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Abstract

Iterative belief propagation is an influential method for approximate inference in
probabilistic graphical models, perhaps the most influential method of the last
decade. Given its wide-spread applicability in various domains, there has been a
great interest in developing semantics for this method to both characterize and con-
trol the quality of its approximations. We present in this paper a new semantics
for belief propagation, formalizing it as a method of exact inference on a simplified
model that has been obtained by deleting edges from the original. When we delete
an edge, however, we lose a model dependency, which we can compensate for by
adding auxiliary parameters to the model. We show that the iterations of belief
propagation are searching for such auxiliary parameters in a model which results
from deleting every network edge. This semantics leads to a number of questions:
Can we delete fewer than every model edge? Further, which edges should we delete
and which should we let remain? The answers to these questions lead to a general-
ization of belief propagation based on edge deletion, which we present here, allowing
one to trade approximation quality with computational resources. This edge dele-
tion perspective sheds new light on belief propagation approximations, and further
enables an effective procedure for finding improved approximations through a simple
process of edge recovery.
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1 Introduction

Classical algorithms for exact probabilistic inference on graphical models have
a complexity which is parameterized by the network topology (Jensen et al.,
1990; Lauritzen and Spiegelhalter, 1988; Zhang and Poole, 1996; Dechter, 1996;
Darwiche, 2001). In particular, it is well known that exact inference can be per-
formed exponential only in the treewidth of a given network, where treewidth
is a graph theoretic parameter that measures network connectivity. Therefore,
models with high treewidth (and no local structure, Chavira and Darwiche,
2006) can be inaccessible to these methods, necessitating the use of approxima-
tion algorithms. Iterative belief propagation (IBP), also known as loopy belief
propagation (Pearl, 1988; Yedidia et al., 2003), is one such algorithm that has
been extremely influential in certain classes of applications. For instance, IBP
has spawned approaches capable of solving particularly difficult instances of
the satisfiability problem (Braunstein et al., 2005), and has shown to be an
effective approach to a variety of computer vision tasks (Szeliski et al., 2006),
particularly stereo vision (Felzenszwalb and Huttenlocher, 2006; Sun et al.,
2005). Its biggest impact has been in the field of information theory, where
revolutionary algorithms for decoding error-correcting codes have shown to
be instances of iterative belief propagation in a Bayesian network (Frey and
MacKay, 1997; McEliece et al., 1998).

We propose in this paper a new perspective on this influential algorithm in
Bayesian networks, viewing it as an algorithm run in a simplified approxi-
mation of the original network. In fact, we show that IBP corresponds to a
tree-structured approximation, where exact inference has computational com-
plexity that is linear in the size of the model. This correspondence holds even
in the case of a fully-disconnected approximation (which is vacuously a tree).
More specifically, the approximate network results from deleting enough edges
from the original network, where the loss of each edge is offset by introducing
free parameters into the approximate network. We show that the iterations
of belief propagation can be understood as searching for values of these free
parameters that satisfy intuitive conditions that we formally characterize.

This edge deletion semantics of IBP leads to a number of implications. On
the theoretical side, it provides a new, intuitive characterization of the fixed
points of IBP. On the practical side, it leads to a concrete framework for im-
proving the quality of approximations returned by IBP. In particular, since
IBP corresponds to deleting enough edges to yield a polytree, 1 one wonders
whether recovering some of the deleted edges can improve the quality of ap-
proximations; see Figure 1. The answer is yes, as we show later. Indeed, the

1 In the Bayesian network literature, a polytree is a DAG whose underlying undi-
rected graph is also acyclic.
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Fig. 1. A network (left), a polytree approximation (center), and a more structured
approximation (right).

edge recovery proposal can be quite practical if it leads to a more structured
approximation that is still feasible for exact inference. This leads to another
question: What edges are the most promising to recover? For this, we ap-
peal to the semantics of edge deletion which suggest a criterion for recovering
edges based on mutual information. We discuss the properties of this recovery
method and provide empirical results, showing how it can identify a small set
of edges that can effectively improve the quality of an approximation without
impacting much the complexity of inference. Our method also identifies edges
whose recovery may increase inference complexity, without having a justifiable
impact on the quality of approximations.

1.1 Overview

For the reader who may not already be familiar with belief propagation, or
the significant body of research that is based on it, we seek in this paper to
provide a thorough introduction, based on an edge deletion semantics, that
should be accessible to those with a basic knowledge of Bayesian networks. For
a classical introduction to belief propagation in Bayesian networks, we suggest
(Pearl, 1988; Murphy et al., 1999); for a relatively more recent introduction,
for undirected models, we recommend (Yedidia et al., 2003).

