
Many-Pairs Mutual Information for
Adding Structure to Belief Propagation Approximations

Arthur Choi and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

{aychoi,darwiche}@cs.ucla.edu

Abstract

We consider the problem of computing mutual informa-
tion between many pairs of variables in a Bayesian net-
work. This task is relevant to a new class of Generalized
Belief Propagation (GBP) algorithms that characterizes
Iterative Belief Propagation (IBP) as a polytree approx-
imation found by deleting edges in a Bayesian network.
By computing, in the simplified network, the mutual in-
formation between variables across a deleted edge, we
can estimate the impact that recovering the edge might
have on the approximation. Unfortunately, it is compu-
tationally impractical to compute such scores for net-
works over many variables having large state spaces.
So that edge recovery can scale to such networks, we
propose in this paper an approximation of mutual in-
formation which is based on a soft extension of d-
separation (a graphical test of independence in Bayesian
networks). We focus primarily on polytree networks,
which are sufficient for the application we consider, al-
though we discuss potential extensions of the approx-
imation to general networks as well. Empirically, we
show that our proposal is often as effective as mutual
information for the task of edge recovery, with orders
of magnitude savings in computation time in larger net-
works. Our results lead to a concrete realization of
GBP, admitting improvements to IBP approximations
with only a modest amount of computational effort.

Introduction

Iterative belief propagation (IBP), often referred also to as
loopy belief propagation (Pearl 1988; Yedidia, Freeman, and
Weiss 2005), is an approximate inference algorithm that
has been critical for enabling certain classes of applications
which could never be handled using exact algorithms due
to the high treewidth of their associated models. For ex-
ample, Turbo decoding, then described as “the most excit-
ing and potentially important development in coding theory
in many years”, as well as low density parity check decod-
ing, have since been shown to be instances of belief propa-
gation in Bayesian networks with loops (Frey and MacKay
1997; McEliece, MacKay, and Cheng 1998). IBP has also
spawned approaches such as Survey Propagation, which
have shown to be capable of solving particularly difficult

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

instances of the satisfiability problem (Braunstein, Mézard,
and Zecchina 2005). IBP has also been applied towards a
variety of computer vision tasks (Szeliski et al. 2006), par-
ticularly stereo vision, where methods based on belief prop-
agation have been particularly successful.

The successes of IBP as an approximate inference algo-
rithm spawned a number of generalizations, in the hopes of
understanding the nature of IBP, and further to improve on
the quality of its approximations. Among the most notable
are the family of Generalized Belief Propagation (GBP) al-
gorithms (Yedidia, Freeman, and Weiss 2005), where the
“structure” of an approximation is given by an auxiliary
graph called a region graph, which specifies (roughly) which
regions of the original network should be handled exactly,
and to what extent different regions should be mutually con-
sistent. IBP occurs as an instance of GBP when the regions
and mutual consistencies are those implied by polytrees. In
order to improve on the quality of an IBP approximation,
one must specify the appropriate structure (i.e., the region
graph) used to drive the GBP algorithm. This by itself can
be a nontrivial task, as networks may not lend themselves to
an obvious choice of regions.

More recently, we identified a special class of GBP
approximations called ED-BP (Choi and Darwiche 2006),
which characterized IBP as an algorithm in a polytree ap-
proximation of the original network, found by deleting
enough edges; cf. (Wainwright, Jaakkola, and Willsky
2003). Edge deletion gives rise to a spectrum of approxima-
tions, with IBP on one end (with a polytree approximation)
and exact inference on the other (when every edge is recov-
ered). In order to identify good approximations within this
spectrum, we can take advantage of the polytree approxima-
tion, using it to find dependencies that call for the recovery
of edges. To this end, we proposed a mutual information
heuristic for edge recovery that we demonstrated to be ef-
fective in improving IBP approximations.

