RC_Link: Genetic Linkage Analysis using
Bayesian Networks *

David Allen *, Adnan Darwiche

Computer Science Department, University of California, Los Angeles, CA 90095,
United States

Abstract

Genetic linkage analysis is a statistical method for mapping genes onto chromo-
somes, and is useful for detecting and predicting diseases. One of its current limi-
tations is the computational complexity of the problems of interest. This research
presents methods for mapping genetic linkage problems as Bayesian networks and
then addresses novel techniques for making the problems more tractable. The result
is a new tool for solving these problems called RC_Link, which in many cases is
orders of magnitude faster than existing tools.

Key words: Bayesian networks, genetic linkage analysis, pedigree, RC_Link,
probabilistic inference

1 INTRODUCTION

Ordering genes on a chromosome and determining the distance between them
is useful in predicting and detecting diseases. Detecting where disease genes
are located and what other genes are near them on a chromosome can lead to
determining which people have a high probability of occurrence, even before
symptoms appear, allowing for earlier treatment. Genetic linkage analysis is
a statistical method for this mapping of genes onto a chromosome and deter-
mining the distance between them (Ott, 1999).

Recently it has been shown that Bayesian networks are well suited for model-
ing and reasoning about this domain (Fishelson and Geiger, 2002; Allen and

* Available at http://reasoning.cs.ucla.edu/rc_link
* Corresponding author.

Email addresses: dlallen@cs.ucla.edu (David Allen), darwiche@cs.ucla.edu
(Adnan Darwiche).

Preprint submitted to Internat. J. Approx. Reason. 12 June 2007

Darwiche, 2003; Lauritzen and Sheehan, 2003; Fishelson et al., 2005). In this
paper, we present a new tool called RC_Link which can model genetic linkage
analysis problems as Bayesian networks and do inference efficiently, in many
cases orders of magnitude faster than existing tools.

This paper will first give background on the domain of genetic linkage analysis
and Bayesian networks in Section 2 and then in Section 3 will discuss how the
linkage problems are encoded as Bayesian networks. Sections 4, 5, and 6 will
then present many of the techniques RC_Link uses to make the problems
more tractable. These techniques can also be used by other existing tools to
further improve their performance. Finally, Section 7 will present experimental
results comparing RC_Link with existing tools and then offer some concluding
remarks in Section 8.

2 BACKGROUND

Genetic linkage analysis is an important method for mapping genes onto chro-
mosomes and helping to predict disease occurrences prior to the appearance
of symptoms. Research over the past few years has shown that Bayesian net-
works are well suited for doing linkage analysis computations and many tasks
which were considered intractable a few years ago are now solvable, allow-
ing the biology, genetics, and bioinformatics researchers to further study their
data and draw new conclusions.

2.1 Genetic Linkage Analysis

Many algorithms used for genetic linkage analysis are extensions of either the
Elston-Stewart algorithm (Elston and Stewart, 1971) or the Lander-Green al-
gorithm (Lander and Green, 1987). The first algorithm does well with many
people and few genes, while the second algorithm works well for fewer people
and many genes. Quite a few genetic linkage analysis tools have been pro-
duced, most notably FASTLINK (Cottingham et al., 1993; Schaffer et al.,
1994; Becker et al., 1998), GENEHUNTER (Kruglyak et al., 1996), VITESSE
(O’Connell and Weeks, 1995), and SUPERLINK (Fishelson and Geiger, 2002).
In order to understand the genetic linkage analysis tasks these tools are solving
we will first briefly review some relevant Biology background.

Human cells contain 23 pairs of chromosomes, which are sequences of DNA
containing the genetic makeup of an individual and are inherited from a per-
son’s parents. Each pair consists of one chromosome inherited from the per-
son’s father and one from their mother. Locations on these chromosomes are

Gchromosome

Fig. 1. Diagram of a gene on a chromosome (Courtesy U.S. Department of Energy,
Human Genome Program).

referred to as loci (singular: locus). A locus which has a specific function is
known as a gene. These functions, which can be a result of a combination of
multiple genes, can include such things as determining a person’s blood type,
hair color, or their susceptibility to a disease. The actual state of the genes is
called the genotype and the observable outcome of the genotype is called the
phenotype. A genetic markeris a locus with a known DNA sequence which can
be found in each person in the general population. These markers are used to
help locate disease genes. Figure 1 displays a chromosome, its DNA makeup,
and identifies one gene.

Each parent contains their 23 pairs of chromosomes, however they each only
pass a total of 23 chromosomes on to their children, one chromosome from each
pair, resulting in the child having 23 pairs. It is possible for the transferred copy
to be entirely a duplicate of the chromosome from the parent’s father or from
the parent’s mother (the offspring’s grandfather or grandmother), however
more likely it contains nonoverlapping sequences from both. The locations
on the chromosome where the sequences switch between the two parents are
known as crossover or recombination events. The recombination frequency,
0, (also called the recombination fraction) between two consecutive genes is
defined as the probability of a recombination event occurring between them. !
Therefore, if two genes are unlinked, or uncorrelated, they will have § = 0.5
(meaning the state of the first will not influence the state of the second),
whereas linked genes will have 6 < 0.5. This frequency is related to the physical
distance between them, for example if two genes are close together there may
be little chance for a recombination to occur, however if two genes are far
away the probability of recombination increases. In Figure 2 a chromosome
is depicted along with the location of three (ordered) genes. It furthermore

I This frequency between two loci is sometimes measured in units called centimor-
gans, where 1% recombination is equal to 1 centimorgan.

Chromosome Recombination
Frequencies

Gene 1
e
Gene 2

Fe.
Gene 3

Fig. 2. Ordering genes on a chromosome and determining the distance between
them.

depicts the recombination frequencies, #; and 5, between the two consecutive
pairs.

Therefore, given a large population of people, their inheritance structure (i.e.
a family tree, also called a pedigree, an example of which is in Figure 3), and
partially known genotype and/or phenotype information (e.g. genetic marker
readings and disease affection status), genes can be mapped onto the chromo-
somes based on how frequently recombination events occur between pairs of
genes. More formally, let P represent a population of related individuals, let
e be the known evidence on genotypes and/or phenotypes, and let 0 be a vec-
tor containing the recombination frequencies between each pair of consecutive
genes (Hence if we have n genes, then # will have n—1 6; values). We can then
compute Pr(e|P,0), which is the likelihood of the known data for the given
population and recombination frequencies.

A common task in genetic linkage analysis is then to compute this likelihood
for multiple g vectors, selecting the one with the maximum likelihood. When
doing analysis between different populations, the numerical likelihood is gen-
erally not too useful, as it is dependent on the size of the population (the larger
the population the smaller the likelihood). Therefore, a more useful metric is
the LOD score which is ratio of the likelihood to that of the likelihood under
‘free’ recombination. This score is defined as follows and a score of 3 or more
is usually considered significant in determining whether two loci are linked (or
correlated).

LOD score = log| likelihood with given recombination frequency

likelihood with no linkage (a recombination frequency of 0.5)

J(1)

© @O @
15 22 23 24 25

Fig. 3. An example pedigree where squares represent males and circles represent
females.

For example, if 6; is being modified during the maximum likelihood search,
then the LOD score would be the log of Pr(e|P,) divided by Pr(e|P,0,0; =
0.5).

The recombination frequencies with the maximum likelihood (or LOD score)
can then be used to determine the distances between the genes. Each different
6 vector is a hypothesis of the distance between pairs of consecutive genes,
and the goal is to find the one which best fits the known evidence. Therefore
the end product of this maximum likelihood search is the most likely distance
between each pair of consecutive genes for the known evidence. For a more
thorough biological background of genetic linkage analysis see (Ott, 1999).

2.2 Bayesian Networks

Bayesian networks are a method for representing an exponentially large joint
probability distribution in a compact manner, while still allowing probabil-
ity calculations to be done efficiently (Pearl, 1988). They do this by using a
graphical structure to model a domain in terms of the independencies between
random variables. Bayesian networks are frequently used to probabilistically
model situations and to assist in reasoning under uncertainty.

When the genetic linkage analysis domain is modeled as a Bayesian network,
the task becomes to compute the probability of evidence, Pr(e), for different
recombination fractions (which are used to calculate the LOD score), and then
choose the one with the maximum likelihood based on the data. The networks

generated for doing this task frequently are very computationally challenging
to do inference on (Allen and Darwiche, 2003). The past few years have seen
significant advances in the ability of linkage analysis tools, allowing networks
which used to be very challenging to be solved rather easily and networks
which were previously too complex that are now tractable.

A Bayesian network is a pair, (G,P), where G is a directed acyclic graph
(DAG) and P consists of a set of factors. Each of the nodes in G corresponds
to a random variable from a set X = {Xj,..., X} and the edges “intuitively”
represent direct probabilistic influence between the two connected variables.
This influence is measured by the parameters of the network, P. For each X; €
X, with parents Pa;, P must contain a factor f(x;, pa;) = Pr(x;|pa;). Usually
these factors are in the tabular form of a conditional probability table (CPT),
where each CPT in P consists of the probability of each state of a variable
conditioned on each possible instantiation of its parents. The complete BN
compactly defines a joint probability distribution over the random variables.

A graphical depiction of a simple Bayesian network is shown in Figure 4. Each
of the random variables has a set of possible states, for example the variable
“C: Brain Tumor” can be in the state “Present” or “Absent” and the CPT
associated with that variable shows the probability of each, given the state
of its parents, which happen to be only the variable “A: Metastatic Cancer.”
In many BNs, the edges not only depict a probabilistic influence between
variables, but also depict causality in the form of cause — effect. Further

research in understanding causality in Bayesian networks has also been done
(Pearl, 2000).

