
implies Γ. A prime implicant γ of Γ is an implicant that is minimal in the
sense that the removal of any atom would result in a term that is no longer
an implicant of Γ.

Algorithm 1 EncodeCPT(φ: CPT) Generates a set of clauses for φ.

Partition the rows of φ into encoding groups
for each encoding group Γ do
M ← terms of Γ
θ ← consequent of Γ
P ← the prime implicants of M
for p in P do
I ← encoding of p
if θ = 0 then

assert clause ¬I
else

assert clause I ⇒ θ
end if

end for
end for

Given these definitions, we can encode the network by generating the same
CNF variables and indicator clauses as in ENC3 and by generating clauses
for each CPT according to Algorithm 1. We are also able to use the other
improvements (e.g., branching on indicators only) from the previous section.
This algorithm encodes a CPT φ over variables X by first partitioning the CPT
into encoding groups, which are sets of rows that share the same parameter
value. Note that each row in the CPT induces a term over variables X and
so each encoding group induces a set of terms. Moreover, the terms within an
encoding group will share a common parameter variable or all correspond to
falsehood. We refer to this variable (or falsehood) as the consequent of the
encoding group. To process encoding group Γ, we find the prime implicants
of Γ’s terms, and for each prime implicant p, we assert a clause I ⇒ θ, where
I is the conjunction of indicators corresponding to p, and θ is the consequent
of the encoding group. If the parameter θ equals 0, we simply generate the
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Encoding Param Conse- Prime

Group Value Terms quent Implicants Encoding

Γ1 .7 a1b1c1 θ1 a1b1c1 λa1 ∧ λb1 ∧ λc1 ⇒ θ1

Γ2 0 a1b1c2 false a1b1c2 ¬λa1 ∨ ¬λb1 ∨ ¬λc2

Γ3 .3 a1b1c3, a1b2c2, θ2 a1c3, b2c2 λa1 ∧ λc3 ⇒ θ2,

a1b2c3, a2b2c2

λb2 ∧ λc2 ⇒ θ2

Γ4 .4 a1b2c1 θ3 a1b2c1 λa1 ∧ λb2 ∧ λc1 ⇒ θ3

Γ5 .333 a2b1c1, a2b1c2, θ4 a2b1 λa2 ∧ λb1∧ ⇒ θ4

a2b1c3

Γ6 .2 a2b2c1 θ5 a2b2c1 λa2 ∧ λb2 ∧ λc1 ⇒ θ5

Γ7 .5 a2b2c3 θ6 a2b2c3 λa2 ∧ λb2 ∧ λc3 ⇒ θ6

Fig. 5. Encoding a CPT using prime implicants.

clause ¬I. Figure 5 demonstrates this algorithm for the CPT in Figure 4(a).

The algorithm we use to find prime implicants is an extension of the venerable
Quine-McCluskey (QM) algorithm (e.g., [37]). QM works only for binary vari-
ables, so we extend it to multi–valued variables in a straightforward manner.
Extensions of the QM algorithm for multi–valued variables are common, some
of them defining a prime implicant differently (e.g., [38]). The definition given
here was found effective for the purpose at hand.

The new encoding method, which we call ENC4, defines a structured resolu-
tion strategy. The strategy is structured in the sense that rather than working
on a set of clauses, the strategy works on a partition of clauses, and restricts
resolution to clauses within the same element of the partition. Each element
in the partition corresponds to clauses belonging to the same CPT and having
the same consequent.

We now make two important observations. First, even though computing
prime implicants can be expensive in general, [3] provides extensive exper-
iments showing that the increase in encoding time is actually negligible (we
omit these results for brevity). This efficiency stems from the small number
of variables involved in the computation (those appearing in a CPT). Second,
the primary advantage of ENC4 is the removal of spurious occurrences of
literals, transforming a set of terms into a more minimal set. This removal of
literals allows us to decompose more often without resorting to splitting.
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Experimental results in [3] show that ENC4 can significantly outperform
ENC3 in both compile time and the size of the resulting compilation. We
repeat a few of those results in Table 15. Compile times improve anywhere
from 1.45 times to over 17 times. Moreover, many of the grid networks and
also barley caused the compiler to run out of memory (as indicated by dashes)
when applied to ENC3 but compiled successfully using ENC4. The last three
columns show the improvement to the size (number of edges) of the result-
ing compilations. Here, we see that on networks where ENC3 was successful,
ENC4 sizes were sometimes comparable and otherwise significantly reduced.