Unfortunately, when many edges are deleted, we must
compute the mutual information between many pairs of vari-
ables, which can be computationally impractical even in
polytrees. The problem becomes increasingly worse for net-
works over many variables, more so when variables have
large state spaces. Therefore, a more efficient approach to
the edge recovery task, and more generally, to the task of
choosing the structure for BP approximations, can poten-

tially extend the success of IBP and GBP algorithms to ap-
plications beyond what they currently reach.

We propose here an approximation to the mutual informa-
tion that is based on a soft extension of the d-separation tests
used for identifying conditional independencies in Bayesian
networks (Pearl 1988). As d-separation verifies the blockage
of information flow between variables of interest, our soft al-
ternative estimates the degree to which this information flow
is throttled. We focus on the key setting for edge recovery,
polytree networks, where our soft extension provides an up-
per bound on the mutual information between a given pair of
variables. We explicate the issues that arise for the problem
of many-pairs mutual information, and illustrate the utility
of our alternative in the edge recovery task. In particular, we
find empirically that our soft d-separation tests effectively
approximate the ranking of edges based on mutual informa-
tion, which in this and many other applications, is the true
task at hand. We further discuss potential extensions of soft
d-separation to general networks as well.

Edge Deletion and Belief Propagation

In (Choi and Darwiche 2006), we proposed an approach to
approximate inference that is based on performing exact in-
ference in a Bayesian network that has been simplified by
deleting edges, where the deletion of an edge further intro-
duces free parameters into the approximation. We further
characterized a set of parameters for deleted edges that in-
duced a class of approximations called ED-BP that:

• yield exact marginals when a single edge deletion splits a
network into two independent subnetworks;

• yield iterative belief propagation (IBP) as a special case of
edge deletion when the approximate network is reduced to
a polytree (any polytree), where IBP approximations for
node and family marginals are the exact node and family
marginals in the polytree ED-BP approximation N ′.

• implied an iterative algorithm (also called ED-BP) for
parametrizing the approximation, in a manner analogous
to message passing in IBP.

WhenN ′ is multiply-connected (i.e., has undirected cycles),
then ED-BP induces a class of GBP approximations.1 There-
fore, by choosing edges to delete, we implicitly choose also
the structure of a GBP approximation.

By deleting edges in a model, we can simplify it until it
is amenable to exact inference. In turn, we can exploit the
simplified model and search for dependencies that call for
the recovery of edges. Indeed, in (Choi and Darwiche 2006),
we proposed a heuristic that ranked deleted edges based on
mutual information scores computed in the polytree approx-
imation. By measuring the mutual information between the
variables across a deleted edge,2 they try to estimate the ex-
tent to which an edge’s deletion split the network into two

1An ED-BP approximation N ′ corresponds to an instance of
GBP run with a particular joingraph (Choi and Darwiche 2006;
Aji and McEliece 2001; Dechter, Kask, and Mateescu 2002).

2When an edge U → X is deleted, the arc is removed, and

a clone Û replaces U as a parent of X . The score given to each

deleted edge was then basically MI (U ; Û | e).

X
C1

D1

S1

C2

S2

S3

Y

Figure 1: A path with 6 valves. Sequential valves are labeled
Si, divergent valves are labeled Dj and convergent valves
are labeled Ck.

(the exact case). As the splitting case implies a mutual in-
formation of zero, edges with the highest mutual informa-
tion were chosen for recovery first. Their empirical results
suggest that this heuristic is indeed effective in finding good
edges to recover. We find in practice, however, that this ap-
proach is often computationally impractical, for example, in
large networks where many edges are deleted, for which the
mutual information must be computed for many pairs.

d-Separation: A Brief Review

The d-separation test for Bayesian networks is a graphical
test for determining whether or not two variables X and Y
are conditionally independent given another set of variables
Z. Although d-separation can identify any independence im-
plied by the structure of a Bayesian network, it cannot in
general detect an independence implied by its parameters.

Intuitively, X and Y are d-separated by Z when every
path connecting X and Y are blocked by variables in Z,
where blocked is a notion we define below. When this d-
separation exists, we denote it by d-sep(X,Z, Y), and con-
clude that X and Y are conditionally independent given Z.