. P(A)
A:Metastatic Cancer
Present | .2
Absent | .8

B: Serum Calcium

P(CIA)
A=Present | A=Absent
P(BIA) Present | .20 05
A=Present | A=Absent
Absent | . .95
Increased | .8 2
Not 2 8
Increased
P(D|BC)
B=Increased | B=Increased | B=Not Increased | B=Not I ncreased P(EIC)
C=Present C= Absent C= Present C= Absent C=Present | C=Absent
Present | .80 .80 .80 .05 Present | .8 6
Absent | .20 .20 .20 .95 Absent | .2 4

Fig. 4. A Bayesian network.

2.3 Recursive Conditioning Algorithm

Once a Bayesian network is created, the task then becomes to do inference on
the network (to answer the queries by computing the desired probabilities).
Many inference algorithms are based on the initial work of (Pearl, 1986) and
(Lauritzen and Spiegelhalter, 1988). Some of the main algorithms in use today
are the Hugin jointree algorithm (Jensen et al., 1990), the Shenoy—Shafer
jointree algorithm (Shafer and Shenoy, 1990), bucket elimination (variable
elimination) (Dechter, 1996), and recursive conditioning (Darwiche, 2001b).
Some of these algorithms are compared in (Lepar and Shenoy, 1998), and
these and many other algorithms, including many approximation algorithms,
were surveyed in (Guo and Hsu, 2002).

It has been shown in the context of Bayesian networks that the Elston-Stewart
algorithm and the Lander-Green algorithm can be seen as specific instances
of the variable elimination algorithm (Fishelson and Geiger, 2003), where the
first eliminates one nuclear family at a time while the second eliminates one
gene at a time. The Bayesian network community has many other strategies
for generating elimination orders and using tools in this area of research can
take advantage of those strategies, as well as other advances in probabilistic
modeling.

RC_Link is based on the recursive conditioning algorithm (RC). This algo-
rithm is a divide-and-conquer algorithm, where the problem is represented
by the network and is decomposed into smaller problems which can then be
solved independently and recursively. This decomposition is accomplished by
using conditioning and case analysis, which means fixing the states of a set of
variables and then iterating over all possible instantiations (or possible states).
This conditioning allows for their outgoing edges to be removed.? Therefore,
RC picks the conditioning set (called the cutset at each decomposition step)
so as to break the network into smaller independent networks, and then re-
cursively solves the smaller networks. An example network decomposition is
depicted graphically in Figure 5, where the network corresponding to the root
node in the tree is decomposed by conditioning on the variable B. Once B
is instantiated the edges between B — C and B — FE are removed, result-
ing in two independent networks (one containing the variables {A, B} and
the other containing the variables {C, D, and E'}). This decomposition struc-
ture is known as a decomposition tree (dtree). More formally, a dtree and the
variables in the cutset are defined as:

Definition 1 (Darwiche, 2001b) A dtree for a Bayesian network is a full bi-

2 Once a variable is instantiated, its children are no longer dependent on the parent
variable, only on the known state and therefore the edge connecting the parent and
child can be removed (Darwiche, 2001b).

nary tree, the leaves of which correspond to the network conditional probability
tables (CPTs). If a leaf node t corresponds to a CPT ¢, then vars(t) is defined
as the variables appearing in CPT ¢. For an internal node t, with left child t;

and right child t,, vars(t) = vars(t;) U vars(t,).

Definition 2 The cutset of internal node t in a dtree is: cutset(t) o vars(t;)N
vars(t,) — acutset(t), where acutset(t) is the union of cutsets associated with
ancestors of node t in the dtree.

It turns out that many of the subnetworks generated by this decomposition
process need to be solved multiple times redundantly, allowing the results
to be stored in a cache after the first computation and then subsequently
fetched during further computations. Specifically, if we define the context as
in Definition 3, then caches can be indexed by instantiations of the variables
in the context, as any computation done under the same context instantiation
will produce equivalent results.

Definition 3 The context of node t in a dtree is: context(t) ol vars(t) N
acutset(t).

This ability to either cache or recompute computations allows RC to be an
any-space algorithm, meaning it can run using any amount of memory. When
less than the full amount of memory is used, RC must determine how to best
use the available memory (i.e. which computations to store in the caches and
which to recompute) (Allen and Darwiche, 2004; Allen et al., 2004; Allen,
2005). Given the above definitions, the pseudocode shown in Algorithms 1
and 2 will compute the probability of evidence, Pr(e) for the input network.
A more through description of the algorithm can be found in (Darwiche, 2001b;
Allen and Darwiche, 2004; Allen, 2005).

Fig. 5. A decomposition tree (dtree).

Algorithm 1 RC(t): Returns the probability of evidence e recorded on the

dtree rooted at ¢
1: if ¢ is a leaf node then

2: return LOOKUP(¢)

3: else

4: y « recorded instantiation of context(t)
5: if cache?(t) and cache[y] # nil then

6: return cache[y]

7 else

8: p+—0

9: for instantiations c¢ of uninstantiated vars in cutset(t) do
10: record instantiation c

11: p < p+ RC(t;)RC(t,)

12: un-record instantiation c

13: when cache?(t), cache[y] < p

14: return p

Algorithm 2 LOOKUP(t)
¢ «— CPT of variable X associated with leaf ¢
if X is instantiated then
x < recorded instantiation of X
u « recorded instantiation of X’s parents
return ¢(z|u) // ¢(z|u) = Pr(z|u)
else
return 1

3 MODELING LINKAGE ANALYSIS WITH BAYESIAN NET-
WORKS

The following description is the method both SUPERLINK and RC_Link use
to map the genetic linkage analysis problem to a Bayesian network (Fishelson
and Geiger, 2002) and is currently one of the more common, however this is
not the only possible mapping (Lauritzen and Sheehan, 2003). During this
discussion we will refer to the simple example in Figure 6. The left side of the
figure shows a simple pedigree containing three people (a father, mother, and
child). The right side shows the corresponding Bayesian network, assuming
three loci are being modeled.

To model the problem as a Bayesian network, for each person in the pedigree
and for each locus (genetic marker or gene) being modeled, two random vari-
ables will be created called Gp; and Gm;, where i refers to the locus. These
represent the genotype of the individual (one models the paternal genotype
variable and the other is the maternal).® For example if the gene we are inter-

3 Note that many examples in this paper use binary variables for simplicity, however
in general the variables are multi-valued.

ested in appears on the first pair of chromosomes, then Gp; models the value
that the gene on the chromosome inherited from the father and Gm; models
the value from the other chromosome in the pair. In addition, a third variable
P; will be created which represents the phenotype, or the observable outcome
of the genotype. Edges will be added from each of the two genotype variables
to the phenotype variable, as the phenotype is a direct effect of the geno-
type. This mapping may be deterministic (e.g. the AO blood genotype has
the A phenotype) or may be probabilistic (e.g. a person may have the geno-
type for a disease, but only show symptoms with some probability). For the
genetic linkage analysis domain, the input specifies the genotype to phenotype
mapping for each locus. Additionally, for those genotype variables associated
with founders (i.e. genotype variables which do not have any parents in the
network), their prior probabilities are also contained in the input.

For people which are not founders (i.e. people who have parents included in
the pedigree) we will create two selector variables for each locus (Sp; and
Sm;), which determine if the person inherits their parent’s paternal genotype
or their parent’s maternal genotype at that particular locus. One of these
selectors, Sp;, is the paternal selector and therefore edges are added from
both of the father’s genotype variables and from this selector into the child’s
paternal genotype variable. The maternal selector, Sm;, is likewise created
along with edges from the mother.

4 One of the most common input formats is described in the user manual for the
LINKAGE tool at http://linkage.rockefeller.edu/soft/linkage/ or also described for
the Superlink tool at http://bioinfo.cs.technion.ac.il/superlink/.

Pedigree Bayesian Network

Fig. 6. A pedigree and its corresponding Bayesian network.

10

An example CPT for a nonfounder genotype variable is seen in Figure 7. From
this figure it can be seen that the selector variable simply selects which parent
genotype to copy. In the figure, if S = 1 the child inherits the parent’s paternal
genotype value and if S = 2 they inherit the maternal.

There are additional edges between consecutive paternal selectors and consec-
utive maternal selectors. These model the fact that if the preceding locus in-
herits from either the paternal or maternal haplotype (the paternal haplotype
is simply the set of paternal genotype variables, and similarly the maternal
haplotype is the set of maternal genotype variables), then the current locus
will also inherit from that haplotype, unless a recombination event occurs.
Therefore, a recombination occurs when the state of two consecutive selector
variables differ.

The selector for the first locus simply has a 50% chance of being in state 1
and similarly a 50% chance of being in state 2. For selectors with parents,
their CPTs contain the form shown in Figure 8, where 1 —r is the correspond-
ing recombination fraction from 6. These CPTs intuitively specify that with
probability r the process will copy from the same haplotype as the preceding
locus and with probability 1 — r a recombination event will occur.

After the pedigree is modeled by a Bayesian network, the next step is to com-
pute the likelihood of the known genotype and phenotype evidence for a given
pedigree and set of recombination fractions. In Bayesian network terminology,
we would create a Bayesian network BN1 based on the pedigree, P, and é, then
assert the evidence e, and finally compute the probability of evidence Pr(e).
To compute the likelihood for different g vectors, we can modify the appro-
priate CPT parameters for each different vector, and for each compute Pr(e).

S=1 S=2
Gp=1 Gp=2 Gp=1 Gp=2
Gm=1| Gm=2 | Gm=1 | Gm=2 | Gm=1 | Gm=2 | Gm=1 | Gm=2
G=1 1.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0
G=2 0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0

P(G|S,Gp,Gm)

Interpretation
S=1implies G=Gp
S=2 implies G=Gm

Fig. 7. An example CPT for a nonfounder.