5.3 Evidence

It is well–known that exploiting evidence can make inference in a Bayesian net-
work more tractable. Two of the most common techniques are removing leaf
nodes that are not part of the evidence or query [39] and removing edges outgo-
ing from observed nodes [40]. These preprocessing steps, which we call classical
pruning, can significantly reduce the connectivity of the network, making ac-
cessible many queries that would be inaccessible otherwise. Although classical
pruning can be very effective, one can identify situations where it does not
exploit the full power of evidence, especially when the network contains local
structure. The investigation in [2] demonstrates how WMC provides a natu-
ral and effective method of exploiting evidence that can provide much more
benefit than classical pruning. The paper works within the context of ENC1
and compilation. This section reviews that work and then says a few words on
how these same concepts also apply to search algorithms and other encodings.

In Section 2.2, we described two ways of incorporating evidence into the WMC
framework. Within the context of compilation, the first method compiles the
CNF into an AC without evidence, and for each query, adjusts the weights of
indicators to account for the evidence. This approach has the advantage that
the compiled AC can answer multiple queries with respect to any evidence.
However, sometimes the compilation task is too difficult, causing the compiler
to take too long or run out of memory. Even when compilation succeeds, the
resulting AC may be too large for some tasks. The second method is described
in this section and works by conjoining the CNF with unit clauses that encode
the evidence e prior to compiling, thereby eliminating from the theory models
inconsistent with the evidence. The advantage is that compilation can become
more tractable, and the resulting AC may be much smaller. The disadvantage
is that the resulting AC is then only good for answering queries with respect
to evidence that is a superset of e.

The benefit of compiling with evidence may seem illusory at first, since it re-
stricts the set of queries. However, one of the contributions of [2] is to identify
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Table 15
Results for compiling a number of networks using ENC3 and the ENC4 encoding.