Consider then a path connecting X to Y, that need not be
a directed path, such as the one in Figure 1. Say we view
this path as a pipe, and view each variable W on that path
as a valve. A valve is either open or closed, and if at least
one valve in a pipe is closed, then the enter pipe is blocked;
otherwise, it is unblocked. When all possible pipes connect-
ing X and Y are blocked, then we say that X and Y are
d-separated.

A node can be one of three different valves on a given
path; see, e.g., Figure 1. A node W in a path is either (1) a
sequential valve→W→, (2) a divergent valve←W→, or (3)
a convergent valve→W←, depending on the directionality
of the incident edges as it appears on the path. A valve is
then open or closed depending on the set of variables Z.

• A sequential valve→W→ or a divergent valve←W→ is
considered closed when W appears in Z.

• A convergent valve →W← is considered closed when
neither W nor any of its descendants appear in Z.

In Figure 1, for example, variables X and Y are d-separated
given no variables Z, as both convergent valves are closed.
When Z contains both of these valves, X and Y are no
longer d-separated. When we further add any of the remain-
ing nodes to Z, variables X and Y are d-separated again.

Note that when we need to refer to a valve’s neighbors,
we will refer to a valve, for example, by N1→W←N2.

Soft d-Separation: A Proposal for Polytrees
Consider a polytree Bayesian networkN , with nodes X and
Y . Further, say we are given z, an instantiation of some
network variables Z. If we have that d-sep(X,Z, Y), then
X is independent of Y given Z. Even if this is not the case,
variables X and Y may still be independent, or only mildly
so.

We can quantify the extent to which two variables are in-
dependent using mutual information:

MI (X;Y |Z = z)
def
=

∑

xy

Pr(xy|z) log
Pr(xy|z)

Pr(x|z)Pr(y|z)
.

Note that mutual information is non-negative, and zero iff X
and Y are independent given z. Consider also the entropy:

ENT (X | Z = z)
def
=

∑

x

Pr(x | z) log
1

Pr(x | z)
.

Entropy can be thought of as a measure of uncertainty. It is
non-negative, and zero iff X is fixed. Entropy is also max-
imized by a uniform distribution. For more on mutual in-
formation and entropy, see (Cover and Thomas 1991). Note
that the above are defined for distributions Pr(.|Z = z) con-
ditioned on a given instantiation Z = z (or just simply z).

Since we are assuming for now thatN is a polytree, there
is a unique path connecting X and Y (assuming that they are
connected). Consider first a node W that is either a sequen-
tial valve→W→ or a divergent valve←W→. When W is
in Z, the valve is closed, and X and Y are d-separated in the
polytree. When W /∈ Z, we now have a way to think of a
valve as being partially closed.

Theorem 1 In a polytree Bayesian networkN , if a node W
is a sequential valve→W→ or a divergent valve←W→ on
a path connecting X and Y, then:

MI (X;Y | z) ≤ ENT (W | z).

When the entropy of W is zero, then W is given, effectively
closing the valve. We have also the following, as a way to
think of convergent valves as partially closed.

Theorem 2 In a polytree Bayesian networkN , if a node W
is a convergent valve N1→W←N2 on a path connecting X
and Y, then:

MI (X;Y | z) ≤ MI (N1;N2 | z).

Note that when MI (N1;N2|z) = 0, no information is flow-
ing through the valve, as N1 and N2 in effect do not “see”
the instantiation z at or below its common descendant W .

Note in the latter case, we bound a mutual information by
another mutual information. The upper bound in this case
involves the mutual information between two variables, N1

and N2, that are members of the same family3 (that of vari-
able W). This distinction is important in practice as BP and
jointree algorithms readily provide any family’s marginals.
We discuss this issue further in the following section.

We are now prepared to propose our soft d-separation test
in polytrees. Intuitively, we are examining the pipe connect-
ing X and Y, searching for the tightest valve, as the tightest
valve can be considered the bottleneck over the entire pipe.

3A family consists of a node and its parents.