11

Similarly, we can compute the LOD score by taking the log of (Pr(e|BN1)
divided by Pr(e|BN2)), where BN2 is created from P and 6 with 6, = 0.5.

Currently, many pedigrees of interest create Bayesian networks which are very
challenging computationally. They can require significant amounts of memory
(sometimes as much as 20 or 30 Gigabytes) using standard algorithms and
also can take hours to compute the probabilities (Allen and Darwiche, 2003;
Fishelson et al., 2005). These networks are also very large, for example one
network with 57 people and 43 loci contained 10,965 variables. Even more
important in determining the computational difficulty is the connectivity of
the generated networks.

The Bayesian networks produced can be very challenging, however they also
contain a significant amount of determinism. This means that the CPTs con-
tain many zeros and ones (for example the CPTs for nonfounder genotypes
deterministically copy one of the two parent genotypes based on the selector,
see Figure 7). The implications of this are that when some variables have
known values, then other variables can sometimes be determined (or learned).
We have previously shown that this can be taken advantage of and that it
can lead to significant computational speedups (Allen and Darwiche, 2003;
Chavira et al., 2005). This is especially true for probabilistic inference algo-
rithms which work using variable conditioning such as recursive conditioning.

The past few years have shown remarkable improvement on the capabilities
of genetic linkage analysis using Bayesian networks. Many of the networks
which were previously too costly to do inference on can now be solved using
newly developed techniques, however there are still many networks which are
challenging (Fishelson et al., 2005). Therefore, exploring additional techniques
to further extend the boundary of which networks are computationally feasible
is important.

P(S2|S1)
S1=1 | S1=2
S2=1 r 1-r
S2=2 1-r r

Fig. 8. Format for a selector CPT.

12

4 PREPROCESSING

This section presents simplification techniques for preprocessing Bayesian net-
works in order to make inference more tractable while maintaining the ability
to compute the correct probabilities. Some of these are used by other prob-
abilistic inference or genetic linkage tools, while others are novel techniques
for network simplification. The preprocessing methods are broken down into
two groups, those which are applicable to any Bayesian network and those
which are dependent on the domain of genetic linkage analysis. Following the
simplification technique descriptions, Section 4.3 will discuss the applicability
and effectiveness of the different techniques.

4.1 Simplification Techniques for Bayesian Networks

This section presents seven techniques which are useful for any Bayesian net-
work inference algorithm. The first two we present (State Removal and Clas-
sical Pruning) are previously existing techniques (Fishelson and Geiger, 2002;
Shachter, 1986, 1990). The subsequent five simplifications (Independent Vari-
ables, Chain Variables, Single-Child Founder Removal, Irrelevant Edges, and
Variable Equivalence) are all new techniques for network simplification.

State Removal

A Bayesian network normally has the property that for all parent instantia-
tions the probabilities of the child states conditioned on the parent instantia-
tion must sum to 1.0. For example, in the CPT on the left side of Figure 9 we
note that each column sums to 1.0. Our modeling of the networks presented
in the previous section also contains this property, however once the network
is generated we will relax this requirement. Specifically, when either the evi-
dence or other simplification techniques determine a state is not possible we
will remove it. An example of such a simplification can be seen on the right
side of Figure 9, where two states of variable C' were removed based on the
evidence C' = 1.2, leading to CPT columns which do not sum to 1.0. It should
be noted that the initial network is a valid Bayesian network, and hence rep-
resents a valid joint probability distribution, and that our modified network is
probabilistically equivalent to the original network plus the included evidence.
The removal of impossible states means the inference algorithm has to look at
fewer possible instantiations, allowing them to run faster, although they can
then only answer queries with regard to that evidence.

One specific method for detecting states which will always result in a proba-
bility of 0.0 and can thereby be removed is value elimination (Fishelson and

13

Geiger, 2002). An example of this is if X can be in the states {z1, 22, 23, x4}
and all entries in any CPT containing X = x1 contain the probability value of
0 (i.e. Pr(X =21,Y,7) = 0.0 for all values of Y and Z). In this case, 1 can
be removed from the domain of variable X, because it is never a valid state. If
we examine the left side of Figure 9, but instead of the evidence in the figure
let us assume the evidence is C' = 1_1. We can then remove the last two rows
of the CPT based on our State Removal simplification. Once this is done, if we
look at Pr(A = a2, B,C = 1.1) for every value of B the probability is equal to
0.0. Therefore, we can remove the state a2 from the domain of A. Note that
we can eliminate states of variables based on any table they are a part of. In
this case, we removed a state from variable A, however the table used was the
CPT for variable C'. The changes will also not only affect the current table,
but will change every other table the variable is a part of, as they also will be
updated when the states are removed. Specifically, if we remove the state al
from A, then every parent or child instantiation which contains al will also
be removed, possibly leading to further simplifications. In this example, we
could additionally remove the state b2 from B in a similar fashion to that of
a2. Since both A and B were binary variables which became unary variables,
they now have a known value, which will allow classical pruning to further
simplify the network structure.

Classical Pruning

We define classical Bayesian network pruning as removing leaf nodes that are
not part of the evidence or query (Shachter, 1986) and removing edges outgo-
ing from observed nodes (Shachter, 1990). We have already seen the removal of
edges from observed nodes during the discussion on conditioning. Leaf nodes
without evidence can be removed since in any probability calculation on the
network that variable’s contribution will be a multiplication by 1.0. To see this
let us examine the Lookup(t) function in Algorithm 2 (Page 9). By definition,
variables which only appear in a leaf node do not appear in any cutsets, so
when Lookup is called the variable will be uninstantiated unless it has evi-

P(CJAB) Evidence C=1_2 P(C|AB)

A=al | A=al | A=a2 | A=a2
B=b1 | B=b2 | B=b1 | B=b2

A=al | A=al | A=a2 | A=a2
B=b1l | B=b2 | B=b1 | B=b2

C=11]|10 0.0 0.0 0.0 C=12]|00 1.0 1.0 0.0

C=12|00 1.0 1.0 0.0
C=22]|00 0.0 0.0 1.0

Fig. 9. An example of State Removal.

14

dence. Therefore, for leaf nodes without evidence, Lookup will always return
1.0. By examining the remainder of the algorithm it can be seen that the
probability value computed will therefore be the same if those leaf variables
with no evidence are removed.

Initially we may have many leaf nodes without evidence, for example every
phenotype variable is a leaf. Hence, any phenotype variable which does not
have evidence associated with it can be pruned. This could also then lead to
its parents becoming leaf nodes allowing them to possibly be pruned.

The second rule, removing outgoing edges from observed variables, is not ini-
tially applicable. The evidence provided for the genetic linkage domain is usu-
ally all on phenotype variables, which are all leaf nodes and therefore don’t
have outgoing edges. However based on the determinism and other simplifi-
cations, additional evidence can be learned and then this rule may be useful
and allow for network structure simplification. An example of this can be seen
in Figure 10, where we have evidence on the phenotype variable that it is
homozygous (i.e. that both genotype variables are equal to one another). The
evidence specifies that P = 1_1 and based on the CPT we see that therefore
Gp and Gm must both be in state 1. This additional evidence then allows
classical pruning to remove outgoing edges from Gp and Gm, in this case
removing 6 edges and making P an independent variable.

Independent Variables

In the example in Figure 9, the variables A, B, and C' became independent
variables, meaning that they don’t have any edges coming in or departing
from them. Likewise, in Figure 10, variable P became independent. In these
cases, if the variables have no evidence associated with them, then since they
are leaf nodes they can be removed. However if they do have evidence, it is
clear that the lack of edges means that they are independent of the remainder
of the network. Therefore they only contribute a constant to any probability

o EvidenceP=1_1

P(P|Gp,Gm)

Gp=1 | Gp=1 | Gp=2 | Gp=2
Gm=1 | Gm=2 | Gm=1 [Gm=2
P=11 |10 0.0 0.0 0.0
P=12 (0.0 1.0 1.0 0.0
P=22 (0.0 0.0 0.0 1.0

Fig. 10. An example of classical pruning and homozygous evidence.

15

calculation on the network. Note that this evidence could be in the form of
standard evidence where we know which state the variable is in, or it could
be in the form of states which have been removed (i.e. negative evidence). In
general, any independent variable X can be removed from the network and
replaced by the constant ¢, where ¢ =3, cx Pr(z;).

There may be a significant number of these independent variables, depending
on the network structure and the simplification techniques used. All these con-
stants can therefore be multiplied together to form a single constant, rather
than maintaining each individually. One additional note is that if these vari-
ables are query variables or if their network parameters are to be changed,
then extra bookkeeping must be used to allow for those to occur prior to the
variables’ removal.

Chain Variables

Another type of variable which can be preprocessed are those whose indegree
is less than or equal to 1 and whose outdegree is equal to 1. We will call these
variables chain variables, as they participate in a “Chain Structure.” This
novel technique can be seen in Figure 11. The variables B, ', and E are all
chain variables and therefore can be eliminated. To eliminate the variable B,
which has parent A and child C, we multiply the CPT for variable B and the
CPT for variable C' together, resulting in a table over variables A, B, and C.
We then sum out the variable B, leaving a table over variables C' and A, which
will then be the new CPT for variable C'. As a result of the multiplication and
summation, if we assume all the variables are binary, one example entry in
this table for {cl|al} would contain the result of {c1|b1} * {bl]|al} + {c1|b2}
*{b2]al}.

