
A New Clause Learning Scheme for Efficient Unsatisfiability Proofs

Knot Pipatsrisawat and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095 USA

{thammakn,darwiche}@cs.ucla.edu

Abstract

We formalize in this paper a key property of asserting clauses
(the most common type of clauses learned by SAT solvers).
We show that the formalized property, which is called em-
powerment, is not exclusive to asserting clauses, and intro-
duce a new class of learned clauses which can also be empow-
ering. We show empirically that (1) the new class of clauses
tends to be much shorter and induce further backtracks than
asserting clauses and (2) an empowering subset of this new
class of clauses significantly improves the performance of the
Rsat solver on unsatisfiable problems.

Introduction
An important technique that underlies most modern SAT
solvers is conflict-clause learning (Marques-Silva and
Sakallah 1996). The algorithm for deriving conflict clauses
in these SAT solvers is based on using implication graphs to
derive a particular class of conflict clauses known as assert-
ing clauses (Marques-Silva and Sakallah 1996; Moskewicz
et al. 2001). In this paper, we formalize an essential property
of asserting clauses, which may also be satisfied by some
non-asserting clauses. We then define a new class of clauses
which is a relaxation of asserting clauses and show that they
tend to be shorter than asserting clauses and lead to much
further backtracks. Empirical results show that selectively
learning the new type of clauses significantly improves the
performance of Rsat, the winner of the industrial category of
the SAT’07 competition, on unsatisfiable problems.

We begin the next section by presenting a model of mod-
ern clause-learning SAT solvers, which we use as a basis for
our discussions in this paper. Then, we introduce a property
of conflict clauses, called empowerment. Next, we define
a new class of conflict clauses and present an efficient al-
gorithm for deriving them. Then, we discuss a special sub-
set of this new class which satisfies empowerment. Finally,
we present experimental results and end with conclusions.
Proofs of all propositions in this paper can be found in (Pi-
patsrisawat and Darwiche 2008).

A Model of Modern SAT Solvers
We begin with some basic notations and definitions. If ∆
and α are two Boolean formulas and ℓ is a literal, we write

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

input : CNF formula ∆

output: A solution of ∆ or unsat if ∆ is not satisfiable

D ← 〈〉 , Γ← {}1

while true do2

if S = (∆, Γ, D) is 1–inconsistent then //Conflict3

if D = 〈〉 then return unsat4

α← an asserting clause for S5

m← the assertion level of α6

D ← Dm // the first m decisions7

Γ← Γ ∧ α8

else9

Choose a literal ℓ s.t. S 6⊢ ℓ and S 6⊢ ¬ℓ10

if ℓ = null then return D // satisfiable11

D ← D, ℓ12

end13

end14

Algorithm 1: A pseudo-code of a SAT solver

∆ |= α to mean that ∆ entails α, and write ∆ ⊢ ℓ to mean
that literal ℓ can be derived from ∆ using unit resolution.
Furthermore, we may treat a clause as the set of literals in the
clause and a CNF formula as the set of clauses it contains.

Algorithm 1 is a pseudo-code of a clause-learning SAT
solver, which is based on making variable assignments,
called decisions. It starts with an empty decision sequence
D and an empty set of learned clauses Γ (Line 1). It then
iterates until it either proves the satisfiability or unsatisfia-
bility of the CNF ∆. In each iteration, the conjunction of ∆,
learned clauses Γ, and decisions D are checked for inconsis-
tency using unit resolution (Line 3). If unit resolution finds
an inconsistency, the algorithm does one of two things:

• If the decision sequence is empty, the CNF ∆ must be
unsatisfiable and the algorithm terminates (Line 4).

• If the decision sequence is not empty, an asserting clause
α is generated with an assertion level m. The algorithm
then erases all decisions made after level m, adds α to Γ,
and moves on to the next iteration (Lines 5-8).

If unit resolution detects no inconsistency, the algorithm
tries to find a literal ℓ whose value is not currently implied
or falsified by unit resolution, and adds it to the decision se-
quence (Line 12). If no such literal is found, the algorithms
terminates having proven satisfiability (Line 11). We will
now provide the missing definitions.

• A decision sequence is an ordered set of literals D =
〈ℓ1, . . . , ℓn〉. Each literal ℓk is called the decision at level
k. We write Dm to denote the subsequence 〈ℓ1, . . . , ℓm〉.
When appropriate, we will treat a decision sequence as
the conjunction or the set of all literals in the sequence.

• A SAT state is a tuple (∆,Γ,D), where ∆ and Γ are CNFs
such that ∆ |= Γ, and D is a decision sequence. We will
write Sk to denote the state (∆,Γ,Dk).