For the reader who is already familiar with belief propagation and some of
its generalizations, we seek to present a new perspective on belief propagation
that allows us to better understand belief propagation and design more accu-
rate approximations. Along the way, we hope to illustrate that an edge-deletion
semantics is expressive enough to reveal a number of familiar properties that
were previously visible only from other disparate perspectives. At the same
time, we hope to illustrate that this semantics is simple enough to allow us to
easily identify improved approximations, a task which is often non-trivial in
other generalized instances of belief propagation.

3



U

X

U

X

ˆ|S UΘ

Ŝ
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Fig. 2. We delete an edge U → X by (1) replacing parent variable U with a clone
variable Û and (2) introducing a soft evidence variable Ŝ.

We begin in Section 2 by introducing a general framework for approximating a
Bayesian network by deleting edges. In Section 3, we propose a new semantics
for belief propagation based on this framework of edge deletion. We show
that belief propagation falls as a degenerate case in this framework, in the
extreme case where every model edge is deleted. We go on to propose an edge
recovery procedure for identifying more accurate approximations. In Section 4,
we review the Bethe free energy approximation and its relationship to iterative
belief propagation, and show how it also arises as a result of deleting edges. We
provide an empirical analysis in Section 5, review related work in Section 6,
and finally conclude in Section 7. The Appendix includes proofs of theorems,
as well as a formulation of edge deletion in undirected models.

2 Deleting a Directed Edge

Let U → X be an edge in a Bayesian network, and suppose that we wish
to delete this edge to make the network more amenable to exact inference
algorithms. This deletion will introduce two problems. First, variable X will
lose its direct dependence on parent U . Second, variable U may lose evidential
information received through its child X. To address these problems, our pro-
posal for edge deletion introduces two auxiliary variables to help compensate
for these lost dependencies.

Definition 1 (Edge Deletion) Let U → X be an edge in a Bayesian net-
work N . We say that the edge U → X is deleted when it results in a network
that is obtained from N as follows:

• The edge U → X is removed from the graph.
• A new variable Û replaces variable U as a parent of X, where Û is a clone

of U , having the same states as U .
• A binary variable Ŝ replaces X as a child of U , where Ŝ is instantiated,

acting as soft evidence on U .
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Our definition of edge deletion is illustrated in Figure 2. The first auxiliary
variable introduced is a variable Û , which compensates for the lost influence
that parent U had on its child X. Thus, variable Û is a clone of variable U .
The second auxiliary variable is an instantiated variable Ŝ, which compensates
for the lost influence that evidence connected to variable X had on variable
U . 2 Since auxiliary variable Ŝ represents evidence, and will always be fixed
to some state ŝ, we assume that variable Ŝ is binary. Moreover, since auxiliary
variable Û is a clone, it has the same states as variable U . Thus, we leave
the conditional probability tables (CPT) of variable X unchanged from the
original model, except that it now depends on the cloned parent Û .

The deletion of an edge U → X introduces new parameters into the network,
as we must now provide CPTs for the new variables Û and Ŝ. Variable Û , a root
node in the network, has a CPT ΘÛ representing the prior marginal on variable

Û . Variable Ŝ, a leaf node in the network, has a CPT ΘŜ|U representing the

conditional probability of Ŝ given U . Since evidence variable Ŝ is instantiated
to a state ŝ, we only need to specify the CPT parameters θŝ|u for each state u
of U , where the complementary parameters θ¬ŝ|u are simply set to 1− θŝ|u.

For each deleted edge, we thus need to specify two vectors, each with as many
elements as there are states u in variable U . We shall use the vectors PM (Û)
and SE (U) to denote the required parameters, which we shall refer to as edge
parameters. More specifically, PM (Û= û) denotes the CPT parameter θû, and
SE (U=u) denotes the CPT parameter θŝ|u. We are particularly interested in

the pairs PM (Û=u), SE (U=u) where variables Û and U are set to the same
state u.

Note again that we view the auxiliary variable Ŝ as injecting a soft evidence on
variable U , whose strength is defined by the parameters SE (U). In contrast
to hard evidence, which would fix U to a particular state u, soft evidence
can increase our belief in u, but not necessarily to the point of certainty.
Moreover, for queries that are conditioned on evidence ŝ, only the relative
ratios of parameters SE (U) matter, not their absolute values. For more on
soft evidence, see (Pearl, 1988; Chan and Darwiche, 2005).

Now that we have defined our notion of deleting an edge, we need to answer
the following two questions to specify an approximation scheme.

