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Abstract

Common wisdom has it that small distinc-
tions in the probabilities quantifying a belief
network do not matter much for the results of
probabilistic queries. Yet, one can develop re-
alistic scenarios under which small variations
in network probabilities can lead to signifi-
cant changes in computed queries. A pend-
ing theoretical question is then to analyti-
cally characterize parameter changes that do
or do not matter. In this paper, we study the
sensitivity of probabilistic queries to changes
in network parameters and prove some tight
bounds on the impact that such parameters
can have on queries. Our analytical results
pinpoint some interesting situations under
which parameter changes do or do not mat-
ter. These results are important for knowl-
edge engineers as they help them identify in-
fluential network parameters. They also help
explain some of the previous experimental re-
sults and observations with regards to net-
work robustness against parameter changes.

1 Introduction

Automated reasoning systems based on belief networks
[9, 6] have become quite popular recently as they have
enjoyed much success in a number of real-world appli-
cations. Central to the development of such systems
is the construction of a belief network that faithfully
represents the domain of interest. Although the au-
tomatic synthesis of belief networks—based on design
information in certain applications and based on learn-
ing techniques in others—have been drawing a lot of
attention recently, mainstream methods for construct-
ing such networks continue to be based on traditional
knowledge engineering (KE) sessions involving domain
experts. One of the central issues that arise in such

KE sessions is to assess the impact that changes to
network parameters may have on queries of interest.

We have recently developed a sensitivity analysis tool,
called SAMIAM (Sensitivity Analysis, Modeling, In-
ference And More), which allows domain experts to
fine tune network parameters in order to enforce con-
straints on the results of certain queries. For exam-
ple, it may turn out that Pr(y | e)/Pr(z | e) = 2
with respect to a given belief network, while the do-
main expert believes that the ratio Pr(y | e)/Pr(z | )
should be equal to 3. SAMIAM will then automati-
cally decide whether a given parameter is relevant to
this constraint, and if it is, will compute the minimum
amount of change to that parameter which is needed
to enforce the constraint.!

As we experimented with SAMIAM, we ran into scenar-
ios that we found to be quite surprising. Specifically,
there were many occasions in which queries would be
quite sensitive to very small variations in certain net-
work parameters.

Example 1.1 Consider Figure 1, which depicts a
screen shot of SAMIAM. The depicted network has
sixz binary variables, each of which has the values true
and false. There are two query variables of interest
here, fire and tampering. Suppose that the evidence e
is report, smoke: people are reported to be evacuating a
building (in response to an alarm), but there is no evi-
dence for any smoke. This evidence should make tam-
pering more likely than fire, and the given belief net-
work did indeed reflect this since Pr(tampering | e) =
.50 and Pr(fire | €) = .03 in this case. We wanted,

!We use the following standard notation: variables are
denoted by upper—case letters (A) and their values by
lower—case letters (a). Sets of variables are denoted by
bold—face upper—case letters (A) and their instantiations
are denoted by bold—face lower—case letters (a). For a
variable A with values true and false, we use a to denote
A = true and a to denote A = false. Finally, for a vari-
able X with parents U, we use 0,|, to denote the network
parameter corresponding to Pr(z | u).
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Figure 1: A sensitivity analysis scenario.

however, for the probability of tampering to be no less
than .65 (that is, Pr(tampering | €) — Pr(tampering |
e) >.30). SAMIAM recommended two ways to achieve
this:?

1. either increase the prior probability of tampering
by .016 or more (from its current value of .02), or

2. decrease the probability of a false report,
Pr(report | leaving), by .005 or more (from its
current value of .01).

Therefore, the distinctions between .02 and .036, and
the one between .01 and .005, do really matter in this
case as each induces an absolute change of .15 on the
probabilistic query of interest.