• (∆,Γ,D) is 1–inconsistent iff ∆ ∧ Γ ∧ D ⊢ false.

• A literal ℓ is implied by state S = (∆,Γ,D) at level n,
written S ⊢n ℓ, iff n is the smallest integer for which
∆ ∧ Γ ∧ Dn ⊢ ℓ. We say that the implication level of
literals ℓ,¬ℓ is n in this case, write S ⊢ ℓ to mean S ⊢k ℓ
for some k, and write S 6⊢ ℓ to mean S 6⊢k ℓ for all k.

• S = (∆,Γ, 〈ℓ1, . . . , ℓn〉) is normal iff for 1 ≤ k ≤ n,
Sk−1 is not 1–inconsistent, Sk−1 6⊢ ℓk and Sk−1 6⊢ ¬ℓk.

The notion of normal states prohibits SAT solvers from
making a decision in the presence of a conflict. The state S
on Line 3 of Algorithm 1 is always normal. Therefore, from
now on, we will assume that every SAT state is normal.

We are now ready to define the remaining notions used in
Algorithm 1. An asserting clause is a special type of conflict
clause that satisfies some strong conditions, so we start first
by defining the weaker notion of a conflict clause. Our defi-
nition of conflict clause closely follows the graphical defini-
tion in (Zhang et al. 2001).

Definition 1 (Conflict Clause) Let S = (∆,Γ,D) be a
SAT state. A clause α = ℓ1 ∨ . . . ∨ ℓm is a conflict clause
for state S iff:

1. ∆ ∧ Γ ∧ ¬α ⊢ false. That is, α is implied by ∆ ∧ Γ and
this can be proven using unit resolution.

2. For each ℓi, S ⊢ ¬ℓi. That is, the literals ¬ℓi are a subset
of the implications derived by unit resolution in state S.

Every conflict clause must contain at least one literal
that is falsified in the last level. Otherwise, the SAT state
would not be normal, because the previous state must be
1–inconsistent. In practice, however, modern SAT solvers
insist on learning conflict clauses that contain exactly one
literal falsified in the last level.

Definition 2 (Asserting Clause) A conflict clause α of a
SAT state S = (∆,Γ,D) is an asserting clause iff it has

exactly one literal ℓ with implication level |D|. The lit-
eral ℓ is called the asserted literal of α. Moreover, the
assertion level of clause α is defined as the highest implica-
tion level k < |D| attained by some literal in α. If |α| = 1,
the assertion level is defined to be zero.

An asserting clause is guaranteed to become unit once the
solver backtracks to the assertion level. Moreover, an assert-
ing clause can always be derived for a 1–inconsistent SAT
state that has at least one decision.

Proposition 1 A SAT state S = (∆,Γ,D) with |D| > 0 is
1–inconsistent iff it has an asserting clause.

The completeness of Algorithm 1 can be shown by real-
izing that asserting clauses learned by the algorithm never

repeat (otherwise, the conflict would have been prevented).
Since every conflict comes with an asserting clause (Propo-
sition 1) and there are only finitely many clauses, the algo-
rithm can only experience a finite number of conflicts. It
cannot keep making decisions indefinitely either and, there-
fore, has to terminate. This proof will be referred to again
when we introduce a new class of conflict clauses.

Empowerment

In this section, we introduce a new property, which is satis-
fied by all asserting clauses.

Definition 3 (1–Empowerment) Let α ⇒ ℓ be a clause
where ℓ is a literal and α is a conjunction of literals. The
clause is 1–empowering with respect to CNF ∆ via ℓ iff

1. ∆ |= (α ⇒ ℓ): the clause is implied by ∆.

2. ∆ ∧ α 6⊢ ℓ: the literal ℓ cannot be derived from ∆ ∧ α
using unit resolution.

We will also say in this case that ℓ is the empowering lit-
eral of clause α ⇒ ℓ. Moreover, we will say that a clause
is 1–empowering with respect to state (∆,Γ,D) iff it is 1–
empowering with respect to ∆ ∧ Γ. Intuitively, a clause is
1–empowering with respect to a CNF ∆ iff (1) it is logi-
cally implied by the CNF and (2) adding it to the CNF al-
lows unit resolution to derive a new implication that could
not be derived without the clause. Consider the CNF ∆ =
(a ∨ b) ∧ (¬a ∨ c) ∧ (b ∨ ¬c ∨ d) for an example, and the
clause (b ∨ d) which is implied by the CNF. Adding ¬d to
∆ does not allow unit resolution to derive b even though b
is implied by ∆ ∧ ¬d. Yet, this derivation becomes possible
once we add the clause (b∨ d) to ∆. Hence, the clause is 1–
empowering with respect to ∆ via literal b. Note, however,
that the clause (b ∨ c) is not 1–empowering with respect to
the same CNF, because ∆ ∧ ¬b ⊢ c and ∆ ∧ ¬c ⊢ b.