• How do we parametrize edges? The extent to which this proposal is success-
ful will depend on the specific edge parameters that are used. In particular,
the quality of the resulting approximation depends on the extent we can

2 Our proposal for deleting an edge is an extension of the one given by (Choi et al.,
2005). It proposed the addition of a clone variable but missed the addition of an
evidence variable, which is vital for the purposes of subsuming IBP.
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compensate for the dependencies lost when deleting edges.
• Which edges do we delete? This choice impacts the quality of the resulting

approximation, but its computational complexity as well. Indeed, we have
a spectrum of approximations from which to choose from. On one end,
where every edge is deleted, inference is trivial but provides the coarsest
approximation. On the other end, when no edge is deleted, we have the
complexity and accuracy of exact inference.

Moreover, we may want to choose different parameters and different edges to
delete, depending on what evidence has been observed, or what query we are
approximating (e.g., node marginals or MAP explanations). Indeed, we shall
take this query-specific approach, seeking to approximate a model for a given
query, rather than approximating a model once for all possible queries.

2.1 An Example

Before we proceed, consider as an example Figure 3 which defines a simple
network where a single edge has been deleted. Before we can use the network
N ′ to approximate queries on N , we must first specify its edge parameters.
For example, we can use the parameters:

Ŝ A ΘŜ|A = SE (A)

true true 0.3438

true false 0.6562

Â ΘÂ = PM (Â)

true 0.8262

false 0.1738

where we omit the redundant CPT parameters for variable Ŝ for the case
Ŝ= false. In the approximate network N ′, we set the same evidence e : D= true

that we set in N , but we also set the auxiliary variable Ŝ in the augmented
evidence e′ : D= true, Ŝ= true.

This particular choice of edge parameters then gives us the following approx-
imations to node marginals (up to four significant digits):

Pr ′(A | e′) Pr ′(B | e′) Pr ′(C | e′) Pr ′(D | e′)

true 0.7135 0.3442 0.5866 1.0

false 0.2865 0.6558 0.4134 0.0

For comparison, the exact node marginals are given by:
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A ΘA

true 0.8

false 0.2

A B ΘB|A

true true 0.8

true false 0.2

false true 0.4

false false 0.6

A C ΘC|A

true true 0.5

true false 0.5

false true 1.0

false false 0.0

B C D ΘD|BC

true true true 0.1

true true false 0.9

true false true 0.3

true false false 0.7

false true true 0.9

false true false 0.1

false false true 0.8

false false false 0.2

Fig. 3. A Bayesian network (upper left) conditioned on evidence e : D= true and an
approximate network (upper right) where we delete edge A→ B, and condition on
augmented evidence e

′ : D= true, Ŝ = true. Note that Θ
B|Â = ΘB|A.

Pr(A | e) Pr(B | e) Pr(C | e) Pr(D | e)

true 0.6947 0.3579 0.5789 1.0

false 0.3053 0.6421 0.4211 0.0

3 Edge Deletion and Belief Propagation

Given a network N and evidence e, our proposal is then to approximate this
network with a simpler network N ′ that results from deleting some number of
edges U → X as defined in Definition 1. Moreover, when performing inference
on network N ′, we will condition on the augmented evidence e′ composed of

7



the original evidence e and each piece of auxiliary evidence Ŝ= ŝ introduced
when deleting edges. More formally, if Pr and Pr ′ are the distributions induced
by networks N and N ′, respectively, we will use the conditional distribution
Pr ′(.|e′) to approximate Pr(.|e).

We cannot commence with the above proposal, however, without first spec-
ifying a way to choose the parameters PM (Û) and SE (U) for each deleted
edge U → X. There are two issues here. First, what parameters should we
seek? Second, how do we compute them? As to the first question, consider the
scenario where we delete a single edge U → X that splits a network into two
disconnected subnetworks. In this case, we can in fact identify edge parameters
that compensate for the deleted edge precisely, allowing us to compute exact
marginals over the variables in each subnetwork. Note, however, that joint
marginals involving variables in both subnetworks will remain approximate,
since they become independent after deletion.

We can in fact characterize a class of approximate networks, where possibly
many edges are deleted, that yield exact results for those particular networks
where a deleted edge splits a network into two. Exactness in particular holds
for polytrees, as deleting any edge in a polytree splits the network into two.
In general, these networks, simplified by edge deletion, will give rise to a gen-
eralization of the belief propagation algorithm, and in particular the approxi-
mation algorithm for networks with undirected cycles. We thus refer to these
edge deletion networks as ed-bp approximations, which are characterized as
follows.

Condition 1 (ed-bp) Let N be a Bayesian network and N ′ be the result of
deleting edges U → X from N . Edge parameters of an ed-bp approximation
satisfy the following conditions:

Pr ′(U=u | e′) = Pr ′(Û=u | e′), (1)

Pr ′(U=u | e′ \ ŝ) = Pr ′(Û=u) (2)

for all states u, and for all edges U → X deleted.

