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Abstract. We present a new method for computing upper bounds for
an optimization version of the E-MAJSAT problem. This new approach
is based on the use of the compilation language d-DNNF that under-
lies several state-of-the-art algorithms for solving problems related to E-
MAJSAT. We show that the new bound values dominate those produced
by the standard algorithm based on the same approach. Moreover, we
present a technique for pruning values from the branch-and-bound search
tree based on the information available after each bound computation.
We integrate our new techniques into a probabilistic conformant planner
ComPlan and demonstrate significant empirical improvements.

1 Introduction

Many real-world problems require uncertainty in their formulations. As a result,
many researchers have studied methods for modeling and solving problems that
exhibit uncertainty. One prototypical formulation of such problems is the E-
MAJSAT problem [15], which asks whether there exists an assignment to a
given set of variables of a given formula such that the majority of assignments
to the remaining variables satisfy the formula.

E-MAJSAT, which is NPPP-complete [15, 18], is an extension of the boolean
satisfiability (SAT) problem that includes an element of model counting into its
formulation.1 As a result, it can be used to model many interesting problems
in AI such as probabilistic conformant planning [8, 9, 13], finding maximum a
posteriori hypothesis (MAP) [20], and finding maximum expected utility (MEU)
solution [7]. Intuitively, to solve an E-MAJSAT problem, we need to search in an
exponential search space (the NP part), while checking whether each candidate
constitutes a solution requires solving a counting problem (the PP part). E-
MAJSAT (and its different formulations) is an important problem in AI and has
been studied extensively in the literature [15, 18, 20, 7].

Many exact algorithms for solving this class of problems have been proposed
in the past. For example, in [14, 16], the authors proposed a modified version of
the DPLL algorithm [6] for solving E-MAJSAT, Dechter et al [7] used bucket
1 E-MAJSAT is a special case of a more general class of problems called the stochastic

satisfiability problem [16].



elimination for solving MAP, while recursive conditioning was used for solving
the same problem in [2]. In this work, we investigate an algorithm for computing
upper bounds on the solution of an optimization version of E-MAJSAT. Such
an algorithm is useful as it can be employed by a branch-and-bound search
algorithm for solving the problem.

The proposed algorithm can be viewed as an improvement of those used
in [11, 10], which take advantage of a compilation language called d-DNNF for
computing upper bounds. In this work, we point out the cause of bound looseness
in these existing algorithms and propose a method for reducing the inaccuracy
in bound values. We show that new bounds generated by our algorithm are
at least as tight as those produced by the aforementioned work. Moreover, we
describe a method of using information available from the new algorithm to
dynamically prune branches of the search tree of the branch-and-bound search
algorithm. We tested our techniques by integrating it into a branch-and-bound
probabilistic conformant planner, ComPlan [10]. Empirical results show signifi-
cant improvements after the integration.

The rest of the paper is organized as follows. We first discuss, in Section 2,
basic notations and definitions that will be used in future discussions. Then,
in Sections 3 and 4, we review existing techniques for solving and computing
bounds of an optimization version of E-MAJSAT based on d-DNNF. We present
a new algorithm for computing tighter bounds in Section 5 and discuss some
of its properties. Section 6 discusses its integration with a branch-and-bound
solver and presents a technique for pruning search branches based on information
available after each bound computation. Experimental results are presented in
Section 7 and we conclude in Section 8.

2 Background

We present, in this section, some basic notations that will be used throughout the
paper. Given a literal `, which is either a variable or the negation of a variable,
we use var(`) to refer to its variable. An assignment is simply a consistent set of
literals (interpreted as their conjunction). If ∆ is a propositional sentence and
s is an assignment, we say that s |= ∆ iff s satisfies ∆. Moreover, we use ∆|s
to denote the formula obtained from ∆ by substituting every literal ` ∈ s with
true and every literal ` such that ¬` ∈ s with false.

Unless stated otherwise, in this paper, we will assume that every variable
of a given formula has been designated as either a choice variable or a chance
variable. Moreover, we assume that the probabilities θ of the chance variables
are given. We use θ(r) to denote the probability of a chance literal r. If Ψ is a
formula containing only chance variables, then we define the probability of Ψ to
be

Pr(Ψ) =
∑

r|=Ψ

(∏
r∈r

θ(r)

)
.