This means that adding a conflict clause that is not 1–
empowering to the knowledge base will not lead to any new
implication. Note that if a clause is not 1–empowering with
respect to a knowledge base, adding more clauses to the
knowledge base will not make it so.

Proposition 2 All asserting clauses of a SAT state S are 1–
empowering with respect to S and the asserted literals are
their empowering literals.

Given this result, the learning component of Algorithm 1
can be viewed as one that tries to empower unit resolution so
that it becomes more complete. In particular, each time unit
resolution discovers a contradiction, it does so under a par-
ticular decision sequence. When this sequence is not empty,
it means that unit resolution has missed an implication due
to its incompleteness. By adding the empowering clause,
we are effectively allowing unit resolution to discover this
implication at an earlier stage, using only part of the cur-
rent decision sequence.1 Therefore, the shorter the empow-
ering clause is, the better it is in making unit resolution more
complete. Moreover, an empowering clause with a smaller
assertion level will allow unit resolution to derive the missed

1In (del Val 1994), a similar analysis on the completeness of
unit resolution is given in the context of knowledge compilation.

a

b

c

d

e

(¬a b)

(¬a ¬b c)
(¬c e)

(¬b ¬c d)
v

v v

v

v v

C =
4

C =
3

C =
2

C =
1

Figure 1: An implication graph. Each node is labeled with an
implication and its reason.

implication under a smaller subset of the current decision se-
quence.

A New Class of Conflict Clauses

In this section, we introduce a new class of clauses, which is
a relaxation of asserting clauses. This class of clauses may
satisfy the empowerment property as well. Later, we argue
and show empirically that an empowering subset of this new
class could improve the performance of SAT solvers.

Definition 4 (Bi-Asserting Clause) A conflict clause β of a
SAT state (∆,Γ,D) is a bi-asserting clause if it has exactly

two literals with implication level |D|. The assertion level
of β is defined as the second highest implication level of its
literal. If |β| = 2, its assertion level is defined to be zero.

We will show in a later section that a class of bi-asserting
clauses tends to be much shorter and have smaller assertion
levels than asserting clauses for the same conflict. Deriv-
ing a bi-asserting clause is similar to deriving a normal as-
serting clause. The standard algorithm performs a series
of resolutions to derive an asserting clause (see (Eén and
Sörensson 2003; Ryan 2004)). We will refer to it as Al-
gorithm 2 in our discussion. We describe this algorithm
through the following example. Let ∆ be the conjunction
of C1 = (¬a ∨ b), C2 = (¬a ∨ ¬b ∨ c), C3 = (¬b ∨ ¬c ∨
d), C4 = (¬c∨ e), C5 = (¬d∨¬e). Now, consider the state
S = (∆, true, 〈a〉). From this state, unit resolution will de-
rive some implications before discovering a conflict. The
derivations of implications are visualized in Figure 1. An
edge X → Y in this graph indicates that X’s literal directly
contributes to the implication of Y ’s. A reason of an im-
plication is the clause in which the literal becomes unit. In
this case, assume that the implications b, c, d, e are discov-
ered in this order and that C5 is found to be empty (all of its
literals have been falsified). The following trace shows how
Algorithm 2 derives an asserting clause from this example.

Step Clause Explanation
1 (¬d ∨ ¬e) C5: the empty clause
2 (¬c ∨ e) C4: the reason of e

3 (¬c ∨ ¬d) resolving 1 & 2 on e

4 (¬b ∨ ¬c ∨ d) C3: the reason of d

5 (¬b ∨ ¬c) resolving 3 & 4 on d

6 (¬a ∨ ¬b ∨ c) C2: the reason of c

7 (¬a ∨ ¬b) resolving 5 & 6 on c

8 (¬a ∨ b) C1: the reason of b

9 (¬a) resolving 7 & 8 on b

The algorithm starts by initializing the conflict clause to
be the empty clause (Step 1). Then, it picks a literal in the
clause whose negation was implied last (e in this case). The
algorithm resolves the reason of this literal (Step 2) with the
conflict clause and replaces the conflict clause with the resol-
vent, (¬c ∨ ¬d) (Step 3). Next, since, in the current conflict

clause, the negation of ¬d was implied last, the algorithm
resolves its reason (Step 4) with the conflict clause and pro-
duces (¬b ∨ ¬c) (Step 5). This process is repeated until the
conflict clause becomes asserting (Step 9). We refer to the
clauses in Steps 3,5,7 as intermediate conflict clauses.