Definition 1 Let X and Y be two nodes in a polytree
Bayesian network N , conditioned on instantiation z. Then
the value of sd-sep(X, z, Y) is defined by three cases:

• X and Y are disconnected: sd-sep(X, z, Y) = 0;

• X and Y are adjacent: sd-sep(X, z, Y) = MI (X;Y |z);

• otherwise: let sd-sep(X, z, Y) be the smallest upper
bound of a valve W on the path connecting X and Y,
as given by Theorems 1 and 2.

Note if X and Y are adjacent, they are in the same family.

Corollary 1 If X and Y are two nodes in a polytree
Bayesian network N , conditioned on instantiation z, then:

MI (X;Y | z) ≤ sd-sep(X, z, Y).

Since sd-sep(X, z, Y) is either zero, an entropy, or a mu-
tual information, it is both finite and non-negative. Note that
when d-sep(X,Z, Y), we also have sd-sep(X, z, Y) = 0,
as expected. Soft d-separation, on the other hand, can detect
more conditional independencies than is allowed by exam-
ining the network structure alone.

We can potentially tighten this bound, by incorporating
ENT (X|z) and ENT (Y |z), as both quantities are also up-
per bounds on the mutual information MI (X;Y |z). We
shall employ this simple extension in our experiments.

Many Pairs Mutual Information

The edge recovery heuristic of (Choi and Darwiche 2006)
scores each deleted edge based on the mutual information,
computed in the polytree approximation, between the vari-
ables across the deleted edge. When many edges are deleted,
as may be needed to obtain a polytree from a given network,
we need to compute the mutual information for many pairs
of variables. Although exact inference in a polytree net-
work is generally tractable, computing mutual information
for many pairs can still be impractical.

Consider the fact that Pearl’s belief propagation (BP)
algorithm (Pearl 1988) can compute in a single run the
marginals for all variables, and the joint marginals for all
families. Since a score sd-sep(X, z, Y) is either an entropy
(requiring only a variable’s marginals) or a mutual informa-
tion between two family members (requiring only a fam-
ily’s marginals), we can compute with a single run of BP the
score sd-sep(X, z, Y) for any given X, Y and z. In fact, we
can compute with a single run of BP all valve bounds (of
Theorems 1 and 2) for a given instantiation z. By annotat-
ing the network graph with valve bounds in a pre-processing
step, we can in fact compute the score sd-sep(X, z, Y) for
any given pair (X,Y) simply by inspecting the graph, much
like the original d-separation algorithm.

Say we have a polytree Bayesian network with n vari-
ables, where each variable has at most w parents and at most
s states. Then Pearl’s BP algorithm has a worst-case running
time O(nsw) (the largest CPT in a given network is of size
O(sw)). Given a graph annotated with valve bounds, it takes
O(n) time to compute sd-sep(X, z, Y), so we can compute
soft d-separation scores for k pairs in time O(kn + nsw).

Consider then the computation of a mutual information
MI (X;Y |z), when X and Y are not in the same family. We

need the table of probabilities Pr(X,Y |z), which (naively)
requires us to run BP O(|X| · |Y |) = O(s2) times; employ-
ing a simple technique, we can reduce this to O(s) runs of
BP.4 This by itself can be undesirable, when the number of
states s is very large. When we further want to compute the
mutual information for many pairs (X,Y), the number of
times we need to run BP can easily grow out of hand.

To compute the mutual information between k pairs of
variables, we may need to run BP in a polytree as many as
O(ks) times, giving us a time complexity of O(ks · nsw)
total. In contrast, soft d-separation for k pairs required only
O(kn + nsw) time. For a given application we may be able
to identify improvements (we do so for mutual information,
in the following section), but many runs of BP will still be
undesirable in practice. Finally, note that edge recovery, our
application of interest, starts with an ED-BP approximation
that was computed using the exact BP algorithm as a sub-
routine, i.e., when we are ready to compute soft d-separation
scores, valve bounds have in effect already been computed.