Later, we show an example where an infinitesimal
change to a network parameter leads to a change of
.5 to a corresponding query. We also show examples
in which the relative change in the probability of a
query is larger than the corresponding relative change
in a network parameter. One wonders then whether
there is a different method for measuring probabilistic
change (other than absolute or relative), which allows

2Implicit in the recommendation of SAMIAM is that the
parameters of variables fire, smoke, leaving, and alarm are
irrelevant to enforcing the given constraint.

one to non-trivially bound the change in a probabilis-
tic query in terms of the corresponding change in a
network parameter.

To answer these and similar questions, we conduct in
this paper an analytic study of the derivative 0Pr(y |
e)/ 8Tm|u, where 7|y, is a meta parameter that allows us
to simultaneously change co-varying parameters such
as Oy and bz,. Our study leads us to three main
results:

e Theorem 3.1, which provides a bound on the
derivative OPr(y | e)/07,u in terms of Pr(y | e)
and Pr(z | u) only.

Theorem 3.2, which proves a bound on the sen-
sitivity of queries to infinitesimal changes in net-
work parameters.

Theorem 3.3, which proves a bound on the sensi-
tivity of queries to arbitrary changes in network
parameters.

The last theorem shows that the amount of change
in a probabilistic query can be bounded in terms of
the amount of change in a network parameter, as long
as change is understood to be the relative change in
odds. This result has a number of practical implica-
tions. First, it can relief experts from having to be



too precise when specifying certain parameters sub-
jectively. Next, it can be important for approximate
inference algorithms that pre-process network parame-
ters to eliminate small distinctions in such parameters
(in order to increase the efficiency of inference [10]).
Finally, it can be used to show that automated reason-
ing systems based on belief networks are robust and,
hence, suitable for real-world applications [11].

This paper is structured as follows. We present in
Section 2 a technique for automatically identifying
minimal parameter changes that are needed to ensure
certain constraints on probabilistic queries. We then
study analytically in Section 3 the impact of parameter
changes on query changes, providing a series of results
in this direction. Section 4 is then dedicated to ex-
ploring the implications of our results in Section 3; in
particular, providing an analytic explanation of why
certain parameter changes don’t matter. We finally
close in Section 5 with some concluding remarks. Proof
sketches of theorems are given in Appendix A, while
full proofs can be found in [2].

2 The tuning of network parameters

We report in this section on a tool that we have been
developing, called SAMIAM for fine tuning network pa-
rameters [7]. Given a belief network, evidence e and
two events y and z, where Y, Z ¢ E, our tool can ef-
ficiently identify parameter changes needed to enforce
the following types of constraints:

DIFFERENCE: Pr(y|e)— Pr(z]|e) >e.

RaATIO: Pr(y|e)/Pr(z]|e) > e

We discuss next how one would enforce the DIFFER-
ENCE constraint, which is very similar to enforcing the
RATIO constraint.

When considering the parameters of variables X, we
assume that it only has two values  and T and, hence,
two parameters 6., and 6z, for each parent instan-
tiation u. Moreover, we assume that for each variable
X and parent instantiation u we have a meta param-
eter 7|y, such that 0,1, = 7 and Ozy = 1 — 7.
Therefore, our goal is then to determine the amount of
change to the meta parameter 7, which would lead to
a simultaneous change in both of 6, and 9§\u~3 Our
results can be easily extended to multivalued variables,
as long as we assume a model for changing co-varying
parameters when one of them changes [3, 8]. But we
leave that extension out to simplify the discussion.

31t is not meaningful to change one of the parameters in
0z |u, 07w Without changing the other since 0y + 0z = 1.