The summation above is over all complete assignments of the chance variables
that satisfy Ψ . The probability of Ψ is essentially the weighted model count of
Ψ , where the weight of each model is simply the product of the probabilities of
its chance literals.2

In this work, we investigate an optimization version of the E-MAJSAT prob-
lem [15], which we call functional E-MAJSAT. Given a CNF Γ , the functional
E-MAJSAT problem on Γ is the problem of finding the maximum probability
of Γ under any complete assignment e of the choice variables.3 More formally,
we want to compute

M = max
e

Pr(Γ |e)

We will refer to M as the maximum probability of the functional E-MAJSAT
problem on Γ .

3 Solving Functional E-MAJSAT via Knowledge
Compilation

Given a functional E-MAJSAT problem, one way of computing the solution
to the problem is to convert the CNF formula into deterministic decompos-
able negation normal form (d-DNNF) (to be defined next). If the conversion
is performed in a certain way (to be discussed), we can obtain the maximum
probability of the functional E-MAJSAT problem by a linear traversal of the
d-DNNF.

3.1 Deterministic Decomposable Negation Normal Form (d-DNNF)

A negation normal form (NNF) is a rooted directed acyclic graph (DAG) where
each leaf is labeled with true, false, or a literal, and each internal node is la-
beled with either AND or OR. Each node in the DAG is used to represent the
formula rooted at that node. Deterministic decomposable negation normal form
(d-DNNF) [5] is a subset of NNF that satisfies determinism and decomposabil-
ity. An NNF is said to be deterministic iff, for each OR, no two children share a
model, and is said to be decomposable iff, for each AND, no two children share
a variable. Figure 1 depicts a d-DNNF (we will explain the letters and numbers
in parentheses later).

For simplicity, we will assume that every OR node has exactly two children,
while an AND node can have any number of children. In this work, we use
C2D [4, 1] to compile CNF formulas into d-DNNF. C2D produces d-DNNF with
the following key property: every OR node (which has to be deterministic) is
of the form α = (x ∧ β) ∨ (¬x ∧ γ). Here, x is a variable which is called the

2 Note that this definition does not require Ψ to be any particular form.
3 Γ |e is a formula containing only chance variables.
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Fig. 1. A d-DNNF. In this graph, no two children of any AND node share a variable
and no two children of any OR node share a model. Each OR node is annotated with
its decision variable. Moreover, each node’s value is shown in parentheses.

decision variable of α, denoted dec(α). For the rest of the paper, we will assume
that every d-DNNF has this special form. The information about the decision
variable of each OR node is available in the output of C2D and will be used by
algorithms described later. The decision variable of each OR node is shown in
parentheses for the d-DNNF in Figure 1.

3.2 Solving Functional E-MAJSAT Exactly

In this section, we will present an existing algorithm for solving functional E-
MAJSAT based on a linear traversal of d-DNNF. This algorithm forms a basis
for bound computation methods to be discussed in later sections.

As hinted earlier, not every d-DNNF can be used to solve functional E-
MAJSAT exactly this way. A d-DNNF is said to be constrained if at most one
value (literal) of each choice variable appears below any OR node with a chance
decision variable. Consider the d-DNNF in Figure 1 again. If we let x, y be the
only choice variables, then this d-DNNF is constrained. In particular, neither
x nor y appears below any OR node with a chance decision variable (all of
which are at depth 4). Given a constrained d-DNNF, we can solve functional E-
MAJSAT exactly by a single traveral of the graph [11]. The d-DNNF in Figure 1
is actually equivalent to the following CNF:



(x ∨ b ∨ e) ∧ (x ∨ b ∨ ¬e) ∧ (¬x ∨ a ∨ ¬e) ∧ (¬x ∨ ¬a ∨ e)∧
(y ∨ d ∨ ¬e) ∧ (y ∨ ¬d ∨ e) ∧ (¬y ∨ c ∨ ¬e) ∧ (¬y ∨ ¬c ∨ e)

Therefore, this d-DNNF can be used to efficiently solve the functional E-MAJSAT
problem on this CNF formula.