Experimental Evaluation

We evaluate now the ranking of variable pairs for the pur-
poses of edge recovery, where deleted edges are ranked
by soft d-separation (SD-SEP) and by mutual information
(TRUE-MI). In particular, we:

1. find a (random) spanning polytree approximation N ′, by
deleting enough edges in N ;

2. parametrize deleted edges in N ′ using ED-BP, (equiva-
lently, run the IBP algorithm in N);

3. score deleted edges by SD-SEP and TRUE-MI, which we
compute in the polytree approximation N ′;

4. recover the highest ranking edges intoN ′, by SD-SEP and
TRUE-MI, parametrizing the new networks using ED-BP.

Our primary concern is the efficiency of Step 3, and the qual-
ity of the approximation resulting in Step 4. We typically
expect that recovery of edges with high TRUE-MI scores in
Step 3 to benefit most the ED-BP approximation in Step 4.

In our experiments, we took a selection of Bayesian net-
works,5 comparing the edge scores produced by SD-SEP and
TRUE-MI, and the resulting ED-BP approximations. Con-
sider Figure 2, where each column corresponds to a par-
ticular Bayesian network, which is evaluated based on an
average of 100 problem instances. Each problem instance
corresponds to observations e on all leaves of the original
network, whose values are sampled from the original joint
distribution (for network emdec, we set values on leaves
at random as the joint distribution is highly skewed). We
dropped instances where ED-BP failed to converge, in Step 2,
to within a difference of 10−8, in 200 iterations.

In the first two rows of Figure 2, we compared the edge
scores given by TRUE-MI and the bound SD-SEP. On the

4We need only O(min{|X|, |Y |}+1) = O(s) runs of BP since
Pr(X, Y |z) = Pr(X|Y, z)Pr(Y |z) = Pr(Y |X, z)Pr(X|z).

5Most of the networks used for our evaluation are avail-
able at http://www.cs.huji.ac.il/labs/compbio/Repository/. Net-
work emdec is a noisy-or network for diagnosis, courtesy of HRL
Laboratories, LLC.

x-axis are edge ranks for the TRUE-MI score: the highest
ranking edges are on the left, and the lowest on the right;
on the y-axis are edge scores. The TRUE-MI scores decrease
monotonically as we move right on the x-axis, and ideally,
the SD-SEP scores should decrease monotonically as well.
In the first row of plots, a small fraction of edges dominate
the rest, in terms of both TRUE-MI and SD-SEP scores. In
the second row, which plots the same scores under a loga-
rithmic scale, the SD-SEP upper bound tends to be tighter
in the range of high ranking edges. Moreover, at high val-
ues of TRUE-MI, the bounds are well behaved in that edges
with higher TRUE-MI scores on average tend to have higher
SD-SEP scores as well. We consider this range to be the most
important for accurate ranking, as recovering these edges are
likely to benefit the final ED-BP approximation the most. In
the range of low TRUE-MI, the SD-SEP scores are relatively
smaller, but can be poorly behaved. This is not surprising
however, since at this range TRUE-MI scores are zero or
close to zero, and are pairwise indistinguishable.

On the third row of Figure 2, we plot how edge scores
compare when recovering edges, which is ultimately what
we care about the most. We recovered edges into a polytree,
1

10
-th of the deleted edges at a time, until all edges are recov-

ered. From left-to-right, edges with the largest scores were
recovered first, from the case corresponding to IBP (when
no edge is recovered) to the case corresponding to exact in-
ference (when every edge is recovered). We also plot for
reference approximations based on random edge recovery.

In these networks, edge recovery based on SD-SEP and
TRUE-MI rankings are very much in step. In the emdec

network, recovery by SD-SEP seems modestly better than
TRUE-MI. As TRUE-MI is a heuristic, and non-optimal, this
can be expected. Another interesting trend we observe is that
edge recovery is most effective for edges with relatively high
scores. When recovering the remaining edges, approxima-
tions improve as modestly as random recovery, suggesting
that adaptive heuristics, where edges are re-ranked after re-
covery, should be considered when recovering more edges.