To enforce the DIFFERENCE constraint, we observe
first that the probability of an instantiation e, Pr(e), is
a linear function in any network parameter 0, [12, 1].
In fact, the probability is also linear in any meta pa-
rameter 7., and we have [2]:

OPr(e)

Pr(e,z,u)  Pr(e,T,u)

aTw\u ow\u ai\u 7 (1)
when 0,1, # 0 and Oz, # 0.4 We will designate
the above derivative by the constant ae. Similarly,
we will designate the derivatives 0Pr(y,e)/07,, and
OPr(z,e)/0T, by the constants ay o and o, e, respec-
tively:

0Pr(y,e) _ Pr(y,e;z,u)  Pr(y,e,,u) @)
(97'35‘“ 9I|u 95|u ’

OPr(z,e) _ Pr(z,e,z,u) B Pr(z,e,z,u) 3)
8Tz|u Qm‘u 95|u '

Now, to ensure that Pr(y | e) — Pr(z | €) > ¢, it
suffices to ensure that Pr(y,e) — Pr(z,e) > ePr(e).
Suppose that the previous constraint does not hold,
and we wish to establish it by applying a change of §
to the meta parameter 7,),. Such a change leads to a
change of aed in Pr(e). It also changes Pr(y,e) and
Pr(z,e) by ayed and a; e¢d, respectively. Hence, to
enforce the constraint, we need to solve for § in the
following inequality:

[Pr(y,e)+ oy ed] — [Pr(z,e)+ ;e8] > €[Pr(e) + aed].

Rearranging the terms, we get:

Pr(y,e) — Pr(z,e) — ePr(e) >
Of—ay.e + 0tz 0 + €te]. (4)

Given Equations 1-4, we can then easily solve for the
amount of change needed, §, once we know the follow-
ing probabilities Pr(y,e), Pr(z,e), Pr(e), Pr(e,z,u),
Pr(e,z,u), Pr(y,e,z,u), Pr(y,e, T,u), Pr(z,e,z,u),
and Pr(z,e,T,u).

The question now is how to compute these probabil-
ities, efficiently, and for all meta parameters 7., as
there may be more than one possible parameter change
that would enforce the given constraint; we need to
identify all such parameters.

Interestingly enough, if we have an algorithm that can
compute Pr(i,x,u), for a given instantiation i and for
all family instantiations x, u, then that algorithm can
be used to evaluate Inequality 4 for every meta param-
eter 7,y. All we have to do is run the algorithm three

41f either of the previous parameters is zero, we can use
the differential approach in [3] to compute the derivative
directly [2].



times, once with i = e and then again with i = y, e and
finally with i = z,e. Both the jointree algorithm [5]
and the differential approach in [3] have the previous
ability and can be used for this purpose.

We present now another example to illustrate how the
results above are used in practice.

Example 2.1 Consider again the network in Fig-
ure 1. Here, we set the evidence such that we have
smoke, but no report of people evacuating the build-
ing: e = smoke, report. We then got the posteriors
Pr(fire | €) = .25 and Pr(tampering | €) = .02. We
thought in this case that the posterior on fire should
be no less than .50 and asked SAMIAM to recommend
the necessary changes to enforce this constraint. There
were five recommendations in this case, three of which
could be ruled out based on qualitative considerations:

1. increase the prior on fire to > .03 (from .01);

2. increase the prior on tampering to > .80 (from
.02);

3. decrease Pr(smoke | fire) to < .003 (from .01);

4. increase Pr(leaving | alarm) to > .923 (from
001);

5. increase Pr(report | leaving) to > .776 (from .01).

Clearly, the only sensible changes here are either to
increase the prior on fire, or to decrease the probability
of having smoke without a fire.

This example and other similar ones suggest that iden-
tifying such parameter changes and their magnitude is
inevitable for developing faithful belief networks, yet
is not trivial to accomplish by a visual inspection of
the belief network and, hence, need to be facilitated
by sensitivity analysis tools. Moreover, the examples
illustrate the need to develop more analytic tools to
understand and explain the sensitivity of queries to
certain parameter changes. There is also a need to
reconcile the sensitivities exhibited by our examples
with previous experimental studies demonstrating the
robustness of probabilistic queries against small pa-
rameter changes in certain application areas, such as
diagnosis [11]. We address these particular questions
in the next two sections.