The second figure shows the network after this is done for B, C, and E (Note
that the CPTs for A and D are now different than in the first figure). Looking
at this new network we see that the removal of F has now caused A to also
become a chain variable and so it can also be eliminated, resulting in the third
network. We see that by preprocessing these variables the resulting network
has fewer variables, and usually this process will not increase the complexity
of inference and it will always maintain the correct computations. We note
that by removing the variables we lose the ability to compute marginals over
them, however for genetic linkage analysis we are usually only interested in
computing the probability of evidence. We also need to be careful if we want
to update the network parameters for any chain variable or its child, as once
the tables are multiplied together it is harder to determine how to update
them. Therefore, variables whose parameters will be changed should either
not be eliminated using this rule, or additional bookkeeping must be used to
determine how to update the parameters.

16

Single-Child Founder Removal

Removing chain variables which are roots is a special case of relevance reason-
ing (Lin and Druzdzel, 1997). Another easily exploitable example of relevance
reasoning in genetic networks are pedigree founders (those with no parent in-
formation in the pedigree) which only have a single child (note that this refers
to the person having a single child, and not to a variable having a single child
as we saw for chain variables). See Figure 12 for an example where we have
one founder with two loci and a single child (we only show the corresponding
genotype and selector variables for the child). These founders contain three
variables for each locus: Gm;, Gp;, and P,. The genotype variables each will
have a single edge with a common child variable, however they are not chain
variables as they also have an edge to the phenotype variable. If the phenotype
is unknown, then it will be removed by classical pruning and the genotypes
will be removed because they become chain variables. However if the pheno-
type is known, the previous simplifications will not help. As a group those
three variables only contain a single child, and therefore they form a nuisance
graph, and can be simplified (Lin and Druzdzel, 1997). One method for sim-
plifying them is to multiply the CPTs for the four variables and then sum out
the three variables associated with the founder, leaving a valid CPT for the
child variable. We can apply this technique to each locus, therefore the end
result will be that all variables associated with the founder will be removed,
as seen in Figure 12 where all 6 founder variables have been merged into the
child’s genotype CPTs.

The notion of relevance reasoning and nuisance graphs are previously known

simplifications which are useful for general probabilistic inference. The con-
tribution we make to this is in the realization of how frequently these occur

— |

Fig. 11. An example of Chain Variables.

17

in the genetic linkage analysis domain, and that applying this simplification
allows these computations to be done a single time instead multiple times.

Irrelevant Edges

Having an edge between two variables does not guarantee that there is a
dependency between them. For example if A is the only parent of B, but
Pr(B) is identical for every possible state of A, then the edge between them is
irrelevant and can be removed. In our initial genetic linkage model, the above
case would never appear, however once the simplifications begin, it is possible
for the above to occur. An example of this is given in Figures 13 and 14.

In Figure 13 we initially have 4 binary variables and 2 unary variables (possibly
due to knowing evidence on them). One thing we notice is that there are
logical constraints between A and B in the CPT for C, and likewise between
D and E in F’s CPT. Therefore, let us assume we have a simplification which
takes advantage of this by combining each of these sets of three variables
together (we present such a simplification later called Horizontal Mapping).
Once these variables are combined, we end up with a two variable network and
the associated CPTs shown at the top of Figure 14 (note that we are breaking
our notation and naming the variables with two letters). By then applying
value elimination we are able to remove 2 states from each variable, resulting
in the middle figure. In the CPT for DE we see the above example of an

Founder, locus 1

Founder, locus 2

Child Child

o Removal

A A
: S

Fig. 12. An example of removing a founder with only one child.

18

irrelevant edge occur, where no matter what state AB is in, Pr(dlel) = rxs
and Pr(d2e2) = r x s. This implies that the edge between AB and DFE is
unnecessary and can be removed from the network as shown at the bottom of
the figure.

In this example we initially had 6 variables which were all connected and
based on these simplifications we ended up with only 2 variables which were

A=al| g B=bl | i

raz[n] CAD (2D [een2]]

A=al | A=a2 o e B=b1 | B=b2
D=dl |r s o E=el |r s

D=d2 |s r E=e2 |s r
A=1 | A=1 | A=2 | A=2 D=1 (D=1 | D=2 | D=2
B=1 B=2 B=1 B=2 E=1 E=2 E=1 E=2

C=12|0 1 1 0 F=f1 1 0 0 1

Fig. 13. An example of an irrelevant edge (part 1).

AB=albl | 0 @ AB=albl | AB=alb2 | AB=a2bl | AB=a2b2
AB=alb2 | g*j DE=dlel | O r*s s*r 0
AB=a2bl | h*i DE=dle2? | O 0 0
AB=a2b2 | 0 @ DE=d2el | O 0 0

0

DE=d2e2

oO|O | O

s*r r*s

Value
Elimination

@ AB=alb2 | AB=a2bl
AB=alb2 | g DE=dlel | r*s ST
AB=a2bl | h*i @ DE=d2e2 | s*r r*s

Irrelevant

Edges

AB=a2bl | h*i DE=d2e2 | s*r

AB=alb?2 | g DE=d1lel | r*s

Fig. 14. An example of an irrelevant edge (part 2).

19

not connected. If D and E initially had other children, we could still do the
above simplification, and those children which initially appeared to have de-
pendencies to A and B can be seen to actually be independent of them based
on the network parameterization. This novel technique is especially useful in
the linkage analysis domain, where many of the CPT parameters contain the
same values (e.g. many of the recombination frequencies, or prior probabilities
on variables).

This is one example how irrelevant edges could appear in our network as
a result of the other simplification techniques, however other combinations
of simplifications could also lead to irrelevant edges. This simplification is
actually taking advantage of context specific independence (Boutilier et al.,
1996), as these irrelevant edges appear when the other techniques simplify the
network based on the specific context and as a result two variables become
independent.

Variable Equivalence

This novel simplification deals with how to handle variables which are known
to be equivalent (We use this term to mean that if either variable is instan-
tiated, then the other will be fixed based on the determinism). For example,
if we know the value of a selector, then the child’s genotype variable must
be equivalent to the corresponding parent’s genotype. Let us take a look at a
more general example in Figure 15. We are given that the variables A and FE
must be in the same state.

One method for handling this would be to merge the two equivalent variables
into a single variable and remove those states where they were not equal. A
graphical example of this can be seen in the middle portion of Figure 15. We
initially tried this method in RC_Link, however the problem with it is that now
representing the new variable is exponential in 6 (the child plus the number
of parents), where as previously we had two variables which were exponential
in only 3 and 4. To make things worse, the new variable {A = E} may also
be equivalent to other variables (e.g. if we knew that A= FE, F = H, H = 1),
adding even more parents. Eventually the CPT can become either too large
to represent, or even if that bound is not reached the larger size will begin to
affect the algorithm’s performance.

In this section, we propose a novel method for handling variable equivalence,
which will not exponentially increase the size of the CPTs, but will still reap
the rewards of the variable equivalence. The new method is graphically rep-
resented in the lower portion of Figure 15. We create a new variable, named
{A = E} in the figure, which is a child of both the equivalent variables.?®

5 In the more general case of more than two variables, each will contain either 1 or

20

The new variable’s CPT is created such that whenever A and E are equal the
probability is 1.0 and otherwise 0.0. We also then move all outgoing edges to
one of the equivalent variables. Finally, we will add the new variable and all
those variables which do not have the outgoing edges to the beginning of the
elimination order (in this example both {A = E'} and F would be added). The
next paragraph will discuss the reason for this modification to the elimination
order.

It can easily be seen that these changes will not increase the size of any ex-
isting CPTs and the new variable’s CPT only contains two parents. However
these changes allow two things to occur. First, by adding the variables to
the elimination order it forces the algorithm to realize the equivalence earlier
in the decomposition, while still allowing the tables to remain in a factored
form. Specifically, if we have the three factors Pr(A, B,C, D), Pr(E, F,G),
and Pr({A = E}, A, F) and then eliminate the variables {A = E} and E
the remaining factors will contain Pr(A, B,C, D) and Pr(A, F,G). By con-
trasting this with the factor for the second graph in Figure 15 which contains
Pr({A = E},B,C,D,F,G) we can see that we still reap the rewards for
knowing the variable equivalence (since we have already removed the variable

2 new children, such that all the equivalent variables are connected together.

Fig. 15. Two methods for handling variable equivalence.

21

E), however we don’t run into the exponential growth of the CPT (as it is
still in a factored form). The second thing the new technique allows is that by
moving all the outgoing edges to a single variable, the problem has become
easier to decompose, as now we can condition on a single variable A, and
remove all children of both A and F, instead of being required to condition
on both variables in order to remove the same set of edges. This gives the
dtree creation process access to more information about the network in order
to enable better decompositions to be found.

This simplification requires outside knowledge that two or more variables are
equivalent. This can come from domain specific information (e.g. in genetic
linkage, knowing evidence on a selector means a child’s genotype variable
is equivalent to a parent) or through domain independent methods such as
encoding the network’s determinism as logical clauses and analyzing them
for equivalence. The domain specific knowledge however is not limited to the
domain of genetic linkage analysis, hence its inclusion in the section for general
Bayesian networks.

4.2 Domain Specific Simplifications

The simplifications in the previous section were general purpose simplification
techniques which can be used for any Bayesian network. In this section, we
will discuss five simplifications which are specific to the domain of genetic
linkage analysis. The first two (Lange and Goradia, and Allele Recoding) are
previously known simplification techniques and the third (Phase Removal) is
a known technique which we have adapted to Bayesian networks. The final
two techniques (Horizontal Mapping and Variable Equivalence for Selectors)
are novel methods we have developed.