Lemma 1 Let N be a Bayesian network and N ′ be the result of deleting an
edge U → X that splits N into two disconnected subnetworks. Further, say
that this deletion partitions the original network variables into two disjoint
sets: XU containing variable U , and XX containing variable X. Then the
edge parameters of network N ′ satisfy Condition 1 if and only if the joint
distributions for each subnetwork are exact:

Pr ′(XU | e
′) = Pr(XU | e), Pr ′(XX | e

′) = Pr(XX | e).

Consider an approximate network where edge parameters satisfy Condition 1.
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Equation 1 tells us that variables Û and U have the same posterior marginals.
This is not surprising given the semantics of auxiliary variable Û , which say
that Û is a clone of variable U . Equation 2 is perhaps less obvious, but con-
sider the situation where deleting an edge U → X splits a network into two
disconnected subnetworks. In this case, any variable in XX that was set as
evidence will be disconnected from variable U . Equation 2 tells us that, in a
network satisfying Condition 1, this lost evidence is compensated for by the
auxiliary evidence ŝ. That is, Equation 2, in light of Equation 1, says that
observing ŝ has the same impact on variable U as observing all evidence has
on clone Û :

Pr ′(U=u | e′)

Pr ′(U=u | e′ \ ŝ)
=

Pr ′(Û=u | e′)

Pr ′(Û=u)
.

Assuming that an edge splits the network, only variables in XX will have an
impact on clone Û in N ′. Hence, in this case, the auxiliary evidence ŝ does
indeed summarize the effect of all variables in XX that were set as evidence.

If deleting an edge does not split the network, not all evidence connected to
X will be disconnected from U . Hence, Equation 2 of Condition 1 can be seen
as overcompensating. It is indeed this observation which will be the basis of
our heuristic for recovering edges, to be discussed later. Further, we will show
that the stated conditions characterize the fixed points of IBP (and some of
its generalizations) on Bayesian networks.

3.1 Searching for Edge Parameters

Now that we know what edge parameters to look for, how do we find them?
The following theorem provides an answer.

Theorem 1 Let N be a Bayesian network and N ′ be the result of deleting
edges U → X from N . Condition 1 holds in network N ′ if and only if its edge
parameters satisfy the following conditions:

PM (Û=u) = α
∂Pr ′(e′)

∂SE (U=u)
(3)

SE (U=u) = α
∂Pr ′(e′)

∂PM (Û=u)
, (4)

where α > 0 is a normalizing constant.

Since PM (Û) represents the prior distribution ΘÛ , it should normalize to sum
to one. Since SE (U) represents soft evidence parameters θŝ|u, it does not need
to sum to one, although for symmetry we shall assume that it does. Note
further that these partial derivatives can be computed relatively efficiently in
traditional inference frameworks (Darwiche, 2003; Park and Darwiche, 2004).
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In Appendix B, we provide a probabilistic semantics for these edge parameters,
as well as identify the value of the normalization constants α (which happen
to be the same value in both equations).

Theorem 1 suggests the following iterative method for identifying edge param-
eters. First, we start with a network N ′

0 with a corresponding distribution Pr ′
0,

where all edge parameters PM 0(Û) and SE 0(U) are initialized, say, uniformly.
For each iteration t > 0, the parameters for edges in N ′

t will be determined
by performing exact inference on the approximate network N ′

t−1, from the
previous iteration:

PM t(Û=u) = α
∂Pr ′

t−1(e
′)

∂SE t−1(U=u)
(5)

SE t(U=u) = α
∂Pr ′

t−1(e
′)

∂PM t−1(Û=u)
(6)

where we use α as a normalizing constant. We then keep iterating until all edge
parameters converge to a fixed point (if ever). 3 Note that all edge parameters
can be computed using a single jointree propagation and then updated in
parallel; again, see (Darwiche, 2003; Park and Darwiche, 2004) for computing
partial derivatives.