In general, given a CNF Γ , a corresponding constrained d-DNNF ∆, and
an assignment s (which could be partial or empty) to the choice variables, we
can solve the functional E-MAJSAT problem on the formula Γ |s as follows. We
simply perform a bottom-up traversal of ∆ and, for each node α, we compute
its value, val(α, s), which is defined recursively as

val(α, s) =





θ(r), if α = r is a chance literal
0, if α is a choice literal and s |= ¬α
1, if α is a choice literal and s 6|= ¬α∏

i val(αi), if α =
∧

i αi

val(α1) + val(α2), if α = α1 ∨ α2 and
dec(α) is a chance variable.

max(val(α1), val(α2)), if α = α1 ∨ α2 and
dec(α) is a choice variable.

(1)

The maximum probability of this problem is simply the value of the root node.
Consider the example in Figure 1 again. We set θ(a) = 0.8, θ(b) = 0.6, θ(c) =

0.4, θ(d) = 0.8, θ(e) = 0.5. In this case, the maximum probability of this func-
tional E-MAJSAT problem is val(∆, true) = 0.34. The number in parentheses
at each node α is simply the value of α under no assignment to x and y.

The following proposition states a guarantee on the value computed from a
constrained d-DNNF.4 Due to space constraint, we present a proof of this result
in a separate report [21].

Proposition 1. Given a CNF Γ and a constrained d-DNNF ∆ which is equiva-
lent to Γ , val(∆, true) is the maximum probability of the functional E-MAJSAT
problem on Γ .

According to this proposition, whenever the d-DNNF is constrained, the value
of the root as defined in Equation 1 always corresponds to an actual Pr(Γ |e)
of some complete assignment to the choice variables e. Moreover, this value is
guarantee to be the maximum probability of the formula under any complete
assignment of the choice variables.

In general, the time (and space) complexity of compiling CNF into a con-
strained d-DNNF is exponential in the constrained treewidth of the CNF [19].5

This constraint could render compilation very impractical [18]. Nevertheless, if
4 A similar claim was made in [11] without a proof.
5 The constrained treewidth is the treewidth obtained from an elimination order in

which all the choice variables are eliminated last.
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Fig. 2. A d-DNNF which is compiled without any constraint. Each node is labeled
with the value used for bound computation.

we disregard this constraint, the compilation will only be exponential in the
treewidth. The resulting d-DNNF can then be used to compute an upper bound
on the maximum probability of the problem. We discuss this approach in the
next section.

4 Functional E-MAJSAT Bound Computation from
d-DNNF

Consider Figure 2 which shows a d-DNNF that is logically equivalent to the one
in Figure 1 but is not constrained. The nodes are labeled with values defined by
Equation (1). If we assume that there is currently no assignment to the choice
variables (x and y), then the value of the root of this d-DNNF is 0.5, which is
greater than the actual maximum probability of this problem.

In general, if the d-DNNF is not constrained, the value of the root will only
be an upper bound on the maximum probability of the functional E-MAJSAT
problem [11]. In a special case when the assignment s contains all choice vari-
ables, val(∆, s) simply becomes Pr(∆|s), the weighted model count of ∆|s. Even
though we lose the ability to compute the exact maximum probability by ignor-
ing the constraint, one advantage of this approach is that the compilation process
now becomes exponential in only the (unconstrained) treewidth of the CNF for-
mula [3]. The difference between the constrained and unconstrained treewidth
could be significant for some problems [18]. Examples of algorithms that uti-
lize this bound computation approach are [11] (for solving MAP) and [10] (for
probabilistic planning).