In Table 3, we compare in larger networks: the quality of
the resulting approximation, and the time to compute rank-
ings.6 Remember that scores are computed in the polytree
approximation, with each deleted edge receiving a score. To
compute the TRUE-MI scores, we used a Hugin (jointree)
variant of the BP algorithm to compute joint marginals, mak-
ing an effort to reduce the number of propagations required.7

For computing the SD-SEP scores, we measured the time to
inspect the graph and assign scores to pairs, as described in
the previous section. We see that for most networks, ranking
by SD-SEP is as good (or better) than TRUE-MI. Moreover,
SD-SEP is quite efficient, especially for larger networks with
many parameters (implying roughly an increased cost for
a run of BP), and with more edges deleted (implying more
runs of BP). In large networks, SD-SEP can be faster by mul-
tiple orders of magnitude. For example, in the diabetes
network, SD-SEP offers a 641.99× speedup over TRUE-MI.

6Measured on a 2.16GHz Intel Core 2 Duo with 1GB RAM.
7If there are T number of tails U of deleted edges, then just

O(T ·maxU |U |) propagations suffice (Choi and Darwiche 2006).

1 10
0

0.005

0.01

0.015

0.02

0.025

0.03

edge rank (true MI)

alarm

true−MI
sd−sep

1 37
0

0.01

0.02

0.03

edge rank (true MI)

win95pts

true−MI
sd−sep

1 152
0

0.05

0.1

0.15

0.2

0.25

edge rank (true MI)

pigs

true−MI
sd−sep

1 94
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

edge rank (true MI)

emdec

true−MI
sd−sep

1 10

10
−10

10
−5

edge rank (true MI)

alarm

true−MI
sd−sep

1 37

10
−15

10
−10

10
−5

edge rank (true MI)

win95pts

true−MI
sd−sep

1 152

10
−15

10
−10

10
−5

edge rank (true MI)

pigs

true−MI
sd−sep

1 94
10

−20

10
−10

edge rank (true MI)

emdec

true−MI
sd−sep

0 10

1

2

3

4

5

6

7

x 10
−3

edges recovered

a
v
e
ra

g
e
 K

L
−

e
rr

o
r

alarm

random
true−MI
sd−sep

0 37

1

2

3

4

5

x 10
−3

edges recovered

a
v
e
ra

g
e
 K

L
−

e
rr

o
r

win95pts

random
true−MI
sd−sep

0 152

1

2

3

4

5
x 10

−3

edges recovered

a
v
e

ra
g

e
 K

L
−

e
rr

o
r

pigs

random
true−MI
sd−sep

0 94

2

4

6

8

x 10
−3

edges recovered

a
v
e
ra

g
e
 K

L
−

e
rr

o
r

emdec

random
true−MI
sd−sep

Figure 2: (Quality of SD-SEP approximations) Each column corresponds to a Bayesian network. First row (linear scale) and
second row (log scale) compares edge rank by TRUE-MI versus edge scores by SD-SEP and TRUE-MI. Third row compares the
number of edges recovered versus the quality of the ED-BP approximation (by KL-error of marginals).

edge 0% recovered 10% recovered 20% recovered edge # of # of

recovery avg KL ED-BP time avg KL ED-BP time avg KL ED-BP time ranking edges network

method error (iterations) error (iterations) error (iterations) time deleted params.

barley random 1.82e-1 115ms (65) 1.70e-1 120ms (61) 1.67e-1 141ms (58) 0ms 37 130180

MI 1.62e-1 111ms (59) 1.41e-1 93ms (49) 2999ms

sd-sep 1.65e-1 110ms (60) 1.62e-1 125ms (55) 46ms 65.84×
diabetes random 3.52e-2 732ms (123) 3.24e-2 1103ms (109) 3.02e-2 1651ms (93) 0ms 190 461069

MI 2.61e-2 550ms (74) 2.12e-2 674ms (58) 84604ms

sd-sep 2.93e-2 957ms (74) 2.54e-2 1639ms (55) 132ms 641.99×
mildew random 1.12e-2 238ms (39) 1.10e-2 241ms (38) 1.06e-2 243ms (35) 0ms 12 547158