Lange and Goradia

The Lange and Goradia algorithm (Lange and Goradia, 1987) is used to elim-
inate states from variables which are never possible. It does this by looking
at each nuclear family (i.e. each father and mother and all their common off-
spring) and each locus separately. For each family, the algorithm attempts to
remove states from variables which are never allowed based on the family’s
variable interactions. For example, if a child state will never occur, no matter
which states the parents are in, then that state can be removed. Algorithm 3
contains the pseudocode for it. It should be noted that the algorithm is ac-
tually just using logical techniques to remove impossible states, however we
classify it as domain specific due to the choice of which variables to exam-
ine (i.e. it needs to know which variables are part of each nuclear family, but

22

Algorithm 3 Lange and Goradia Algorithm
1: for each nuclear family do
for each person do
Reduce genotype states based on known phenotypes
for each possible configuration of mother-father genotypes do
Determine all 8 valid children types
if all children have at least 1 valid configuration then
Mark the mother-father states as saved
Mark any child state which is valid for this as saved
for each person do
Remove states not marked as saved
11: Repeat until nothing new is learned

H
<

otherwise the techniques involved are general purpose simplifications).

Allele Recoding

Allele recoding was presented in (O’Connell and Weeks, 1995), and was adapted
to Bayesian networks in (Fishelson et al., 2005). The basic idea of this sim-
plification is that sometimes it is not possible to distinguish two states for a
given variable (an occurrence of this is when no descendants of a person have
that state as a known phenotype). More formally, “an allele is defined to be
transmitted if the following two conditions are fulfilled: (i) the allele appears in
the ordered genotype list of a typed descendant D of P, as inherited from; (ii)
there is some path from P to D containing only untyped descendants in the
pedigree, namely, D is the nearest typed descendant of P on that path. The
remaining alleles are defined to be non-transmitted.” (Fishelson et al., 2005)
For each variable, the non-transmitted states are indistinguishable and can be
merged into a single state, taking care to maintain the appropriate inheritance
properties (O’Connell and Weeks, 1995). The end result of this simplification
is that the variables may have fewer states, and hence are easier to do com-
putations on. We refer the reader to (Fishelson et al., 2005) for the actual
implementation details, as they present a simple algorithm for detecting the
transmitted states.

Phase Removal

Since founders do not have any information about ancestors, it turns out that
their paternal and maternal genotype variables cannot be differentiated. This
leads to what is known as phase removal, which detects two equivalent classes
of instantiations and removes one of them (Kruglyak et al., 1996). However
there are multiple ways of reducing it and the method chosen is significant
in determining how beneficial it is. We first define the simplification using an

23

example and then present a novel method for taking advantage of it in the
context of Bayesian networks.

Figure 16 contains a three locus example with a founder (the six genotype vari-
ables in the upper left) and three children (only their genotype and selector
variables associated with this parent are depicted). We first define a function
Invert Phase(Founder, Childl,Child2...), which for any complete instantia-
tion inverts the state of each child’s selector variables (i.e. if it was copying
the left parent genotype it will copy the right and vice versa) and also it will
swap the founder genotypes (i.e. the founder’s paternal variable will take on
the state the maternal variable had and vice versa).

For any valid instantiation of the variables, the instantiation produced by
InvertPhase() will also exist and furthermore both instantiations will be
equally likely. This is true since none of the selector variables associated with
the child of a founder can contain any evidence (as two genotype variables
cannot be distinguished without additional information from ancestors, which
founders do not have). Therefore, since no evidence is known on the selectors
their inverted state is also possible and equally likely. Likewise, since founder
genotype variables cannot be distinguished, any state possible for the pater-
nal genotype must also be possible (and equally likely) for the maternal and
vice versa. Therefore, for any instantiation of the variables, the instantiation
produced by InvertPhase() will also be valid and will be equally likely.

Based on the fact that for each instantiation there is a second one with equal
probability (with a 1 to 1 correspondence), the total number of possible in-
stantiations for the network variables can be reduced by 2F, where F is the
number of founders in the network. Taking advantage of this can lead to sig-
nificant performance enhancements, however we must first determine how to
remove the superfluous phases and update the probability of those remaining.

There are a number of different possible methods for doing this in a Bayesian

Fig. 16. Phase removal simplification.

24

network and differing methods will have varying improvements to the inference
time. One simple method is to simply pick any single selector associated with
each founder and set it to be in one of its states (as both are valid) and then
double the probability of that occurrence. It should be apparent that setting
the evidence on one of the selectors will then not allow the InvertPhase()
function to work (as one of the phases will now be invalidated due to the
evidence).

However, based on our experiments with a few additional methods, the one
which experimentally seemed to work best was the following. We first pick
one of the founder’s loci to remove the phase at. We pick this locus by first
choosing any which are known to be heterozygous. Whether or not any locus
have this property we will then break ties by choosing the locus with the
maximum number of child variables with evidence and further break ties by
choosing the one with the maximum number of child variables (note that
normally each locus would have the same number of children, however due to
other simplifications some of the child’s variables may have been removed).

Once the locus to simplify is chosen, we will remove the phase there. If the locus
is heterozygous (for example it must be either 1.2 or 2_1) then we can merge
these variables together using the next simplification (Horizontal Mapping)
and then remove one of the two states and double the probability of the other
(e.g. remove state 1_2 and double the probability of 2_1). If the founder is not
a known heterozygous variable, then we look to see if any of the children have
known genotype variables. If so, we set evidence on the corresponding selector
and double the probability (e.g. we can set the selector to always copy the
left genotype, and since the child’s genotype is known, say for example it is in
state 1, then all valid parent instantiations must have 1 as the left genotype).
Finally, if no children have known genotypes we can still take advantage of
the phase removal by again combining the founders genotype variables and
then removing the phase there (e.g. for every state i_j where i # j, remove
the state j_¢ and double the probability of 7_j.

Horizontal Mapping

The next domain specific simplification we discuss is a new technique for
combining variables, which we call Horizontal Mapping. Our use of this occurs
when we know a person’s genotype is heterozygous. A heterozygous genotype
means that both states are known and different, although it may not be known
which state corresponds with which genotype variable (e.g. we may know
it is either AO or OA). This contrasts with a homozygous genotype, where
both genotype variables are are known and are the same (e.g. AA). With a
homozygous genotype, both genotype variables are known and their outgoing
edges can then be removed.

25

Let us assume that we have two genotype variables, call them A and B and
that the phenotype variable associated with them is known and the corre-
sponding genotype is heterozygous. Based on this we know that A and B are
binary, as each must be in one of the two states stipulated by the phenotype
(call the states 1 and 2), and furthermore we know that that A=1++ B =2
and A =2 < B = 1. Together there are four possible configurations of these
variables (1_1, 1.2, 2_1, and 2_2), however only two of them are heterozygous.
The problem is that with the variables separate, neither variable can have any
state removed, as every state is still part of some valid instantiation. There-
fore, we combine those variables into a single variable with four states, which
then allows us to remove the two non-heterozygous states.

This simplification also enables the decomposition process to realize that set-
ting the state of one of these variables actually removes all the outgoing edges
from both (as one variable determines the other and vice versa). Also, since
there are only 2 variables, the new CPT will not grow too large, as was seen
with the variable equivalence simplification. Therefore, this simplification en-
ables the inference algorithm to skip impossible instantiations (e.g. those which
contain 1_1 and 2_2) and also further empowers the decomposition process with
additional information.

Variable Equivalence for Selectors

Our final domain specific simplification is a novel technique for determining
equivalence between variables in this domain and then advantageously using
that to simplify our network. Let us examine Figure 17. We see that the parent
genotype is heterozygous (having states 1.2 or 2_1). Likewise we are given 3
children which have their associated selector variable and a known genotype
variable.

By using horizontal mapping we will assume that the parent variables are
merged into a single variable with two states. Let us examine the case where
it is in the state 1_2. From this we see that the first two selectors must copy
the 1 from the left genotype variable and the other must copy the 2 from

Fig. 17. Selector variable equivalence.

26

the right. Likewise, if we examine the state 2_1, again all three selectors are
determined. In fact, given evidence on any one of the three selectors or the
parent determines the states of all the others. Therefore, we see that the
selectors are not in fact independent and in fact are very tightly coupled,
regardless of the fact that the edge paths between them go through multiple
other variables (i.e. the shortest path between them is to go from the selector
to the known child genotype, to an unknown parent genotype, back to another
known child genotype, and finally to another selector).

This relationship between the selectors and parent genotype variable can help
the decomposition process. In order to take advantage of this, we rely on our
method for Variable Equivalence in the previous section. Specifically, when-
ever we have a heterozygous parent, call it X, (e.g. we might know this through
evidence on the phenotype) we create an equivalence mapping between X and
every selector Y which is associated with a known child genotype variable.
As mentioned in the Variable Equivalence section, this empowers the decom-
position process with the knowledge about the interrelationship, while still
allowing the CPTs to remain in a factored form.

4.8 Simplification Technique Applicability and Effectiveness

Before moving on to the last set of simplifications, those relating to the recur-
sive conditioning algorithm, we will first address the applicability and effec-
tiveness of some of the novel techniques already discussed.

One advantage of these simplification techniques is their reduction of recal-
culations. Three important places where recalculations are taking place are
during each calculation of the probability of evidence, between subsequent
queries with different network parameterizations, and when searching for a
good network decomposition. By preprocessing our networks with these sim-
plification techniques we can remove some of the recalculations by simply doing
computations a single time instead of multiple times during the queries or de-
composition search. Some examples of this are the Independent Variables and
Chain Variables simplifications. Many standard inference algorithms would
readily handle these types of variables, however by simplifying them once dur-
ing a preprocessing step, we allow our algorithms to not recompute the relevant
values multiple times. An example would be the Independent variables, which
simply contribute a constant value to the probability query. By preprocessing,
we compute this constant once, and then can use it during multiple queries
under different parameterizations without recomputing it. Additionally, when
we search for a good decomposition, which will be addressed in Section 6, we
have already removed these variables simplifying our search. This reduction of
recalculations is the main advantage of the Independent Variable and Chain

27

Variable techniques. The Single-Child Founder Removal technique also assists
in reducing recalculations, and in addition can sometimes assist in simplifying
the network structure allowing other techniques, such as Chain Variables or
Irrelevant Edges to be used. Table 1 shows the size of some networks after the
simplification techniques were run and the full size under no simplifications
(These networks will be further discussed in the results in Section 7). As can
be seen, the preprocessing steps can greatly reduce the size of the network.