4.1 The Cause of Bound Looseness

As shown earlier, whenever we have only a partial assignment to the choice
variables, the value computed from an unconstrained d-DNNF may overestimate
the maximum probability of the problem. The reason that the computed value
may be too large is because the algorithm allows unrealistic assignments to the
choice variables to be considered. In particular, the free choice variables can
be “assigned” both the values true and false at the same time, during the
traversal of unconstrained d-DNNF. This behavior is caused by the fact that
every node labeled with a literal of a free choice literal has value 1 (the third
case of Equation 1). This reflects the algorithm’s inability to determine which
value of each free choice variable is the best assignment. As a result, the value of
the root node may not correspond to the probability of the formula conditioned
by any complete assignment to the choice variables. In the example in Figure 2,
we can see that the top left AND node attains the value of 0.32 by selecting
the value true for x (indicated by the edge labeled with “A”). However, the
top right AND node attains the value of 0.18 by selecting the value false for x
(indicated by the edge labeled with “B”). As a result, the value 0.5 at the root
cannot be realized by any valid assignment to x and y (i.e. x cannot be true and
false at the same time). In the next section, we introduce a way of mitigating
this problem by keeping track of more information as we traverse the d-DNNF.

5 Computing Tighter Bounds Using Option Pairs

In this section, we discuss an algorithm for reducing the looseness of bounds
obtained from unconstrained d-DNNF. The key idea is to compute bound values
that are conditioned on the values of choice variables. To do so, we will need
to make more information available at each node of the d-DNNF. The following
definition is needed in the discussion of our algorithm.

Definition 1 (Option Pair). Given a d-DNNF node α, a partial instanti-
ation of the choice variables s and a choice variable x not mentioned by s,
ψ = (x, v+, v−) is an option pair of α on x if

– v+ is an upper bound of val(α, x ∧ s) and
– v− is an upper bound of val(α,¬x ∧ s).

In this case, x is called the option variable, denoted v(ψ). We will also call
v+ the positive option (p(ψ)) and call v− the negative option (n(ψ)) of ψ. The
best option of ψ is simply max(v+, v−).

An option pair contains bounds on the node’s values conditioned on the
values of a choice variable. In our new bound computation algorithm, instead
of computing just one value for each node in the d-DNNF, we compute option
pairs on free choice variables that appears below the node (if they exist). Not
every node in a d-DNNF can have an option pair. Particularly, if a node does
not contain any free choice variable below it, it will not have any option pair



defined. On the other hand, if a node mentions multiple free choice variables,
it will have more than one option pair. Before we describe an algorithm for
computing option pairs, we need some definitions for the value of an option pair
and the value of a node, under an assignment. Given an assignment s to the
choice variables, the contribution of an option pair ψ is the largest option value
it can contribute under the assignment. This is defined formally as

κ(ψ, s) =





p(ψ), if s |= v(ψ)
n(ψ), if s |= ¬v(ψ)
max(p(ψ), n(ψ)), otherwise.

In light of this definition, we can redefine the value of each node. If a node α has at
least one option pair, we define its value val?(α, s) to be the smallest contribution
from any option pair of the node. This is the tightest bound we can put on
the value of the node, because any complete assignment must set every choice
variable to a value. If the node does not have an option pair, its value is defined
to be val(α, s) (as defined in Equation (1)). Formally, we have

val?(α, s) =
{

minψ κ(ψ, s), α has some option pairs
val(α, s), otherwise.

Given a node α that mentions at least one free choice variable V , we define the
option pair of α on V (under assignment s) as follows.

1. If α = ` (` must be a literal of V ), its option pair on V is (V, θ(`), 0) if ` is
positive, and (V, 0, θ(`)) otherwise.

2. If α =
∧n

i=1 αi,6 its option pair on V is

(V,

n∏

i=1

val?(αi, s ∧ V ),
n∏

i=1

val?(αi, s ∧ ¬V )).

3. If α = α1 ∨ α2 and dec(α) is a choice variable, its option pair on V is

(V, max(val?(α1, s ∧ V ), val?(α2, s ∧ V )),max(val?(α1, s ∧ ¬V ), val?(α2, s ∧ ¬V ))).

4. If α = α1 ∨ α2 and dec(α) is a chance variable, its option pair on V is

(V, val?(α1, s ∧ V ) + val?(α2, s ∧ V ), val?(α1, s ∧ ¬V ) + val?(α2, s ∧ ¬V )).