MI 7.68e-3 233ms (36) 7.26e-3 263ms (33) 6661ms

sd-sep 8.28e-3 245ms (35) 7.01e-3 323ms (31) 42ms 157.26×
munin1 random 2.84e-4 13ms (23) 2.89e-4 14ms (21) 2.84e-4 22ms (19) 0ms 94 19466

MI 2.83e-4 12ms (22) 2.22e-4 10ms (19) 680ms

sd-sep 2.58e-4 10ms (20) 2.21e-4 10ms (18) 35ms 19.57×
munin2 random 2.44e-4 54ms (22) 2.48e-4 51ms (21) 2.30e-4 52ms (18) 0ms 242 83920

MI 9.44e-5 37ms (17) 8.46e-5 37ms (16) 8294ms

sd-sep 1.05e-4 39ms (17) 7.80e-5 36ms (16) 286ms 29.03×
munin3 random 2.77e-5 32ms (13) 2.75e-5 36ms (12) 2.78e-5 54ms (11) 0ms 272 85855

MI 2.56e-5 30ms (11) 2.47e-5 39ms (10) 8675ms

sd-sep 2.25e-5 33ms (12) 1.77e-5 30ms (11) 375ms 23.14×
munin4 random 4.71e-4 67ms (27) 4.75e-4 78ms (28) 4.61e-4 89ms (23) 0ms 357 98183

MI 3.56e-4 64ms (23) 3.45e-4 50ms (18) 12277ms

sd-sep 3.37e-4 54ms (20) 3.35e-4 58ms (19) 518ms 23.69×

Figure 3: (Comparison of recovery heuristics). For {0, 10, 20}% of the edges recovered, we report average KL-error of ED-BP

marginal approximations and average running time (and # of iterations) for ED-BP to converge. For each recovery method, we
report average time spent to rank edges, with relative improvement of SD-SEP over TRUE-MI annotated adjacent to its time.

Alternative Proposals and Extensions

Ideally, a true extension of d-separation would be applica-
ble to general networks and not just polytrees. Roughly, we
want to aggregate the scores for each pipe, and identify an
approximation to the mutual information MI (X;Y |z). To
this end, we propose the following procedure. First, iden-
tify a maximal set of pairwise node-disjoint paths connect-
ing X and Y (disjoint in the interior nodes). For each of
the node-disjoint paths, we compute the score as if the cor-
responding pipe were in a tree, as in Definition 1. The score
sd-sep(X, z, Y) now, is then the sum of these individual pipe
scores. Intuitively, we are treating the set of tightest valves
over all node-disjoint pipes as the bottlenecks to flow from
X to Y . Although, sd-sep(X, z, Y) is an upper bound on
the mutual information in a polytree, this particular exten-
sion sacrifices this property in general networks. We con-
sider these issues and extensions ongoing research.

Note that to compute node-disjoint paths, we can use
Dinic’s algorithm (Even 1979), having time complexity

O(n
1

2 m), where n is the number of nodes and m is the num-
ber of edges in a Bayesian network N . We can also use the
Ford-Fulkerson algorithm which, in this case, has time com-
plexity O(w(n + m)), where w is the treewidth of N ; see,
e.g., (Kleinberg and Tardos 2005). Assuming we use a join-
tree algorithm, we again need just one jointree propagation
to score all valves. To compute the soft d-separation score
of each desired pair, we incur a time complexity that is only
polynomial in the parameters of the graph. Computing the
mutual information for many pairs, on the other hand, may
require many jointree propagations, each requiring time that
is exponential in the treewidth w of the graph.

Alternatively, we could consider a proposal such as the
one given by (Nicholson and Jitnah 1998), which suggests
a heuristic approach to quantifying the relevance of paths,
also using mutual information. In particular, the weight of a
path was the sum of the mutual informations between vari-
ables on an edge, for each edge on the path. While this pro-
posal could conceivably be used to approximate the mutual
information between two nodes, we find that an additive ac-
cumulation of scores on a path unsuitable. For example, an
additive score may give high weight to two nodes connected
by a path with many edges, yet a single vacuous edge on that
path would render the two nodes independent.