Algorithm 1 summarizes the above procedure, which we call ed-bp, an itera-
tive method for identifying the ed-bp approximations satisfying Condition 1.
As an example, consider again the Bayesian network in Figure 3, where we
want edge parameters for a single deleted edge. Algorithm ed-bp produces a
sequence of edge parameters, as follows:

A/Â t = 0 t = 1 t = 2 t = 3 t = 4

true 0.5000 0.8142 0.8257 0.8262 0.8262
PM t(Â)

false 0.5000 0.1858 0.1743 0.1738 0.1738

true 0.5000 0.3496 0.3440 0.3438 0.3438
SE t(A)

false 0.5000 0.6504 0.6560 0.6562 0.6562

(up to four significant digits). At iteration t = 0, we initialize our edge pa-
rameters uniformly, giving us an initial network N ′

0. We compute parameters
for the next network N ′

1 by performing exact inference in N ′
0, according to

Equations 5 and 6. We repeat, computing parameters for N ′
2 from N ′

1, and
so on, until at iteration t = 4, we notice that our parameters are the same

3 As we shall see in the following section, this iterative procedure corresponds, in
a degenerate case, to message passing in IBP. As such, it inherits to an extent the
convergence properties of IBP (Elidan et al., 2006). However, in Section 5, we show
that the edge deletion perspective can have better convergence behavior in practice.
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Algorithm 1 ed-bp

input:
N : a Bayesian network
e: an instantiation of some variables in network N
E : a set of edges in N

output: an approximate network N ′ satisfying Condition 1

main:

1: t← 0
2: N ′

0 ← result of deleting edges E in N
3: Initialize all edge parameters PM 0(Û), SE 0(U) (uniformly)
4: while edge parameters have not converged do
5: t← t+ 1
6: for all deleted edges U → X in E do

7: PM t(Û=u)← α
∂Pr ′t−1

(e′)

∂SE t−1(U=u)

8: SE t(U=u)← α
∂Pr ′t−1

(e′)

∂PM t−1(Û=u)

9: end for
10: end while
11: return N ′

t

as those from the previous iteration (up to the first four significant digits).
In this case, we shall stop and declare convergence, taking N ′

4 as our final
approximation N ′. Note that this last set of edge parameters are the same as
those used in the example given in Section 2.1, which also reports the node
marginals given by this ed-bp approximation. To verify the network satisfies
the ed-bp properties specified by Condition 1, we have:

A/Â Pr ′(A | e′) Pr ′(Â | e′) Pr ′(A | e′ \ ŝ) Pr ′(Â)

true 0.7135 0.7135 0.8262 0.8262

false 0.2865 0.2865 0.1738 0.1738

3.2 Fully Disconnected Approximations and Polytree Approximations

We show here that ed-bp subsumes, as a degenerate case, the iterative be-
lief propagation algorithm for approximate inference. In particular, the be-
lief propagation algorithm (with messages passed in parallel) corresponds to
parametrizing the edges of a simplified network N ′ that is found by deleting
every edge in the original network N . We further show that a given belief
propagation approximation in fact corresponds to any ed-bp approximation
as long as the simplified network N ′ is a polytree.

For an edge U → X and an iteration t, let πt
X(U) denote the message passed
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Fig. 4. Correspondence between message passing in IBP and parameter updates in
ed-bp.

by IBP from parent U to child X, and let λt
X(U) denote the message passed

from child X to parent U . Moreover, let b(X|e) denote the IBP approxima-
tion for the marginal of X. The following theorem then identifies a precise
correspondence between:

• the iterations of IBP run on a network N ,
• the iterations of ed-bp run on a fully-disconnected approximation N ′.

Theorem 2 Let N be a Bayesian network and N ′ be the result of deleting
every edge from N . Suppose we run IBP on N and ed-bp on N ′, where ini-

tially all π0
X(U) = PM 0(Û) and all λ0

X(U) = SE 0(U). Then, for each edge
U → X and each iteration t, we have:

• πt
X(U) = PM t(Û);

• λt
X(U) = SE t(U).

Further, for all variables X in N , and for all iterations t, we have

• bt(X | e) = Pr ′
t(X | e

′).

Figure 4 illustrates this precise relationship between passing messages in IBP
and parametrizing edges in ed-bp.

The fully-disconnected case is just a special case of the relationship between
IBP and ed-bp. In fact, any polytree network N ′ parametrized by ed-bp

corresponds to an IBP approximation for the original network N . Note first
that there is a spectrum of approximate networks that are polytrees, ranging
from the polytree with no edges (call it the minimal polytree), all the way to
polytrees whose edges form a spanning tree of the network variables (call them
maximal polytrees). The following theorem relates these different polytrees.