3 The sensitivity of probabilistic
queries to parameters changes

Our starting point in understanding the sensitivity of
a query Pr(y | e) to changes in a meta parameter
Telu 18 to analyze the derivative OPr(y | e)/07,)u. In

Figure 2: The plot of the upper bound on the partial
derivative OPr(y | e)/07,y, as given in Theorem 3.1,
against Pr(z | u) and Pr(y | e).

our analysis, we assume that X is binary, but Y and
all other variables in the network can be multivalued.
The following theorem provides a simple bound on this
derivative, in terms of Pr(y | €) and Pr(z | u) only.
We then use this simple bound to study the effect of
changes to meta parameters on probabilistic queries.

Theorem 3.1 If X is a binary variable in a belief net-
work, then:?®

o Priyle)d = Pry|e))
= Pr(z|u)(1—Pr(z|u))

’3Pr(y )

67m|u

We show later an example for which the derivative
assumes the above bound exactly.b

The plot of this bound against Pr(z | u) and Pr(y | e)
is shown in Figure 2. A number of observations are in
order about this plot:

e For extreme values of Pr(z | u), the bound
approaches infinity, and thus a small absolute
change in the meta parameter 7., can have a big
impact on the query Pr(y | e).

e On the other hand, the bound approaches 0 for
extreme values of the query Pr(y | e). Therefore,
a small absolute change in the meta parameter

5This theorem and all results that follow requires that
Tzlu 7# 0 and 7,y # 1, since we can only use the expression
in Equation 1 under these conditions.

SNote that we have an exact closed form for the deriva-
tive OPr(y | €)/074u [3, 4], but that form includes terms
which are specific to the given belief network.
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Figure 3: The network used in Example 3.1.

Tzju Will have a small effect on the absolute change
in the query.

One of the implications of this result is that if we
have a belief network where queries Pr(y | e) have ex-
treme values, then such networks will be robust against
small changes in network parameters. This of course
assumes that robustness is understood to be a small
change in the absolute value of the given query. In-
terestingly enough, if y is a disease which is diagnosed
by finding e—that is, the probability Pr(y | e) is quite
high—then it is not surprising that such queries would
be robust against small perturbations to network pa-
rameters. This seems to explain some of the results in
[11], where robustness have been confirmed for queries
with Pr(y | e) > .90.

Another implication of the above result is that one
has to be careful when changing parameters that are
extreme. Such parameters are potentially very influ-
ential and one must handle them with care.

Therefore, the worst situation from a robustness view-
point materializes if one has extreme parameters with
non-extreme queries. In such a case, the queries can
be very sensitive to small variations in the parameters.

Example 3.1 Consider the network structure in Fig-
ure 3. We have two binary nodes, X and Y with re-
spective parameters 05,0z and 0,,0;. We assume that
E is a deterministic binary node where the value of E
iseiff X =Y. This dictates the following CPT for E:
Pr(e|z,y) =1, Pr(e|Z,5) =1, Pr(e | x,7) =0 and
Pr(e| T,y) = 0. The conditional probability Pr(y | e)
can be expressed using the root parameters 0, and 0,
as:

0.0,

Priyle) = o5 oo
xzVy Y%y

The derivative of this probability with respect to the
meta parameter T, is given by:”

OPr(y | e) (020 + 6z95)0y — 0.0, (6 — b5)
87'35 (91911 + 959@)2
0,0y
(0,0, + 6z07)2

"Note that 80, /07, = 1 and 005/07, = —1.

This is equal to the upper bound given in Theorem 3.1:

Priy| )1 —Priyle) _  (8:6,)(6zb7)
Pr(z)(1~ Pr(x)) 0,0+(0,0, + 0072
0,05

(0,0, + 6505)%
Now, if we set 0, = 0, the derivative becomes:

oPr(yle) 1
(97'3; n 493;957

and as 0, (or 0z) approaches 0, the derivative ap-
proaches infinity. Finally, if we set 0, = O = €, we
have Pr(yle) = .5, but if we keep 0, and 65 constant
and change 1, to 0, we get the new result Pr(yle) = 0.