This algorithm can be repeated at each node on every free choice variable to
compute all option pairs. The bound value produced by this algorithm is then
the value of the root node (val?(∆, s)). Although computing option pairs for
all free choice variables at each node could lead to much tighter bounds, its
time complexity is O(|E||∆|), where |E| is the number of choice variables and
|∆| is the size of the d-DNNF.7 In practice, any number of option pairs can
6 In this case (AND), the set of option variables of the children are disjoint.
7 In practice, val?(α, s ∧ `) is simply the minimum of val?(α, s) and the option corre-

sponding to ` of α. Therefore, computing val?(α, s∧ `) is a constant-time operation,
given that val?(α, s) is stored at each node.



be computed at each node, but one needs a heuristic for selecting which option
pairs to compute.

The source of improvement of this new bound algorithm lies in Step 4 above.
In this case, instead of simply adding the highest values that each child may pro-
duce together, we only add values that have compatible underlying assignments
of the option variables together. The value of such an OR node under the new
bound algorithm will be lower than the one computed the previous algorithm
(without option pairs) whenever the best options of the children correspond to
conflicting assignments of some option variable. Therefore, the quality of the
bounds generated by option pairs is more sensitive to changes in the parameters
of the problems (i.e. the probabilities of the chance literals). In any case, we have
the following results regarding the bounds computed this way.

Proposition 2 (Bound Correctness). Given a d-DNNF ∆ and an instanti-
ation (possibly partial) s of choice variables, we have

val?(∆, s) ≥ max
x

Pr(∆|(s ∧ x)),

where x is a complete assignment of the remaining choice variables.

Proposition 3 (Dominance). Given a d-DNNF ∆ and an instantiation s of
choice variables, we have val?(∆, s) ≤ val(∆, s).

These results show that the values computed using option pairs are correct upper
bounds that are at least as tight as those computed using the basic algorithm in
the previous section.

Let us now illustrate the new bound algorithm with an example. Consider
again the d-DNNF in Figure 2. In the previous section, we showed a basic bound
computation which resulted in the bound value of 0.5 at the root. Using option
pairs on this d-DNNF, we obtain Figure 3. In this example, there are still two
choice variables, x, y. We will now explain the computation of option pairs of
some nodes in this d-DNNF.

Each leaf node labeled with a chance variable in this figure is only annotated
with its value, because it has no option pairs. Other leaves are labeled with option
pairs on their choice variables. Every OR node with a choice decision variable
(all at depth 2) mentions only one choice variable (which is its decision variable).
Their option pairs are obtained by simply combining the best option from each
child. Each of the AND nodes at depth 1 mentions two choice variables. For
the option pair on x, the positive option is obtained by multiplying the positive
option of the child that mentions x with the values of the remaining children
(which do not mention x). The negative option and the option pair on y can be
computed in a similar way. To compute the option pair at the root node, which
is an OR node with a chance decision variable, we simply add the compatible
options of the children together. In the case of x, the option pair of the left
child indicates that if x = true, its value is no more than 0.32, while the right
child indicates that its value is no more than 0.06 under the same assignment.
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Fig. 3. Bound computation on a d-DNNF using option pairs.

As a result, we can conclude that, if x = true, the root’s value can be no more
than 0.38. The other option values at the root can be computed in a similar
way. Finally, from this bound computation, we can conclude that, no matter
what value is assigned to y, the value of the root cannot be larger than 0.38.8

Hence, we have obtained a bound value that is tighter than that computed by
the algorithm in the previous section.

In the next section, we will present a technique that leverages on the option
pairs at the root node to speed up branch-and-bound search.

6 Utilizing the New Bound Computation in a
Branch-and-Bound Algorithm

One natural application of our new bound computation algorithm is in a branch-
and-bound search algorithm for solving functional E-MAJSAT. Many algorithms
based on branch-and-bound search have been proposed previously, for exam-
ple [14, 16, 19, 11, 10]. The algorithms search in the space of all possible assign-
ments to the choice variables. Each leaf of this search tree corresponds to a
complete assignment e of the choice variables and is associated with the proba-
bility Pr(∆|e). Solving functional E-MAJSAT is then equivalent to finding the
leaf with the highest probability.