This algorithm can be modified to derive bi-asserting
clauses without any added complexity. We only need to
detect when the intermediate conflict clause contains two
(instead of one) literals falsified at the conflict level. Note,
however, that not every bi-asserting clause is 1–empowering
and the algorithm described above, does not guarantee to
produce 1–empowering bi-asserting clauses. For example,
the bi-asserting clause (¬c ∨ ¬d) is not 1–empowering for
the above example, while (¬b∨¬c) is. This suggests that bi-
asserting clauses should be learned with care to avoid adding
clauses that will not contribute any new implication.

Learning 1–Empowering Bi-Asserting Clauses
In this section, we address the issue of learning 1–
empowering bi-asserting clauses. In general, checking
whether the clause α ⇒ ℓ is empowering with respect to
CNF ∆ via literal ℓ can be done by checking if ∆∧¬α ⊢ ℓ.
The time complexity of this test is linear in the size of the
knowledge base. In practice, however, this test would in-
cur too much overhead. Hence, we will next present an ef-
ficient algorithm that detects the empowerment of the de-
rived bi-asserting clause, but only with respect to the clauses
used in its derivation. Even though the derived bi-asserting
clauses are not guaranteed to be 1–empowering with respect
to other clauses in the knowledge base, we will show in the
next section that they tend to in the majority of cases. Our
approach for generating empowering bi-asserting clauses is
based on the notions of merge resolutions. Defined in (An-
drews 1968), a resolution between clauses C1 and C2 is a
merge resolution iff C1 and C2 share a literal (C1∩C2 6= ∅).

Proposition 3 An intermediate conflict clause of Algorithm
2 is 1–empowering with respect to the clauses used in its
derivation if at least a step in the derivation is a merge res-
olution.

Based on this result, all we need to ensure that the conflict
clause is 1–empowering is the existence of a single merge
resolution step in the resolution derivation of the clause.
This additional check incurs very little overhead.

We close this section by noting that integrating bi-
asserting clauses into Algorithm 1 still maintains the com-
pleteness of the algorithm given that a standard unit prop-
agation algorithm is used (Ryan 2004). This is due to the
result in (Ryan 2004), which states that every intermediate
conflict clause in the derivation must not already appear in
the knowledge base at the time of the derivation. As a result,
our completeness proof presented earlier still holds.

Experimental Results
We modified Rsat (Pipatsrisawat and Darwiche 2007), the
winner of the SAT’07 competition (industrial category), to
detect any occurrence of 1–empowering bi-asserting clauses
(with respect to the clauses in the derivation) during con-
flict clause derivation. If found, the bi-asserting clause is

Family Total # solved SAT # solved UNSAT

Rsat Rsat+ Rsat++ Rsat Rsat+ Rsat++

difp 29 29 28 28 0 0 0

dlx iq unsat 1 32 1 0 2 10 16 16

grieu 2005 32 20 18 19 0 0 0

engine 10 0 0 0 7 7 7

fpga 21 11 11 11 3 1 4

fvp sat 3 20 20 20 20 0 0 0

fvp unsat 1,2 26 1 1 1 25 25 25

IBM 274 107 104 105 164 165 165

liveness sat 1 10 5 7 6 0 0 0

liveness unsat 1,2 21 0 0 0 7 7 7

narain 2005 10 6 6 6 2 2 2

npe 6 3 3 3 1 1 1

pipe ooo 29 0 0 0 12 14 16

pipe sat 1 10 9 10 10 0 0 0

pipe unsat 1.0,1.1 27 0 0 0 14 20 19

SAT-Race 200 68 64 66 101 110 110

SAT Comp. 07 173 49 48 50 56 59 60

vliw sat 2 9 9 9 9 0 0 0

vliw unsat 2,3,4 10 0 0 0 0 6 6

Total 949 338 329 336 402 433 438

Table 1: Performance of Rsat with different learning schemes.

learned instead of the asserting clause otherwise learned.
We considered Rsat with the following learning schemes:
(i) learn only asserting clauses (normal Rsat) (ii) learn 1–
empowering bi-asserting clause when possible (Rsat+) (iii)
learns 1–empowering bi-asserting clause only when its as-
sertion level is at least 2 levels smaller than that of the as-
serting clause (Rsat++).