Example 3.1 then illustrates three points. First, it
shows that the bound in Theorem 3.1 is tight in the
above sense. Second, it gives an example network
which the derivative O Pr(y | e)/07,|y tends to infinity.
Finally, it shows that an infinitesimal absolute change
in a parameter can induce a non-infinitesimal absolute
change in some query. The following theorem, how-
ever, shows that this is not possible if we consider a
relative notion of change.

Theorem 3.2 Assume that 7,y < .5 without loss of
generality.®  Suppose that ATyw 18 an infinitesimal
change applied to the meta parameter Ty, leading to
a change of APr(y | e) to the query Pr(y | e). We
then have:

ATw‘u

Tz|u

‘Am@w>
Priy]e)

For a function f(z), the quantity:
(f(z) = f(x0))/ (o)

lim (@ — 00

(x—20)—0

)

is typically known as the sensitivity of f to x at xzg.
Theorem 3.2 is then showing that the sensitivity of
Pr(y | e) to T,y is bounded.

As an example application of Theorem 3.2, consider
Example 3.1 again. The change of 7, from € to 0

amounts to a relative change | — ¢/¢|] = 1. The cor-
responding change of Pr(y | e) from .5 to 0 amounts
to a relative change of | —.5/.5| = 1.9 Hence, the rel-

ative change in the query is not as dramatic from this
viewpoint.

SFor a binary variable X, if 7,4 > .5, we can instead
choose the meta parameter 7z, without loss of generality.

91f we consider the meta parameter 75 = 1 — € instead,
the relative change in 7 will then amount to ¢/(1—¢). But
Theorem 3.2 will not be applicable in this case (assuming
that € is close to 0) since the theorem requires that the
chosen meta parameter be < .5.



The relative change in Pr(y | €) may be greater than
double the relative change in 7., for non-infinitesimal
changes because the derivative OPr(y | e)/07,y de-
pends on the value of 7, [3, 7]. Going back to Ex-
ample 3.1, if we set 6, = .5 and 6, = .01, we obtain
the result Pr(y | e) = .01. If we now increase 7, to
.6, a relative change of 20%, we get the new result
Pr(y | e) = 0.0149, a relative change of 49%, which is
more than double of the relative change in 7,.

The question now is: Suppose that we change a meta
parameter 7, by an arbitrary amount (not an in-
finitesimal amount), what can we say about the corre-
sponding change in the query Pr(y | €)? We have the
following result.

Theorem 3.3 Let O(x | u) denote the odds of x given
u: O(x |u) = Pr(z|u)/(1— Pr(z|u)), and let O(y |
e) denote the odds of y given e: O(y | €) = Pr(y |
e)/(1—Pr(y|e)). Let O'(x | u) and O'(y | ) denote
these odds after having applied an arbitrary change to
the meta parameter 7,4 where X is a binary variable
in a belief network. If the change is positive, then:

O(@|u) _O'yle) _Oz|u)

O'x|u) ™ O(yle) = Oz |u)’
and if it is negative, then:

O'(z|u) _Oyle) _ Ox|u)

O(z|u) =~ Oy|e) = O'(x|u)

Combining both results, we have:

[ In(O'(y | ) —In(O(y | e))| <
| In(O'(z [ u)) = In(O(z [ w))[.

Theorem 3.3 means that the relative change in the
odds of y given e is bounded by the relative change
in the odds of = given u. Note that the result makes
no assumptions whatsoever about the structure of the
given belief network.

An interesting special case of the above result is when
X is a root node and X =Y. From basic probability
theory, we have:
Pr(e| x)
0] =0(x) =———.
(@] €)= 0) pross
As the ratio Pr(e | x)/Pr(e | T) is independent of
Pr(z), the ratio O(z | e)/O(x) is also independent of
this prior. Therefore, we can conclude that:

O'(xz]e) 0O'(x)
Olz]e) ~ O@) (5)

This means we can find the exact amount of change
needed for a meta parameter 7, in order to induce a

particular change on the query Pr(z | e). There is no
need to use the more expensive technique of Section 2
in this case.