Max. ENC3 ENC4 Imp- ENC3 ENC4 Imp-

Clst. Comp. Comp. rove- Comp. Comp. rove-

Network Size Time(s) Time(s) ment Size Size ment

s1238 61.0 11.32 1.83 6.19 853,987 263,786 3.24

s526n 18.0 0.23 0.12 1.92 10,088 10,355 0.97

s526 18.0 0.22 0.14 1.57 13,352 14,143 0.94

s641 19.0 2.54 0.38 6.68 78,071 36,555 2.14

s1494 48.0 1.82 0.44 4.14 419,274 85,469 4.91

s838.1 13.0 0.43 0.20 2.15 49,856 30,899 1.61

bm-05-03 19.0 0.29 0.20 1.45 19,190 10,957 1.75

bm-15-03 62.0 254.96 44.07 5.79 7,351,823 1,460,842 5.03

bm-22-03 107.0 4,869.64 748.13 6.51 72,169,022 14,405,730 5.01

or-60-20-1 24.0 338.48 54.47 6.21 6,968,339 7,777,867 0.90

or-60-20-3 25.0 1.40 0.77 1.82 104,275 119,779 0.87

or-60-20-5 27.0 728.36 118.17 6.16 17,358,747 14,986,497 1.16

or-60-20-7 26.0 250.72 97.13 2.58 11,296,613 12,510,488 0.90

or-60-20-9 25.0 19.58 7.17 2.73 1,011,193 1,060,217 0.95

gr-50-16-1 24.0 137.25 43.95 3.12 14,692,963 5,739,854 2.56

gr-50-16-3 24.0 65.03 40.45 1.61 7,755,318 5,280,027 1.47

gr-50-16-5 25.0 - 26.70 - - 3,431,139 -

gr-50-16-7 24.0 51.68 2.99 17.28 6,413,897 421,060 15.23

gr-50-16-9 24.0 - 60.55 - - 7,360,872 -

gr-50-18-1 27.0 411.45 48.36 8.51 39,272,847 6,451,916 6.09

gr-50-18-3 27.0 362.90 29.18 12.44 32,120,267 2,507,215 12.81

gr-50-18-5 27.0 - 158.13 - - 18,291,116 -

gr-50-18-7 27.0 - 79.97 - - 9,439,318 -

gr-50-18-9 27.0 - 68.51 - - 7,890,645 -

many practical situations where restricting evidence in this way can be very
practical. First, the evidence may be fixed on only a subset of the variables,
leaving room for posing a large number of queries with respect to other vari-
ables (this happens in MAP algorithms, e.g., [41–43]). Second, one may be
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interested in estimating the value of network parameters which will maximize
the probability of given evidence (this happens, for example, in genetic linkage
analysis [44,45]). In this case, one may want to use iterative algorithms such
as EM or gradient ascent [46], which pose many network queries with respect
to the given evidence but different network parameter values. A similar ap-
plication appears in sensitivity analysis [47], where the goal is to search for
some network parameters that satisfy a given constraint . The change to the
encoding of the network into CNF is simple: for each network variable X set
to value x by the evidence, assert the unit clause λx into the CNF. However,
the effect of this seemingly innocent action can belie its true power. Several
detailed examples are provided in [2], which demonstrate how the introduction
of such unit clauses can reduce the work required of the compilation algorithm.
We repeat one of these examples next.

The example is from genetic linkage analysis, and is a common occurrence
in that domain. It involves four variables: child C with parents A,B, and S.
The variable C is the genotype in a child which is inherited from one of the
parent’s genes, A/B, based on the value of selector S. We assume that all
four variables are binary and that the portion of the CPT with S = s1 is as
follows, 11

S A B C Pr(C|A,B)

s1 a1 b1 c1 1.0

s1 a1 b2 c1 1.0

s1 a2 b1 c2 1.0

s1 a2 b2 c2 1.0

As described in Section 4.1, the algorithm on which the compilation is based
works by repeatedly conditioning to decompose the CNF. Let us consider the
case where we are given evidence {c1}, and during compilation, we condition
on S = s1. Assuming a proper encoding of the network into CNF, combining
the evidence with the value for S allows us to infer a1, which unit resolution
can use to achieve further gains. Conditioning on S = s2 yields a similar
conclusion for b1. In this case, the full power of conditioning on S is realized
only when combined with evidence on C. This example reveals how evidence
can combine with the operations of the compilation algorithm to simplify the
task.

Recall that classical pruning severs edges leaving evidence nodes and deletes
certain leaf nodes. Injecting unit clauses is analogous to this severing of edges
but is strictly more powerful for several reasons. First, this technique not only

11 In general, the variables are multi–valued, and this discussion also applies in this
case.
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exploits the fact that a variable has been instantiated, but also exploits the
specific value to which it has been instantiated. Second, rather than simply
affecting the CPTs of children of evidence nodes, injecting unit clauses can
affect many more parts of the network since unit clauses will often allow the
WMC algorithm to infer additional unit clauses, and the effects can propagate
to many ancestors and many descendants of evidence nodes. Third, rather than
only realizing a limited number of gains during initialization, injecting unit
clauses can continue to realize gains throughout the WMC algorithm. 12

Several results are given in [2] demonstrating large gains when compiling with
evidence. Algorithms that exploit only topological structure could not perform
inference on many of the data sets, even after performing classical pruning,
because of high treewidth. Furthermore, in the majority of cases, applying
classical pruning and compiling the CNF without the introduction of the unit
clauses based on the evidence also failed. However, with the introduction of
the unit clauses, compilation became possible in many cases. Moreover, the
paper showed that the performance of this general technique subsumed the
performance of the specialized quickscore algorithm [13], which capitalizes on
evidence in certain types of diagnostic networks. Finally, the paper showed
that when combined with some aggressive preprocessing and applied to sev-
eral difficult problems from genetic linkage analysis, the technique outper-
formed superlink 1.4, a state–of–the–art system for the task, on a number
of challenging problems.

Table 16 lists a few of the results from the paper from the field of genetic link-
age analysis and compares the performance to that of superlink. There are
several observations. First, general–purpose algorithms that exploit only topo-
logical structure such as jointree could solve only one of the listed networks,
because of high treewidth, even after applying classical pruning techniques.
Second, only one of these networks could be compiled without the introduc-
tion of unit clauses to capture evidence. However, once the unit clauses were
injected, all of the networks yielded to compilation in minutes. Finally, WMC
compilation times are in most cases more efficeint than superlink online
times, and WMC online times are much more efficient still. Given that com-
pilation must occur once, and online inference must be repeated many times,
this effect of this improvement multiplies.

We conclude by noting that ENC2, ENC3, and ENC4 can effectively take
advantage of evidence in the way described in this section, since they utilize
indicator variables in the same way as ENC1. Furthermore, performing WMC
by search can utilize evidence by examining the weights of variables and as-

12 If we are not interested in computing posterior marginals on some variables M,
we can achieve even larger gains by deleting leaf nodes that are not part of the
evidence and not part of M, as with classical pruning.
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Table 16
EE results from [2] with full preprocessing.