The different techniques can have varying levels of effectiveness, and are espe-
cially dependent on the amount of evidence known in the network (e.g. genetic
marker readings, disease affection status, etc.). Figure 18 depicts the speedup
on a few networks from three of the simplification techniques. ¢ In the log-plot,
the three lines represent the ratio of the time without a given simplification
to the time with all simplifications. In these instances, it can be seen that the
Phase Removal and Variable Equivalence improved the inference time, how-
ever by turning off the Horizontal Mapping (which also turns off the Variable
Equivalence technique) we saw the most slowdown. It should be noted here,
that when one simplification technique is turned off, others (including those
discussed in the next section) may partially compensate for the turned off
technique. For example, when variable equivalence is turned off, the decom-
position search and skipping computations may still take capture some of the
additional instantiations with 0 probability.

In the next two sections we will further discuss simplification techniques which
allow us to reuse computations between queries and to search for good network
decompositions.

5 OPTIMIZING RECURSIVE CONDITIONING

The last three simplifications are all novel and relate directly to the use of the
recursive conditioning algorithm in our genetic linkage computations.

Skipping Computations

The first of the RC based simplifications relates to skipping computations
which will have no relevance to the final result. If we examine Algorithm 1
(Page 9), we see on Line 11 that we recursively call RC on each child and
multiply the results together. Therefore, if the result on the left child is 0,
there is no need to call RC on the right child, as no matter what the result

6 In order to compensate for the non-deterministic nature of the algorithm, the
timings are all averaged over 5 runs.

28

Table 1

Number of variables in networks after simplifications.

Network | Expected Size | Actual Size
EA7 3570 422
EAS 4590 442
EA9 9435 745

EA10 9690 764
EA11 10965 841
1 752 222
7 2140 423
9 1720 640
13 1680 552
18 1740 619
19 1285 524
20 749 229
23 7 201
25 2155 548
30 2195 629
31 2155 662
33 2315 380
34 2140 484
37 1530 317
38 1020 357
39 2140 449
40 1740 588
41 2155 482
42 763 237
44 1820 483
50 1020 287
51 2300 627

29

is, it will be multiplied by 0. Hence when 0 is returned from the left child we
can skip all the computations on the right. In some cases the result of this
can dramatically affect the inference time. We remind you that the number
of recursive calls is proportional to the time required to run RC. Table 2
shows the total number of recursive calls (and hence the time requirement)
the algorithm would make (labeled as expected), and then displays the actual
amount that occurred based on this simplification (labeled Run 1). It also
displays the ratio between these two values showing the proportion of actual
calls to expected calls. It can be seen that this rule’s usefulness varies for
each problem, however some of the networks only required 3% of the calls
to be made, and every network had as least a small speedup based on this
optimization, which requires very little overhead to implement.

Caching Results Between Computations

It is known that when doing multiple computations on the same network that
many computations can be reused between different calls. However between
each call changes are made in the form of either CPT parameter changes
or evidence changes. In classical algorithms it is difficult to determine which
computations will become invalid due to these changes, however with RC it
is easy. RC simply has to invalidate some corresponding cache values.

1000.0

100.0 -

——No Phase
Removal

\/ —=—No Horizontal
Merging (and no

Var. Equiv.)

No Variable

Equivalence

10.

=]

Time Without Specific Simplifications /
Time with All Simplifications

1.0

0.1

1 7 9 13 18 19 20 23 25 30 31 33 34 37 38 39 40 41 42 44 51

Networks

Fig. 18. Simplification technique effectiveness.

30

Table 2
Experimental results displaying two simplifications (in number of recursive calls).

Network | Expected Run 1 Run 2 Ef;‘e’ge 5 gz%

1| 545E407 | 5.03E+4-07 | 4.73E4-07 092 | 094
7 | 3.84E407 | 2.80E+4-07 | 2.63E4-07 0.73 | 0.94

9 | 4.46E408 | 2.57TE408 | 2.56E408 0.58 | 0.99
13 | 1.91E4-08 | 1.68E4-08 | 1.62E+4-08 0.88 | 0.96
18 | 9.19E+4-06 | 6.93E+06 | 2.59E+-06 0.75 | 0.37
19 | 3.76E4-07 | 2.88E407 | 2.29E+07 0.77 | 0.80

20 | 1.43E+08 | 6.70E+07 | 6.59E+07 0.47 | 0.98
23 | 5.94E+06 | 2.29E+06 | 1.85E+06 0.38 | 0.81

25 | 5.89E+07 | 3.97E+07 | 3.65E+07 0.68 | 0.92
30 | 8.74E+06 | 6.50E+06 | 2.50E+06 0.74 | 0.38
31 | 2.98E+08 | 1.89E+08 | 1.73E+08 0.63 | 0.91
33 | 2.30E+06 | 1.43E+06 | 3.35E+05 0.62 | 0.23
34 | 5.20E+07 | 4.11E407 | 3.92E4-07 0.79 | 0.95
37 | 7.88E+08 | 7.96E+07 | 7.72E+07 0.10 | 0.97
38 | 1.25E+10 | 3.94E408 | 3.92E4-08 0.03 | 1.00
39 | 1.28E+07 | 8.47E+06 | 2.40E+06 0.66 | 0.28
40 | 9.55E4-07 | 6.92E4-07 | 6.04E+07 0.72 | 0.87
41 | 3.44E+07 | 2.40E+07 | 3.19E+06 0.70 | 0.13
42 | 9.51E+07 | 5.76E+07 | 5.25E+07 0.61 | 0.91
44 | 1.35E4-09 | 2.19E4-08 | 1.90E4-08 0.16 | 0.87
50 | 6.17TE+12 | 2.02E+11 | 2.02E+11 0.03 | 1.00
51 | 1.36E+09 | 6.72E+08 | 6.44E4-08 0.49 | 0.96

Specifically, given a dtree T, let us consider a change to a CPT parameter
in the table associated with the leaf node X. Since RC only ever “passes”
information up the dtree, we simply invalidate all cache entries which are
located at nodes corresponding to ancestors(X). Similarly, we note that if
evidence is changed on a variable whose CPT is located at leaf node Y, we
can simply invalidate cache entries corresponding to ancestors(Y'). This can be
seen since setting the evidence on Y would only affect computations influenced
by leaf Y (which we invalidate and would recompute) or computations where
Y is a parent to another variable in which case those computations would
eventually be multiplied with an ancestor of Y, in which case any computations

31

which contradict the evidence will be multiplied by a 0.

Table 2 contains the number of recursive calls for Run 1 and also those required
during a second run, after changing the recombination frequencies during a
maximum likelihood search. It can be seen from comparing the Run 1 column
with the Run 2 column how much time was saved due to those saved cache
entries. For example, network 44 only required 13% of the calls in order to do
the second computation as it required in the first computation. Additionally,
for the maximum likelihood search used in genetic linkage analysis, the same
parameters are repeatedly changed. Therefore, future runs during the search
would require the same number of calls as shown in the Run 2 column.

In the future, it might also be possible to incorporate this information into
the decomposition process, as if the changes are known a priori, dtrees may
be constructed which specifically allow those changes while minimizing the
number of recomputed or invalidated cache entries.

Conditioning with a Knowledge Base

This simplification technique was explored in detail in (Allen and Darwiche,
2003), where it was shown that the combination of a logical knowledge base
and conditioning algorithms could sometimes lead to significant timing im-
provements. This is due to the fact that as each variable is conditioned on,
other variables may also be fixed based on the network’s determinism. This
technique captures many of the same simplifications as the State Removal
technique, however it is handled dynamically rather than as a static prepro-
cessing step (as RC conditions on variables in the cutset the technique dynam-
ically learns the value of other variables, leading to simplifications later on in
the query). As we exploited additional determinism during the preprocessing
phase, less remained in the final network for this technique to take advan-
tage of. Therefore, the current implementation of RC_Link has this technique
turned off by default, as its overhead versus its benefits can be significant based
on the network and its determinism, however is some instances the overhead
is still outweighed by the time reduction.

6 DECOMPOSITION SEARCH

The final technique for improving the performance of RC_Link deals with
finding good network decompositions. For recursive conditioning this means
finding a good dtree, or equivalently a good elimination order. SUPERLINK
has a sophisticated algorithm for searching for elimination orders (Fishelson
et al., 2005). We have capitalized on their algorithm and made two noteworthy

32

changes to it.

The first deals with the realization that a genetic linkage analysis network can
be thought of in terms of a dynamic (or temporal) Bayesian network, where
the different loci correspond to the different time points. The GENEHUNTER
tool also takes partial advantage of this, in that it treats the network as a
Hidden Markov Model (a specific type of dynamic Bayesian network). This
however restricts the possible decompositions allowed, where as specialized
algorithms for developing elimination orders on dynamic Bayesian networks
have been developed (Darwiche, 2001a) and in some cases immediately lead
to better orderings.

More formally, a dynamic Bayesian network is a network where each variable X
is associated with a time, ¢. Usually these networks contain the same structure
at each time slice and also have the property that edges which go between two
different time slices are restricted to going from ¢ to t+ 1 (Darwiche, 2001a). If
we examine the Bayesian network in Figure 6 and equate the locus with time,
then we notice that the networks within each locus contain the same structure
and furthermore the only edges between loci go from selectors at locus t to
selectors at t + 1. Hence, the method we use to model our genetic linkage
networks produces the structural equivalent of a dynamic Bayesian network.