At any given point in time, the solver keeps track of the highest probability
associated with any complete assignment seen so far. This value is a lower bound

8 The same analysis on x yields a looser bound of 0.42. We takes the smaller value as
any complete assignment must set every choice variable to a value.



(LB) of the maximum probability for the problem. Then, at each internal node
of the search tree, the solver computes an upper bound (UB) of the probability
of any leaf below the node. Whenever UB is less than or equal to to current value
of LB, the search tree below the current node can be pruned, as it means that no
better assignment exists in that part of the search space. Algorithm 1 shows the
pseudo-code of a branch-and-bound algorithm for functional E-MAJSAT. This
algorithm assumes that LB is initialized to 0 and solution to null.

Algorithm 1: BnB-fEmajSAT
global : CNF Γ , a set of choice variables E, LB, solution
input : A set of assignments to choice variables s
output: An assignment with the maximum probability is stored in solution

and its probability in LB.

if |s| 6= |E| then1

select a free choice variable X2

for each value x of X do3

if bound(Γ, s ∧ x) > LB then4

BnB-fEmajSAT(s ∧ x)5

else6

p = Pr(Γ |s)7

if p > LB then8

LB = p9

solution = s10

To integrate the new bound computation technique into this algorithm, we
need to

1. compile Γ into a d-DNNF ∆ before the first call to BnB-fEmajSAT.
2. replace bound(Γ, s) and Pr(Γ |s) (Lines 4 and 7) by val?(∆, s).

These changes do not compromise the correctness of the algorithm, because val?

always produces an upper bound to the problem (Proposition 2).

6.1 Using Option Pairs for Pruning Values

When we use multiple option pairs for computing bounds, we usually have a
number of option pairs available at the root of the d-DNNF, even though only
one bound value (the smallest best option) is extracted from this process.

Consider an example situation where we have the following option pairs at the
root: (x, 0.75, 0.85), (y, 0.9, 0.7), (z, 0.5, 0.88), (w, 0.81, 0.88). Clearly, the current
bound value is 0.85. Let us assume further that the current value of LB is 0.8.
At this point, we cannot prune the search tree yet, because UB6≤LB. However,
we know that if we set x to true, the bound value will suddenly be smaller
than LB. The same can be concluded about setting y = false, and z = true.



Therefore, without any additional work, we can prune the following values from
the current sub-tree: x = true, y = false, z = true.

In general, after computing a bound using option pairs, we inspect each
option pair ψ of the root node, if p(ψ) ≤ LB, then the branch v(ψ) = true can be
removed. If n(ψ) ≤ LB, then the branch v(ψ) = false can be removed.9 During
this process, the value of each choice variable can be pruned independently, no
matter what values of other variables are pruned. This process of computing a
bound and removing values can be repeated as long as a new value is removed.
Once no new value can be pruned, we can continue to search by branching on a
free choice variable. This algorithm for pruning values can be easily incorporated
into Algorithm 1 right after the bound computation on Line 4.

7 Experimental Results

The bound computation algorithm presented here, along with the technique
that utilizes option pairs to prune values, can be integrated into any algorithm
that employs the bound computation algorithm discussed in Section 4. Next, we
briefly discuss our integration of the techniques into a probabilistic conformant
planner, ComPlan [10], which is a state-of-the-art planner of its kind.

7.1 Integration with ComPlan

Probabilistic conformant planning is a type of planning which allows uncertainty
in both the initial state and the outcomes of actions. ComPlan is a branch-and-
bound probabilistic conformant planner which finds a plan with the maximum
success probability for a given plan length. It utilizes d-DNNF (without option
pairs) for bound computation as discussed in Section 4. First, ComPlan converts
each planning problem into a CNF formula, then it compiles the formula into
d-DNNF using C2D. At each search node, besides computing a bound from d-
DNNF, it also prunes values by trying each individual value of the current free
choice variables and measuring the bound afterwards; a value can be pruned if
it yields a bound that is ≤ LB. ComPlan also uses a dynamic variable and value
ordering heuristic based on the bound values computed during value pruning.