Example 3.2 Consider the network in Figure 1.
Suppose that e = report, smoke. Currently,
Pr(tampering) = .02 and Pr(tampering | e) =
.50. We wish to increase the conditional probability
to .65. We can compute the new prior probability
Pr'(tampering) using Equation 5:

.65/.35  Pr'(tampering)/(1 — Pr'(tampering))
50/.50 .98/.02 ’

giving us Pr'(tampering) = .036, which is equal
to the result we obtained using SAMIAM in Ezam-
ple 1.1.  Both the changes to Pr(tampering) and
Pr(tampering | €) bring a log-odds difference of .616.

Theorem 3.3 has a number of implications. First, given
a particular query Pr(y | e) and a meta parameter
Tz|u, it can be used to bound the effect that a change
in 7,y will have on the query Pr(y | e). Going back
to Example 3.2, we may wish to know what is the
impact on other conditional probabilities if we apply
the change making Pr’(tampering) = .036. The log-
odds changes for all conditional probabilities in the
network will be bounded by .616. For example, cur-
rently Pr(fire | €) = .029. Using Theorem 3.3, we can
find the range of the new conditional probability value
Pr'(fire | e):

Pr'(fire | €) .029
(g o)~ (1) = 00

giving us the range .016 < Pr'(fire | ) < .053. The
exact value of Pr'(fire | e), obtained by inference, is
.021, which is within the computed bounds.

Second, Theorem 3.3 can be used to efficiently ap-
proximate solutions to the DIFFERENCE and RATIO
problems we discussed in Section 2. That is, given a
desirable change in the value of query Pr(y | e), we
can use Theorem 3.3 to immediately compute a lower
bound on the minimum change to meta parameter 7,
needed to induce the change. This method can be ap-
plied in constant time and can serve as a preliminary
recommendation, as the method proposed in Section 2
is much more expensive computationally.

Third, suppose that SAMIAM was used to recom-
mend parameter changes that would induce a desir-
able change on a given query. Suppose further that
SAMIAM returned a number of such changes, each of
which is capable of inducing the necessary change. The
question is: which one of these changes should we
adopt? The main principle applied in these situations



is to adopt a “minimal” change. But what is mini-
mal in this case? As Theorem 3.3 reveals, a notion of
minimality which is based on the amount of absolute
change can be very misleading. Instead, it suggests
that one adopts the change that minimizes the rela-
tive change in the odds, as other queries can be shown
to be robust against such a change in a precise sense.

Finally, the result can be used to obtain a better intu-
itive understanding of parameter changes that do or do
not matter, a topic which we will discuss in Section 4.

4 Changes that (don’t) matter

We now return to a central question: When do changes
in network parameters matter and when do they not
matter? As we mentioned earlier, there have been
experimental studies investigating the robustness of
belief networks against parameter changes. But we
have also shown very simple and intuitive examples
where networks can be very sensitive to small param-
eter changes. This calls for a better understanding of
the effect of parameter changes on queries, so one can
intuitively sort out situations in which such changes
do or do not matter. Our goal in this section is to fur-
ther develop such an understanding by looking more
closely into some of the implications of Theorem 3.3.

First, we have to settle the issue of “What does it mean
for a parameter change to matter?” One can think of
at least three definitions. First, the absolute change in
the probability Pr(y | e) is small. Second, the relative
change in the probability Pr(y | e) is small. Third,
relative change in the odds of y given e is small. The
first notion is the one most prevalent in the literature,
so we shall adopt it in the rest of this section.