Theorem 3 Let N be a Bayesian network, and let N ′ and N ′′ be two polytrees
found by deleting enough edges from N . For every edge parametrization of N ′

satisfying Condition 1, there is an edge parametrization of N ′′ also satisfy-
ing Condition 1 (and vice versa), where networks N ′ and N ′′ agree on node
marginals.
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That is, running ed-bp on the minimal polytree network versus a maximal
one, or any approximation in between, yields the same node marginals. More
precisely, it can be shown that the only difference between these approximate
networks is that they lead to different message passing schedules in IBP. In
particular, the minimal polytree approximation corresponds to a parallel mes-
sage passing schedule, while maximal polytree approximations correspond to
sequential schedules (Elidan et al., 2006; Wainwright et al., 2003). Stated more
simply, Theorems 2 and 3 tell us the following:

Corollary 1 Any IBP approximation in a network N is equivalent to the
class of polytree ed-bp approximations found by deleting edges from N , in the
sense that IBP and ed-bp agree on their approximations to node marginals.

Moreover, at any fixed point of IBP (out of potentially multiple fixed points,
each potentially having different marginal approximations), there exists a
corresponding fixed point for ed-bp in any polytree network N ′ (and vice
versa). Note that previously, (Wainwright et al., 2003) identified an analo-
gous characterization of IBP, as tree-structured approximations embedded in
a re-parametrized (undirected) model; we shall discuss the relationship with
ed-bp further when we discuss related work in Section 6.

It is important to note that running ed-bp on more connected polytrees can
yield more accurate approximations for marginals over multiple nodes. In gen-
eral, computing such marginals is outside the scope of IBP, yet we will find
joint marginals useful in the following section, when we recover deleted edges.
We will therefore assume a maximal polytree approximation unless stated
otherwise.

Before we proceed, consider, for example, the messages given by IBP for the
network given in Figure 3, at convergence:

A πB(A) λB(A)

true 0.8262 0.3438

false 0.1738 0.6562

A πC(A) λC(A)

true 0.6769 0.5431

false 0.3231 0.4569

B πD(B) λD(B)

true 0.7305 0.1622

false 0.2695 0.8378

C πD(C) λD(C)

true 0.6615 0.4206

false 0.3384 0.5794

In our earlier example, deleting a single edge A→ B in network N of Figure 3
gives us a polytree network N ′, and thus, this ed-bp parametrization corre-
sponds to IBP. Note that the IBP messages πB(A) and λB(A) passed along
edge A → B are precisely the ed-bp parameters PM (Â) and SE (A) for the
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deleted edge A→ B. If we now run the exact belief propagation algorithm in
the approximate, polytree network N ′, we find that messages passed along the
remaining edges of N ′ are given by the corresponding IBP messages above.

3.3 Deciding Which Edges to Recover

Suppose we already have a polytree approximation of the original network, but
we are afforded more computational resources. We can then seek to improve
the approximation by recovering some of the deleted edges. However, which
edge’s recovery would have the most positive impact on the quality of the
approximation? Alternatively, we can ask: which edge’s deletion had the most
negative impact in the current approximation? To answer this question, let
us consider again Condition 1 which characterizes the edge parameters that
ed-bp searches for. Equation 1 of Condition 1 requires that variables U and Û
agree. Equation 2, given Equation 1, says that the soft evidence ŝ on variable U
should summarize all evidence e′ on its clone Û . This is meant to compensate
for an edge deletion which potentially disconnects the evidence now pertaining
to Û which formerly pertained to U . If all such evidence becomes disconnected
from U , then Equation 2 is perfectly reasonable. However, if some of the
evidence pertaining to Û remains connected to U in the approximate network,
then the soft evidence on U may be overcompensating. One way to measure
the extent of this is through the mutual information between U and Û :

MI (U ; Û | e′) =
∑

uû

Pr ′(U=u, Û= û | e′) log
Pr ′(U=u, Û= û | e′)

Pr ′(U=u | e′)Pr ′(Û= û | e′)
.

Note that this mutual information is non-negative, and zero if and only if
U is independent of Û . Thus, if deleting U → X splits the network into
two disconnected subnetworks, this mutual information is zero. Since edge
deletion leads to exact results in this case, there is no point in recovering the
corresponding edge. On the other hand, if MI (U ; Û |e′) is large, the interaction
between U and its clone Û is strong in the approximate network and, hence,
the soft evidence on U may be overcompensating. Edge deletion may have
therefore degraded the quality of our approximation, leading us to favor the
recovery of such edges.