We implemented the planner based on the descriptions in [10].10 Then, we
modified the bound computation algorithm to keep track of all option pairs at
each node. We also replaced ComPlan’s value pruning algorithm with the one
that is based on option pairs (Section 6.1). We call our version of the planner
ComPlan+. Currently, ComPlan+ only uses a static variable and value ordering
heuristic, which is described in [11].

9 If both values of a variable are pruned, the search algorithm can backtrack.
10 Although our implementation of ComPlan does not behave exactly like the one

presented in [10] (e.g. number of nodes visited), its performance is comparable (based
on the running time reported in that paper).



7.2 Results on Planning Problems

We compared the performance of ComPlan and ComPlan+ on different domains
of probabilistic conformant planning problems. In particular, we consider the
domains sand-castle [17] and slippery-gripper [13] (as extended by [12]). Each
of these domains contains problems of finding a plan with the highest success
probability for the given horizon (number of actions).11 All of the experiments
were conducted on a Pentium 4, 3.8GHz machine with 4GB of RAM.
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Fig. 4. Running time of ComPlan and ComPlan+ on sand-castle. The results are
plotted on normal running time scale (left) and on log-scale (right).

Figure 4 shows plots of both planners’ running time on sand-castle. On the
left plot, the data are shown on a linearly-scaled y-axis. On the right plot, the
y-axis is log-scaled (with the same data). We can clearly see from these plots
that ComPlan+ significantly outperforms ComPlan. Moreover, the running time
ratio (ComPlan over ComPlan+) increases as the horizon grows. When the hori-
zon is equal to 44, ComPlan takes 16,152 seconds to solve the problem, while
ComPlan+ only takes 104 seconds. In our experiment (result not shown in the
plots), ComPlan+ can solve the problem with horizon equals to 50 in less than
700 seconds, while ComPlan does not finish after a day.

Figure 5 shows plots of running time of the planners on slippery-gripper.
There are two sets of slippery-gripper problems in our experiment. The first set is
exactly the slippery-gripper problems described in [12]. The results on this set is
on the left plot of the figure. The other set of problems, whose results are shown
on the right of Figure 5, contains modified slippery-gripper problems, which
differ from the original ones only in the probabilities of success of some actions.
In particular, we changed the probability of the action DRY being successful from
0.8 to 0.9, changed the probability that the action PAINT will make the gripper
which is not holding the block dirty from 0.1 down to 0.05, and changed the
probability of success of the action PICKUP when the gripper is wet from 0.5 to

11 In these planning problems, the variables that represent plans are the choice variables
and those that represent uncertainty in the initial state or action outcomes are the
chance variables.
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Fig. 5. Running time of ComPlan and ComPlan+ on (left) original slippery-gripper
and (right) modified slippery-gripper.

0.85. This modification makes the actions slightly more deterministic, exposing
the drawbacks of the basic bound computation approach more.

According to Figure 5, ComPlan+ exhibits a constant factor (about 1.8)
improvement over ComPlan on the original set of slippery-gripper problems.
However, when we modified the probabilities of the problems, the difference
between ComPlan and ComPlan+ becomes greater. When the horizon is 20,
ComPlan takes 25,745 seconds, while ComPlan uses only 2,992 seconds. When
the horizon is 21, ComPlan takes 98,359 seconds, while ComPlan+ takes 6,753
seconds. Similar to the results for sand-castle, the running time ratio between
the two planners increases as the problem’s difficulty increases. The changes in
parameters simply create more conflicting values of choice variables during bound
computations, which lead to greater differences between the normal bounds and
those computed using option pairs.

8 Conclusions

In this paper, we proposed a new bound computation method, based on compi-
lation to d-DNNF, for the functional E-MAJSAT problem. The algorithm can
be used for computing bounds in a branch-and-bound solver for functional E-
MAJSAT. In addition to yielding tighter bounds, the new algorithm also pro-
duces additional information that allows the solver to prune values as it searches
for the best solution at virtually no additional cost. We integrated the new tech-
niques into a branch-and-bound probabilistic conformant planner, ComPlan, and
showed empirically that the new techniques yield significant improvement, which,
on some problem domains, grows as the problem size increases.
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