Suppose we have a belief network for a diagnostic ap-
plication and suppose we are concerned about the ro-
bustness of the query Pr(y | €) with respect to changes
in network parameters. In this application, y is a par-
ticular disease and e is a particular finding which pre-
dicts the disease, with Pr(y | e) = .90. Let us define
robustness in this case to be an absolute change of no
more than .05 to the given query. Now, let X be a
binary variable in the network and let us ask: What
kind of changes to the parameters on X are guaran-
teed to keep the query within the desirable range? We
can use Theorem 3.3 easily to answer this question.
First, if we are changing a parameter by J, and if we
want the value of the query to remain < .95, we must
ensure that:

|In((p+0)/(1 —p—90)) —In(p/(1 - p))| <.7472,

where .7472 = |1n(.95/.05) — In(.90/.10)| and p is the
current value of the parameter.

0.15

0.05

0.2 04 0.6 08 1

-0.05

-0.15

Figure 4: The amount of parameter change 0 that
would guarantee the query Pr(y | e) = .90 to stay
within the interval [.85,.95], as a function of the cur-
rent parameter value p. The outer envelope guarantees
the query to remain < .95, while the inner envelope
guarantees the query to remain > .85.

Similarly, if we want to ensure that the query remains
> .85, we want to ensure that:

[n((p +6)/(1 = p—9)) = In(p/(1 —p))| < .4626,
where .4626 = |1n(.85/.15) — In(.90/.10)].

Figure 4 plots the permissible change § as a function
of p, the current value of the parameter. The main
thing to observe here is that the amount of permissible
change depends on the current value of p, with smaller
changes allowed for extreme values of p. It is also
interesting to note that it is easier to guarantee the
query to stay < .95 than to guarantee that it stays
> .85. Therefore, it is more likely for a parameter
change to reduce the value of a query which is close to
1 (and to increase the value of a query which is close
to 0). Finally, if we are increasing the parameter, then
a parameter value close to .4 would allow the biggest
change. But if we are decreasing the parameter, then
a value close to .6 will allow the biggest change.

Now let us repeat the same exercise but assuming that
the initial value of the query is Pr(y | €) = .60, yet
insisting on the same measure of robustness. Figure 5
plots the permissible changes § as a function of p, the
current value of the parameter. Again, the amount of
permissible change becomes smaller as the probability
p approaches 0 or 1. The other main point to em-
phasize is that the permissible changes are now much
smaller than in the previous example, since the initial
value of the query is not as extreme. Therefore, this
query is much less robust than the previous one.

More generally, Figure 6 plots the log-odd difference,
[In(O'(z | u)) — In(O(z | u))| against Pr(z | u) = p
and Pr'(x | u) = p+ J. Again, the plot explains
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Figure 5: The amount of parameter change ¢ that
would guarantee the query Pr(y | e) = .60 to stay
within the interval [.55,.65], as a function of the cur-
rent parameter value p. The outer envelope guarantees
the query to remain < .65, while the inner envelope
guarantees the query to stay in > .55.

analytically why we can afford more absolute changes
to non-extreme probabilities [11, 10].

We close this section by emphasizing that the above
figures identify parameter changes that guarantee to
keep queries within certain ranges. However, if the
belief network has specific properties, such as a spe-
cific topology, then it is possible for the query to be
robust against parameter changes that are outside the
identified bounds.

5 Conclusion

We presented an efficient technique for fine-tuning the
parameters of a belief network. The technique sug-
gests minimal changes to network parameters which
ensure that certain constraints are enforced on prob-
abilistic queries. Based on this technique, we have
experimented with some belief networks, only to find
out that these networks are more sensitive to param-
eter changes than previous experimental studies seem
to suggest. This observation lead us to an analytic
study on the effect of parameter changes, with the
aim of characterizing situations under which param-
eter changes do or do not matter. We have reported
on a number of results in this direction. Our cen-
tral result shows that belief networks are robust in a
very specific sense: the relative change in query odds
is bounded by the relative change in the parameter
odds. A closer look at this result, its meaning, and
its implications provide interesting characterizations
of parameter changes that do or do not matter, and
explains analytically some of the previous experimen-
tal results and observations on this matter.

Pri(x|u)

Figure 6: The plot of the log-odd difference, Alo =
[In(O'(z | u)) — In(O(x | u))|, against Pr(z | u) and
Pr'(z | u).