Algorithm 2 summarizes our proposal for edge recovery. In Steps 1 and 2,
we choose an initial network N ′ based on a maximal polytree embedded in
the given network N , and run ed-bp to parametrize the deleted edges. In
Step 4, we use the approximate network computed in Step 2 to compute
the joint marginals Pr ′(U=u, Û=u|e′) needed for the mutual information
scores. We then recover in Step 5 the top k edges with the highest mutual
information, and run ed-bp again in Step 6 on a more connected network. We
repeat this process, adaptively picking edges to recover, by re-ranking edges
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Algorithm 2 er+a (Adaptive Edge Recovery)

input:
N : a Bayesian network
e: instantiation of some variables in network N

output: approximate network N ′

main:

1: E ← a set of edges whose deletion renders N a maximal polytree
2: N ′ ← ed-bp(N, e, E)
3: while recovery of edges in N ′ is amenable to exact inference do
4: rank deleted edges U → X based on MI (U ; Û |e′)
5: E ← E − {top k edges with the largest scores}
6: N ′ ← ed-bp(N, e, E)
7: end while
8: return N ′

based on the improved approximation. We refer to this method as er+a, in
contrast to er+s, where we recover edges based only on the initial polytree
approximation. This static alternative, can often achieve performance similar
to er+a even though it is less costly to compute. We illustrate this property
empirically in Section 5.

Note that our heuristic requires the computation of joint marginals on pairs
of variables, which are needed for obtaining the mutual information scores.
Consider the fact that

Pr ′(U=u, Û= û|e′) = Pr ′(Û= û|U=u, e′)Pr ′(U=u|e′).

We can compute all node marginals Pr ′(U=u|e′) for all deleted edges in a
single run of a polytree or jointree algorithm. We can compute all quantities
Pr(Û= û|U=u, e′) for all edges U → X outgoing a particular node U by
applying exact inference to an approximate network N ′, once for each state u
of U : simply assert each state u as evidence and retrieve the node marginals
Pr ′(Û= û|U=u, e′). In this manner, Step 4 of our edge recovery algorithm
requires that we run an exact algorithm as many times as there are instances
u of all edge tails U . If each variable has a constant number of values, and we
have n nodes in the network, only O(n) runs of a polytree or jointree algorithm
are sufficient to score all deleted edges.

Figure 7 illustrates an example where we recover edges into the network of
Figure 6, one edge at a time, until all edges are recovered. Edge recovery is
based on the mutual information heuristic as shown in Figure 8. Note that the
edge labeled 2 does not improve any of the reported approximations. In fact,
if we recovered this edge first, we would see no improvement in approxima-
tion quality. This is shown in Figures 9 and 10, where we recover edges with
the smallest mutual information first. We see here that the approximations
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Fig. 5. Variables X1, . . . , X4 have the same CPTs, and so do variables Y1, . . . , Y4

and variables B, C, D and E. Variable A has Pr(A= true) = 0.8. Evidence e is
X2 = false, E = true.
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Fig. 6. Deleting four edges in the network of Figure 5.
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Deleted Edges

Node Marginals {1, 2, 3, 4} {2, 3, 4} {2, 3} {2} {}

Pr ′(A= true|e′) 0.7114 0.7290 0.7300 0.7331 0.7331

Pr ′(B= true|e′) 0.3585 0.4336 0.4358 0.4429 0.4429

Pr ′(C= true|e′) 0.2405 0.2733 0.2775 0.2910 0.2910

Pr ′(D= true|e′) 0.5824 0.6008 0.6100 0.5917 0.5917

Fig. 7. Improving node marginals by recovering edges into the network of Figure 6.
The marginals in the last column are exact.

Deleted Edges

Edge Scores {1, 2, 3, 4} {2, 3, 4} {2, 3} {2} {}

A→ Y1 (1) 1.13 · 10−3

B → Y2 (2) 0.00 0.00 0.00 0.00

C → X3 (3) 6.12 · 10−4 7.26 · 10−4 6.98 · 10−4

D → X4 (4) 1.12 · 10−3 1.08 · 10−3

Fig. 8. Scoring deleted edges in the network of Figure 6. Scores corresponding to
largest mutual information are shown in bold. Based on these scores, edges are
recovered according to the order 1, 4, 3 and then 2.

improve more modestly (if at all) than those in Figure 7. This highlights the
impact that a good (or poor) recovery heuristic can have on the quality of
approximations. We illustrate this point further empirically in Section 5.

Finally, we note that there are a number of alternatives to our mutual infor-
mation heuristic. One obvious heuristic is to measure the strength of an edge
U → X as it is defined in the model. That is, we may prefer to delete an
edge U → X if it is “weak” as defined in the CPT ΘX|U (i.e., the conditional
probabilities of X do not differ much under changes to the value of U). Note,
however, that the mutual heuristic procedure we proposed would leave these
edges deleted. If an edge U → X is “weak” in N, then the edge Û → X is
“weak” in N ′, and thus the mutual information between the variable U and
its clone Û will be small. Although the notion of “weak” edges is relevant to
other more traditional edge deletion approximations (Suermondt, 1992; van
Engelen, 1997), because of the auxiliary parameters that we introduce, the
quality of an edge deletion approximation depends less on the strength of a
particular edge, but more on the degree to which an edge splits a network into
two.