Max Comp. Comp. Oneline superlink

Net Clust. Time (s) Size Time (s) Time (s)

ee33 20.2 25.33 2,070,707 0.59 1046.72

ee37 29.6 61.29 1,855,410 0.39 1381.61

ee30 35.9 376.78 27,997,686 8.37 815.33

ee23 38.0 89.47 3,986,816 1.08 502.02

ee18 41.5 283.96 23,632,200 6.63 248.11

serting a negative unit clause any time a weight is equal to 0. In the case of
compilation, the disadvantage of incorporating evidence was that compilation
would need to be performed again for some queries, which removes one of the
chief advantages of compiling (although we have seen that in many practical
cases, this is not necessary). However, in the case of a search, the algorithm
is re–run for each new evidence anyway, so there is really no disadvantage to
incorporating evidence in this case. Encoding evidence in the context of search
algorithms was indeed applied effectively in [16].

6 When WMC Offers No Advantage

In previous sections, we have demonstrated that WMC can outperform algo-
rithms that exploit only topological structure, such as jointree and variable
elimination. However, because WMC incurs overhead looking for ways to ex-
ploit local structure, if there is insufficient local structure, then WMC may
not be the best choice. For example, in the absence of local structure, variable
elimination will outperform WMC by search. The difference will be a constant
factor, but possibly a very large one.

We discuss the effect of limited local structure on compilation in the context
of one last experiment, which has not previously been addressed in the liter-
ature. We first identified a set of networks having treewidth small enough for
the jointree algorithm to work. For each network, we removed all local struc-
ture by setting each parameter to a random number and then normalizing
appropriately. We then compiled the network using Ace (which uses ENC4)
and answered a set of queries using both Ace and jointree. To make the com-
parison as fair as possible, we used the same elimination order to drive Ace
compilation and to construct the jointree. Experiments ran on a 2.13GHz Intel
Core Duo processor with 4GB of RAM.

Table 17 demonstrates that in the absence of local structure, WMC compi-
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Table 17
Ace vs. Jointree when there is no local structure. Online time is averaged over six-
teen evidence sets, where for each evidence set, we compute probability of evidence
and a posterior marginal for every network variable.

Ace Offline Jointree Avg. Ace Avg.

Network Time (s) Online Time (s) Online Time (s) Improv.

alarm 1 0.007 0.005 1.41

bm-5-3 721 3.328 3.965 0.84

diabetes 1,345 1.202 1.268 0.95

hailfinder 3 0.018 0.007 2.66

mm-3-8-3 195 1.117 1.336 0.84

munin2 284 0.764 0.596 1.28

munin3 254 0.495 0.534 0.93

munin4 1,248 1.770 1.872 0.95

pathfinder 37 0.062 0.036 1.72

pigs 41 0.115 0.123 0.93

students-3-2 241 0.961 1.806 0.53

tcc4f.obfuscated 3 0.022 0.007 3.17

water 340 0.659 0.591 1.12

lation will incur significant overhead during the offline phase (more than if
local structure were present), and no online gains will be realized from the
extra work. Online times will be roughly equivalent to jointree times. Online
space will be somewhat larger than jointree space, since the WMC compila-
tion stores both nodes and edges, whereas a jointree can be seen to describe a
similarly sized compilation, yet only nodes need be stored explicitly (see [48]
for details).

7 Conclusion

We provided in this paper a survey and some new results on a class of ap-
proaches for exact probabilistic inference, which reduces the problem to one
of weighted model counting (WMC) on a CNF encoding of a Bayesian net-
work. If the network exhibits sufficient local structure, and if this structure is
captured during the encoding process, then WMC techniques can efficiently
handle networks that have very high treewidths (i.e., ones that are outside the
scope of algorithms that exploit only topological structure). The advantages of
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WMC approaches include a declarative method for encoding local structure,
an ability to leverage highly refined techniques from satisfiability solving, and
a powerful way for exploiting available evidence. Recent literature on WMC
approaches provides different ways of encoding a Bayesian network, different
ways of performing WMC (e.g., search vs compilation), and different degrees
of utilizing local structure. Our survey of recent WMC approaches has been
made systematic by placing these approaches across these three dimensions.
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