Based on this relationship to dynamic Bayesian networks, the research in
(Darwiche, 2001a), and the given pedigree, we developed the following four
heuristics for constraining the elimination orders:

e H1: Eliminate all variables at locus ¢ prior to eliminating those at ¢ 4 1.

e H2: Eliminate all variables at locus ¢ + 1 prior to eliminating those at t.

e H3: Set t = 1, then eliminate all variables with locus < t which do not have
temporal edges going to any nodes with locus > ¢t. Then increment ¢ and
repeat until all variables have been eliminated. (This is based on the notion
of a forward interface as defined in (Darwiche, 2001a)).

e H4: Eliminate all variables associated with children in a nuclear family once
that family no longer has any descendants which have not already been
eliminated. (This can be thought of as removing variables based on where
they are located in the pedigree in a bottom up fashion).

When we discuss our final search algorithm we will describe how these four
different heuristics for constraining the orderings are used. The H1 and H2
heuristics are very similar to the Lander-Green algorithm (Lander and Green,
1987), which eliminates each locus in order, and the H4 heuristic is based on
the Elston-Stewart algorithm (Elston and Stewart, 1971), which does person-
by-person elimination.

The second noteworthy addition to the SUPERLINK search is that by gener-
ating dtrees instead of elimination orders, we were able to get a more accurate

33

score metric for measuring the relative quality of the decompositions. With
elimination orders, the usual score function is based on the largest cluster size
or total state space function (which are both heuristics for jointly measuring
both the time and space of the algorithm), where as with a dtree you can com-
pute the actual number of recursive calls, thereby giving you an exact score
to compare different dtrees with. When we discuss the actual search below,
we also use the dtree structure when picking a variable to eliminate. Since the
dtrees determine how much memory is required for the RC algorithm, dif-
ferent candidate dtrees can be compared with regard to both time and space
independently. Some dtrees (or elimination orders) produce good initial score
values, but turn out to have enormous memory requirements and therefore
may not be the most useful decomposition. During the search when we want
to quickly compare different dtrees, we assume we can cache at all dtree nodes
which require less than a specific threshold” and then use the exact number
of RC calls as the score. After a dtree is chosen we use the greedy algorithm
to find an actual caching scheme based on the available memory on the system
(Allen et al., 2004).

We have implemented a search algorithm which combines the SUPERLINK
search technique, those based on dynamic Bayesian networks, and the above
score function. Algorithm 4 contains the pseudocode for the search. It initially
preprocesses and simplifies the network. Then it begins eliminating variables
and constructing partial dtrees based on the rules discussed in (Allen and Dar-
wiche, 2002). It starts by creating three dtrees and using the cost of the best
as a seed. Then it continues to loop, each time generating a number of dtrees
based on probabilistic forms of the min-degree, min-fill, and weighted min-fill
heuristics. It dynamically determines when to stop searching by evaluating
the time already spent, the quality of the best decomposition (i.e. how much
time and space inference would take on it), and the number of consecutive
iterations with no improvements.

On Lines 9 to 11 of the algorithm we run the three different heuristics (min-
degree, min-fill, and weighted min-fill) each a predetermined number of times,
generating a complete dtree for each call to createDtree. For each call we
randomly determine whether to use one of the four constrained orderings
(for example those based on dynamic Bayesian networks) or no additional
constraints. Within these bounds we iteratively use the heuristic to propose
3 variables to possibly eliminate. We then probabilistically pick one of these
variables based properties of the partial dtree which would be created (e.g.
based on the context or number of recursive calls which would be made by
this partial dtree).

Table 3 contains some experimental results on the search. The column labeled

7 In the experiments in the next section this threshold was set to 2GB.

34

Algorithm 4 Pseudocode for the dtree search algorithm.

1: Preprocess the network

2: Eliminate variables based on rules from (Allen and Darwiche, 2002)

3: Run min-degree, min-fill, and weighted min-fill each once and use the best

dtree as the initial seed

Set numTSS=100, numMF=50, and numWMF=50

loop
Calculate the expected inference time based on the current best dtree
Stop searching based on the time already spent, the expected inference
time, and the number of consecutive iterations with no improvement
(In total attempt to spend approximately 3% to 10% of the expected
inference time searching)

8: In cases where an iteration of this loop would take a significant amount
of time or when the expected inference time is very short, reduce
numTSS, numMF, and numWMF by either 1/2 or 1/10

9: Call createDtree(probabilistic min-degree) numTSS times

10: Call createDtree(probabilistic min-fill) numMF times
11: Call createDtree(probabilistic weighted min-fill) numWMF times

Algorithm 5 Pseudocode for createDtree(elimination heuristic).
1: Let H be one of the four elimination order constraints (H1, H2, H3, H4)
or none with 8%, 8%, 8%, 8%, and 68% probability respectively
2: while some variables are not eliminated do
3: Use the elimination heuristic passed in to propose 3 variables to possibly
eliminate next, within the constraints imposed by H
4: Probabilistically choose one of the 3 proposed variables and eliminate
it
5: If the new dtree is better than the current best, store it as the current
best

“Initial” is the number of recursive calls based on the initial seed value from the
first three dtrees. We then continue to search for better dtrees and display the
number of recursive calls for the best dtree, the ratio of the best to the initial,
and also the time spent searching. It can be seen on many of the networks,
that the search for good decompositions was very useful, in fact on many of
the networks it reduced the number of recursive calls by multiple orders of
magnitude. For example on network 51 the number of calls was reduced from
an exponential of 14 to an exponential of 9, allowing for inference to readily
be accomplished on this network.

35

Table 3

Experimental results displaying dtree search improvement.

Network Initial | After Search ?Tffggé Search Time (sec)
1| 2.33E+08 5.45E407 0.23 4.0
7| 5.19E4-09 3.84E4-07 0.01 9.8
9 | 1.40E+10 4.46E+08 | 0.03 14.6

13 | 4.33E+11 1.91E+08 0.00 12.0
18 | 9.77TE4-06 9.19E+06 0.94 1.2
19 | 7.14E408 3.76E+07 | 0.05 6.1
20 | 1.49E+09 1.43E4-08 0.10 7.7
23 | 1.69E+07 5.94E406 0.35 0.8
25 | 5.89E+07 5.89E+07 | 1.00 6.0
30 | 8.74E+06 8.74E4-06 1.00 1.2
31 | 9.14E+12 2.98E4-08 0.00 14.5
33 | 2.30E+06 2.30E406 | 1.00 1.0
34 | 2.24E+13 5.20E+07 0.00 10.7
37 | 9.89E+08 7.88E408 0.80 9.2
38 | 2.24E+10 1.23E+10 0.55 38.7
39 | 4.15E4+07 1.28E407 | 0.31 5.4
40 | 4.72E4-09 9.55E4-07 0.02 12.9
41 | 6.16E4-07 3.44E4-07 0.56 6.1
42 | 9.50E+10 9.51E+07 | 0.00 7.9
44 | 3.01E+10 1.35E+09 0.04 25.0
50 | 5.66E+14 1.07E+12 0.00 54.5
51 | 2.60E+14 1.28E409 | 0.00 27.6

7 EXPERIMENTAL RESULTS

In this section we present the overall timing results for RC_Link and compare
it to SUPERLINK, another state-of-the-art genetic linkage analysis tool, and
show that on many networks RC_Link is orders of magnitude faster. The
following results were performed using RC_Link version 2.0 and SUPERLINK
version 1.5 (the newest release of both). The experiments were run on an
Intel Xeon 2.4GH z processor on a machine with 4GB of RAM (however the
currently installed Java virtual machine only allowed RC_Link to access 2GB

36

Table 4
Experimental Results.

Average (5 runs)(sec.) | Standard Deviation

Network | # People | # Loci || Superlink | RC_Link || Superlink | RC_Link
EA7 o7 14 1.0 3.9 0.16 0.03
EAS o7 18 4.0 4.3 2.33 0.04
EA9 o7 37 8.9 6.4 1.70 0.05
EA10 o7 38 15.0 6.7 3.05 0.03
EA11 o7 43 16.5 7.2 4.80 0.04
EB3 100 12 9.8 4.9 7.94 0.03
EB4 100 13 4.1 5.1 1.99 0.03
EB5 100 14 5.0 5.4 1.68 0.07
EB6 100 15 9.3 5.6 4.31 0.03
EB7 100 16 10.9 5.8 3.51 0.03
EBS8 100 17 9.4 6.2 2.35 0.03
EB9 100 18 9.4 6.3 4.69 0.05
EB10 100 19 9.4 6.5 3.26 0.02
EB11 100 20 12.7 6.7 3.23 0.06

of it.®) The results we present in Tables 4 and 5 are from a subset of networks
provided with the current and past versions of SUPERLINK.

As both programs use non-deterministic algorithms, their run times may vary
significantly from one run to the next. We therefore ran each tool 5 times on
each network and provide an average over those runs and also the standard
deviation.

It can be seen from the first two datasets (Table 4) that these networks are no
longer too challenging for either tool, as both can solve them fairly quickly.®
We really start to see the differences between the two programs when we an-
alyze the newer, more challenging networks in the third dataset (Table 5). It
can be seen that RC_Link is faster than SUPERLINK on all these networks
except for number 50, and on many of them the difference is orders of magni-
tude. For example we were able to do network 7 in 23 seconds compared with

8 Since SUPERLINK is not a Java program, it does not have this limitation.

9 Tt should be noted that just a few years ago in 2003 many of these networks were
very challenging and some of them were not even able to be solved in a reasonable
amount of time (Fishelson and Geiger, 2002; Allen and Darwiche, 2003).