Although empowerment is only with respect to the clauses
used in the derivation, in practice, it usually results in em-
powerment with respect to the whole formula. We found
that, on 95% of the problems, over 80% of the bi-asserting
clauses derived are 1–empowering with respect to the whole
formula at the time of learning.

We experimented with 949 SAT problems from previous
SAT/SAT-Race competitions and contemporary libraries.2

Each solver is given 1,800 seconds per problem on a 3.8GHz
machine with 3GB of RAM. Table 1 reports the number of
problems solved by different versions. According to this
table, Rsat+ and Rsat++ perform considerably better than
Rsat. For satisfiable problems, Rsat+ tends to be worse than
the others, whereas Rsat and Rsat++ have comparable per-
formances. For unsatisfiable problems, however, Rsat++
and Rsat+ solve 36 and 31 more problems than Rsat, re-
spectively. Moreover, the new learning scheme decreases
the running time on unsatisfiable problems by 34% (71,246
s for Rsat and 47,400 s for Rsat++). Overall, Rsat++ used
only 99,209 seconds, while Rsat used 114,600 seconds.3

We have also evaluated the version of Rsat that learns bi-
asserting clauses regardless of their empowerment. This ver-
sion of Rsat solved only 647 problems (normal Rsat solved
740 problems). This is because these bi-asserting clauses are
not necessarily capable of generating any new implications.
So, in the long run, they only contribute to the overhead of
unit propagation no matter how short they are.

We also measured the sizes of different conflict clauses
derived by Rsat++ and found that, on average, the size of a

2http://www.satcompetition.org/2007,http://fmv.jku.at/sat-
race-2006/, http://www.research.ibm.com/haifa/projects/verification
/RB Homepage/fvbenchmarks.html, http://www.miroslav-velev.co
m/sat benchmarks.html

3Only problems solved by both Rsat and Rsat++ are considered.

bi-asserting clause is slightly less than half the size of an as-
serting clause. Moreover, on average, the backtrack induced
by a bi-asserting clause is about 5-6 times longer than the
one induced by an asserting clause.

Related Work and Conclusions

Learning non-asserting clauses have been previously pro-
posed by (Ryan 2004) and (Dershowitz, Hanna, and Nadel
2007). In both work, non-asserting clauses are learned in
addition to asserting clauses (i.e. the solvers may add two
clauses per conflict). Moreover, additional clauses learned
in both cases may not be empowering nor bi-asserting.

In conclusion, we formalized a key property of assert-
ing clauses called empowerment and presented a new class
of conflict clauses called bi-asserting clauses. Our experi-
ments showed that, by selectively learning empowering bi-
asserting clauses, Rsat produces shorter conflict clauses,
performs longer backtracks, and performs better on unsat-
isfiable problems.

Acknowledgments

This work has been partially supported by Air Force grant
#FA9550-05-1-0075 and by NSF grant #IIS-0713166.

References

Andrews, P. B. 1968. Resolution with merging. J. ACM
15(3):367–381.

del Val, A. 1994. Tractable databases: How to make propo-
sitional unit resolution complete through compilation. In
Proceedings of KR-94, pp. 551-561.

Dershowitz, N.; Hanna, Z.; and Nadel, A. 2007. Towards
a better understanding of the functionality of a conflict-
driven sat solver. In SAT, 287–293.

Eén, N., and Sörensson, N. 2003. An extensible sat-solver.
In Proceedings of SAT 2003.

Marques-Silva, J. P., and Sakallah, K. A. 1996. GRASP -
A New Search Algorithm for Satisfiability. In Proceedings
of IEEE/ACM Intl. Conf. on CAD, 220–227.

Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.
In Proceedings of DAC’01, June 2001.

Pipatsrisawat, K., and Darwiche, A. 2007. Rsat 2.0: Sat
solver description. Technical Report D–153, Automated
Reasoning Group, Comp. Sci. Department, UCLA.

Pipatsrisawat, K., and Darwiche, A. 2008. A new clause
learning scheme for efficient unsatisfiability proofs. Tech-
nical Report D–156, Automated Reasoning Group, Comp.
Sci. Department, UCLA.

Ryan, L. 2004. Efficient Algorithms for Clause-Learning
SAT Solvers. Master’s thesis, Simon Fraser University.

Zhang, L.; Madigan, C. F.; Moskewicz, M. W.; and Ma-
lik, S. 2001. Efficient conflict driven learning in boolean
satisfiability solver. In ICCAD-01, 279–285.