A  Proof sketches

Detailed proofs can be found in [2].

Theorem 3.1
From (3], the derivative Pr(y | )/00,, is equal to:

OPr(yle)
0044 -

Pr(y,z,ule)— Pr(y|e)Pr(z,u|e)
Pr(z | u)

Since, we have:

OPr(yle) OPr(yle) 7 OPr(y | e)
B aem|u aef\u ’

aTx|u
we can verify that:

OPr(y | e)
6@‘“
Pr(y,z,ule)— Pr(y|e)Pr(z,u|e)
Pr(z |u)(1 — Pr(z | u))
Pr(z|u)(Pr(y,u|e)— Pr(y|e)Pr(u]e))
Pr(z |u)(1 — Pr(z|u)) '

In order to find an upper bound on the derivative, we
would like to bound the term Pr(y,z,u | e) — Pr(y |
e)Pr(z,u | e). We have:

PT(y7x,u | e) - P’F(y | e)Pr(m,u | e)
< Pr(y,x,u|e)—PT(y|e)Pr(y7x,u|e)
Pr(y,z,ule)(1—Pr(y|e))
Pr(y,ule)(1—Pr(y|e)).

IA



Therefore, the upper bound on the derivative can be
verified as:
OPr(y | e)
8Tw|u
Pr(y,ule)(1—Pr(y|e))
Pr(xz|u)(1— Pr(z|u))
Pr(z | w)(Pr(y,u | e) - Pr(y | &)Pr(u | e))
Pr(z |u)(1 — Pr(z|u))
Pr(g|e)Pr(y.ule) | Pr(y|e)Pr(z.ule)
Pr(z | u) 1—Pr(z|u)

Since Pr(y,u | €) < Pr(y | e) and Pr(g,u | e) <
Pr(y | e), the upper bound on the derivative is:

OPr(y|e)
aTx|u
o Priyle)Priyle) Priy[e)Pr(y]e)
- Pr(z | u) 1— Pr(z|u)

Priyle)(1—Pr(y|e))
Pr(z|u)(1— Pr(z|u)

Similarly, we can prove the lower bound on the deriva-
tive as:

OpPr(yle) o Priyle)—Pry|e)
Ogla — Pr(z|u)(1—Pr(z|u)
Theorem 3.2

Because A7, is infinitesimal, from Theorem 3.1:

APy | o)
A7-.qc|1_1

OPr(y | e)
87—.x|u

Pry|e)(1—Pr(y|e))
Pr(z |u)(1 — Pr(xz | u))’

Arranging the terms, we have:

’APr(y | e) 1—Pr(y|e) |ATuu
Pr(y|e) 1—Pr(z|u)| Ty
i ATm|u _ 9 ATQE|u
S| Tz Tzlu ’

since Pr(z | u) = 74 < .5.

Theorem 3.3

We obtain this result by integrating the bound in

Theorem 3.1. In particular, if we change 7., to
Tg/0|u > T,lu, and consequently Pr(y | e) changes to

Pr'(y | e), we can separate the variables in the upper
bound on the derivative in Theorem 3.1, and integrate
over the intervals, and yield:

[ il
Pr(yle) P?"(y | e)(l - PT’(y | e))

x|u

Telu dr,
< / z|u .
T Tm|u(1 - Tz\u)

This gives us the solution:

In(Pr'(y | e)) —In(Pr(y | e)) —
In(1— Pr'(y|e))+In(l - Pr(y|e))
< (7)) = In(7e) = In(1 = 75,) + (1 = 74 p),

and after taking exponentials, we have:

Ta/:|u/(1 - Ta/:|u)
o 7—m|u/(1 - 7—m|u)7

Pri(y|e)/(1 - Pr'(y | e))
Pr(y|e)/(1 - Pr(y|e))

which is equivalent to:

O'(yle)
Olyle) —

The other parts of Theorem 3.3 can be proved simi-
larly.

O'(z)
O(z)"
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