37

Table 5

Experimental Results.

Average (5 runs)(sec.) || Standard Deviation

Network | # People | # Loci || Superlink RC_Link || Superlink | RC_Link
1 25 7 78.7 24.5 7.39 0.32
7 25 20 164.6 22.9 2.68 0.36
9 20 20 184.5 168.6 2.15 5.61
13 20 20 234.0 98.7 1.36 2.43
18 20 20 11794.8 5.4 | 20467.32 0.06
19 15 20 107.2 19.2 6.39 2.45
20 25 7 172.3 34.1 109.21 2.38
23 25 7 216.1 3.2 3.67 0.07
25 25 20 2058.9 26.7 799.25 7.75
30 25 20 2716.3 5.9 973.01 0.14
31 25 20 2064.2 144.9 497.43 12.48
33 25 20 349.6 3.9 92.76 0.06
34 25 20 962.8 31.7 1.83 0.59
37 o7 6 1004.8 66.2 481.52 12.03
38 o7 4 failed 425.4 failed 298.63
39 25 20 424.5 9.9 0.38 0.48
40 20 20 917.2 57.6 6.05 6.30
41 25 20 665.9 134 185.30 5.82
42 25 7 1799.1 36.2 13.79 0.76
44 20 20 2489.9 1214 7.82 44.59
50 o7 4 9712.2 26411.6 4167.19 | 11127.95
51 25 20 2368.6 556.5 10.72 29.89

165, network 25 in 27 seconds compared with 2,059, and network 33 in just 4
seconds compared with 350. Even on networks 44 and 51, which SUPERLINK
required 2490 seconds and 2369 seconds on, we were able to do significantly
faster at just 121 seconds and 557 seconds respectively. Furthermore, it can be
seen that RC_Link tends to have less fluctuation in its running time, as seen
in the smaller standard deviations.

It turns out that our simplification techniques not only significantly speed
up the inference algorithm but also drastically reduce the amount of memory

38

required. For example, the problems in Table 4 which used to require many
gigabytes of memory now only require less than 0.2MB each! Additionally, on
the more challenging networks in Table 5 we were only required to invoked
our time-space tradeoff engine 12 times on 3 different networks (38, 50, and
51). These networks requested up to 5.9GB and since we had to restrict them
to 2GB we used our greedy memory allocation algorithm to determine the
caching scheme (Allen et al., 2004).

8 CONCLUSIONS

In this paper we introduced the domain of genetic linkage analysis, gave some
biological background for the problems, and discussed one method for mod-
eling the linkage problems as Bayesian networks. The main emphasis was on
techniques which make the problems more tractable. Specifically we discussed
simplifications related to general Bayesian network inference, some domain
specific simplifications, and finally some optimizations to the recursive condi-
tioning algorithm. Some of these techniques have already been implemented in
other tools, however many of them are novel techniques which could be used
to improve the other systems. The techniques which we created or contributed
to were: independent variables, chain variables, single-child founder removal,
irrelevant edges, variable equivalence, phase removal, horizontal mapping, vari-
able equivalence for selectors, and all those related to the RC algorithm. We
finished the paper by comparing our new genetic linkage analysis system,
RC_Link, to another state-of-the-art system, SUPERLINK, and showed that
on many networks our novel techniques allowed it to perform orders of mag-
nitude faster.

References

Allen, D., Darwiche, A., 2002. On the optimality of the min—fill heuristic.
Tech. rep., University of California, Los Angeles (UCLA).

Allen, D., Darwiche, A., 2003. New advances in inference by recursive condi-
tioning. In: Uncertainty in Artificial Intelligence: Proceedings of the Nine-
teenth Conference (UAI-2003). Morgan Kaufmann Publishers, pp. 2-10.

Allen, D., Darwiche, A., 2004. Advances in Bayesian networks. Vol. 146 of
Studies in Fuzziness and Soft Computing. Springer—Verlag, New York, Ch.
Optimal Time-Space Tradeoff in Probabilistic Inference, pp. 39-55.

Allen, D.; Darwiche, A., Park, J. D., 2004. A greedy algorithm for time-space
tradeoff in probabilistic inference. In: Proceedings of the Second European
Workshop on Probabilistic Graphical Models. pp. 1-8.

Allen, D. L., 2005. Probabilistic inference in bayesian networks using con-

39

ditioning and their application to genetic linkage analysis. Ph.D. thesis,
University of California, Los Angeles.

Becker, A., Geiger, D., Schaffer, A., Jan-Feb 1998. Automatic selection of loop
breakers for genetic linkage analysis. Human Heredity 48 (1), 49-60.

Boutilier, C., Friedman, N., Goldszmidt, M. and Koller, D., 1996. Context-
Specific Independence in Bayesian Networks. In: Uncertainty in Artificial
Intelligence: Proceedings of the Twelfth Conference (UAI-1996). Morgan
Kaufmann Publishers, pp. 115-123.

Chavira, M., Allen, D., Darwiche, A., 2005. Exploiting evidence in probabilis-
tic inference. In: Uncertainty in Artificial Intelligence: Proceedings of the
Twenty-First Conference (UAI-2005). AUAI Press, pp. 112-119.

Cottingham, Jr., R., Idury, R., Schaffer, A., Jul 1993. Faster sequential genetic
linkage computations. American Journal of Human Genetics 53 (1), 252-63.

Darwiche, A., 2001a. Constant-space reasoning in dynamic bayesian networks.
International Journal of Approximate Reasoning 26 (3), 161-178.

Darwiche, A., February 2001b. Recursive conditioning. Artificial Intelligence
126, 5-41.

Dechter, R., 1996. Bucket elimination: A unifying framework for probabilis-
tic inference. In: Uncertainty in Artificial Intelligence: Proceedings of the
Twelfth Conference (UAI-96). Morgan Kaufmann Publishers, pp. 211-219.

Elston, R. C., Stewart, J., 1971. A general model for the genetic analysis of
pedigree data. Hum. Hered. 21 (6), 523-542.

Fishelson, M., Dovgolevsky, N., Geiger, D., 2005. Maximum likelihood haplo-
typing for general pedigrees. Human Heredity 59, 41-60.

Fishelson, M., Geiger, D., 2002. Exact genetic linkage computations for general
pedigrees. Bioinformatics 18 (1), 189-198.

Fishelson, M., Geiger, D., 2003. Optimizing exact genetic linkage computa-
tions. In: RECOMB’03.

Guo, H., Hsu, W. H., July 2002. A survey of algorithms for real-time bayesian
network inference. In: AAAI/KDD/UAI-2002 Joint Workshop on Real-Time
Decision Support and Diagnosis Systems.

Jensen, F. V., Lauritzen, S. L., Olesen, K. G., 1990. Bayesian updating in
causal probabilistic networks by local computations. Computational Statis-
tics Quarterly 4, 269-282.

Kruglyak, L., Daly, M., Reeve-Daly, M., Lander, E., Jun 1996. Parametric and
nonparametric linkage analysis: a unified multipoint approach. American
Journal of Human Genetics 58 (6), 1347-63.

Lander, E., Green, P., 1987. Construction of multilocus genetic maps in hu-
mans. Proc. Natl. Acad. Sci. USA 84 (8), 2363-2367.

Lange, K., Goradia, T., 1987. An algorithm for automatic genotype elimina-
tion. Am J Hum Genet 40, 250-256.

Lauritzen, S. L., Sheehan, N. A., Nov 2003. Graphical models for genetic
analyses. Statistical Science 18 (4), 489-514.

Lauritzen, S. L., Spiegelhalter, D. J., 1988. Local computations with probabil-
ities on graphical structures and their application to expert systems (with

40

discussion). Journal of the Royal Statistical Society Series B 50, 157-224.

Lepar, V., Shenoy, P. P., 1998. A comparison of Lauritzen-Spiegelhalter,
Hugin, and Shenoy-Shafer architectures for computing marginals of prob-
ability distributions. In: Uncertainty in Artificial Intelligence: Proceedings
of the Fourteenth Conference (UAI-98). Morgan Kaufmann Publishers, pp.
328-337.

Lin, Y., Druzdzel, M., 1997. Computational advantages of relevance reasoning
in bayesian belief networks. In: Proceedings of the 13th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-97). pp. 342-350.

O’Connell, J., Weeks, D., Dec 1995. The vitesse algorithm for rapid exact
multilocus linkage analysis via genotype set-recoding and fuzzy inheritance.
Nature Genetics 11 (4), 402-8.

Ott, J., 1999. Analysis of Human Genetic Linkage. The Johns Hopkins Uni-
versity Press, Baltimore.

Pearl, J., 1986. Fusion, propagation, and structuring in belief networks. Arti-
ficial Intelligence 29, 241-288.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, San Francisco.

Pearl, J., 2000. Causality: Models, Reasoning, and Inference. Cambridge Uni-
versity Press., Cambridge.

Schaffer, A., Gupta, S., Shriram, K., Cottingham, Jr., R., Jul-Aug 1994. Avoid-
ing recomputation in linkage analysis. Human Heredity 44 (4), 225-37.

Shachter, R. D., 1986. Evaluating influence diagrams. Operations Research
34 (6), 871-882.

Shachter, R. D., 1990. Evidence absorption and propagation through evidence
reversals. In: Proceedings of the 5th Annual Conference on Uncertainty in
Artificial Intelligence (UAI-90). Elsevier Science Publishing Company, Inc.,
New York, NY.

Shafer, G. R., Shenoy, P. P., 1990. Probability propagation. Annals of Math-
ematics and Artificial Intelligence 2, 327-352.

41