Acknowledgments

This work has been partially supported by Air Force grant
#FA9550-05-1-0075 and by NSF grant #IIS-0713166.

Proofs

Theorems 1 and 2 follow easily from the proof of the data
processing inequality in (Cover and Thomas 1991). For
completeness, we provide the proofs here.

Let W be a valve in a path connecting X and Y. Using
the chain rule for mutual information, we can express the
mutual information MI (X;Y,W |z) in two different ways.

MI (X;Y,W | z) = MI (X;Y |W, z) + MI (X;W | z)

= MI (X;W | Y, z) + MI (X;Y | z).

Let W be either a sequential valve →W←, or a divergent
valve←W→. Then W,Z d-separates X and Y in the poly-
tree, and MI (X;Y | W, z) = 0. Further, since mutual in-
formation is non-negative:

MI (X;W | z) = MI (X;W | Y, z) + MI (X;Y | z)

≥ MI (X;Y | z).

Since ENT (W |z) ≥ MI (X;W |z), we have Theorem 1.
Suppose instead that W is a convergent valve N1→W←N2,
assuming for now that N1 6= X and N2 6= Y . On the
path connecting X and Y, we know that N2 must be either
a sequential valve or a convergent valve, and that N2,Z d-
separates X and Y . Using the same reasoning as before,
with N2 in the place of W , we have that

MI (X;N2 | z) ≥ MI (X;Y | z).

Similarly, N1,Z must d-separate X and N2, so

MI (N1;N2 | z) ≥ MI (X;N2 | z).

If N1 = X or N2 = Y, we simply skip the appropriate steps,
giving us finally Theorem 2. �

References
Aji, S. M., and McEliece, R. J. 2001. The generalized distributive
law and free energy minimization. In Proc. 39th Allerton Conf.
Commun., Contr., Computing, 672–681.

Braunstein, A.; Mézard, M.; and Zecchina, R. 2005. Survey
propagation: An algorithm for satisfiability. Random Struct. Al-
gorithms 27(2):201–226.

Choi, A., and Darwiche, A. 2006. An edge deletion semantics
for belief propagation and its practical impact on approximation
quality. In AAAI, 1107–1114.

Cover, T. M., and Thomas, J. A. 1991. Elements of information
theory. Wiley-Interscience.

Dechter, R.; Kask, K.; and Mateescu, R. 2002. Iterative join-
graph propagation. In UAI, 128–136.

Even, S. 1979. Graph Algorithms. Computer Science Press.

Frey, B. J., and MacKay, D. J. C. 1997. A revolution: Belief
propagation in graphs with cycles. In NIPS, 479–485.

Kleinberg, J., and Tardos, E. 2005. Algorithm Design. Addison-
Wesley.

McEliece, R. J.; MacKay, D. J. C.; and Cheng, J.-F. 1998. Turbo
decoding as an instance of Pearl’s ”belief propagation” algorithm.
IEEE J. Sel. Areas Commun. 16(2):140–152.

Nicholson, A. E., and Jitnah, N. 1998. Using mutual information
to determine relevance in Bayesian networks. In PRICAI, 399–
410.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Publishers,
Inc., San Mateo, California.

Szeliski, R.; Zabih, R.; Scharstein, D.; Veksler, O.; Kolmogorov,
V.; Agarwala, A.; Tappen, M. F.; and Rother, C. 2006. A compar-
ative study of energy minimization methods for Markov random
fields. In ECCV (2), 16–29.

Wainwright, M. J.; Jaakkola, T.; and Willsky, A. S. 2003. Tree-
based reparameterization framework for analysis of sum-product
and related algorithms. IEEE Trans. Inf. Theory 49(5):1120–
1146.

Yedidia, J.; Freeman, W.; and Weiss, Y. 2005. Constructing free-
energy approximations and generalized belief propagation algo-
rithms. IEEE Trans. Inf. Theory 51(7):2282–2312.