We explored an alternative to mutual information as an edge recovery heuristic
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Deleted Edges

Node Marginals {1, 2, 3, 4} {1, 3, 4} {1, 4} {4} {}

Pr ′(A= true|e′) 0.7114 0.7114 0.7160 0.7324 0.7331

Pr ′(B= true|e′) 0.3585 0.3585 0.3681 0.4412 0.4429

Pr ′(C= true|e′) 0.2405 0.2405 0.2564 0.2879 0.2910

Pr ′(D= true|e′) 0.5824 0.5824 0.5689 0.5848 0.5917

Fig. 9. Recovering edges into the network of Figure 6. The marginals in the last
column are exact.

Deleted Edges

Edge Scores {1, 2, 3, 4} {1, 3, 4} {1, 4} {4} {}

A→ Y1 (1) 1.13 · 10−3 1.13 · 10−3 9.89 · 10−4

B → Y2 (2) 0.00

C → X3 (3) 6.12 · 10−4 6.12 · 10−4

D → X4 (4) 1.12 · 10−3 1.12 · 10−3 1.14 · 10−3 1.11 · 10−3

Fig. 10. Scoring deleted edges in the network of Figure 6. Scores corresponding to
smallest mutual information are shown in bold. Based on these scores, edges are
recovered according to the order 2, 3, 1 and then 4.

in (Choi and Darwiche, 2008c), which is based on approximating the mutual
information using a soft extension of d-separation. This heuristic can be sig-
nificantly more efficient in certain cases, yes can be just as effective in finding
good edges to recover. We also proposed a more refined mutual information
heuristic in (Choi and Darwiche, 2008b) that focuses edge recovery on targeted
query variables.

4 Edge Deletion and the Bethe Free Energy

In the previous section, we were concerned primarily with the approximation of
node marginals. In this section, we consider approximations to the probability
of evidence Pr(e) in a Bayesian network.

In principle, we can use the exact probability of evidence computed in an
approximate network as an approximation to the true value of Pr(e). Un-
fortunately, in an ed-bp approximation, the probability of evidence Pr ′(e′)
by itself does not lead to good results. Luckily, it is possible to rectify these
approximations in a way that leads to exact results in certain situations. As
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the previous section led to a new perspective on iterative belief propagation,
this section brings us a new perspective on the intimately related Bethe free
energy approximation (Yedidia et al., 2005).

Consider again the case where we delete a single edge U → X, but where
the mutual information MI (U ; Û |e′) is zero in the resulting network. Let us
call such an edge a zero-MI edge. Remember that an edge U → X that splits
a network into two disconnected subnetworks is also a zero-MI edge, and in
this case, Lemma 1 tells us the subnetwork marginals are exact when we use
ed-bp edge parameters. The following proposition tells us that, in the more
general situation where a single zero-MI edge is deleted, we can also recover
the true probability of evidence.

Proposition 1 Let N be a Bayesian network, and let N ′ be the result of
deleting a single edge U → X in N . Suppose further that the edge parameters
of network N ′ satisfy Condition 1 and that MI (U ; Û |e′) = 0 in N ′. Then

Pr(e) = Pr ′(e′) ·
1

zUX

where zUX =
∑

u

PM (Û=u)SE (U=u).

That is, if we delete a single edge U → X and find that U and X are in-
dependent in the approximate network N ′, we can correct the approximate
probability of evidence Pr ′(e′) by zUX and recover the exact value of Pr(e). 4

Note that since zUX ≤ 1 (since we assume PM (Û) and SE (U) normalize to
sum to one), this correction can only increase the value of Pr ′(e′).

This observation leads to an approximation of the probability of evidence, that
is exact in the case a single zero-MI edge is deleted. Note that the correction
suggested by Proposition 1 is specified purely in quantities available in the ap-
proximate network N ′, which may become computable when we delete enough
edges. From this perspective, Proposition 1 suggests an approximate correction
scheme when deleting multiple edges U → X, where we use a multiplicative
accumulation of the corrections for each edge. In particular, Proposition 1
suggests the following correction to the probability of evidence, Pr ′(e′) · 1

z
,

where

z =
∏

U→X

zUX =
∏

U→X

∑

u

PM (Û=u)SE (U=u). (7)

In general, this correction yields only approximate results, but as we shall
soon see, this correction leads to a new perspective on the Bethe free energy.

4 It is also possible to show, for the deletion of a single zero-MI edge, that the
marginals Pr ′(U =u|e′) = Pr ′(Û =u|e′) given by ed-bp are in fact the exact
marginals Pr(U =u|e). However, the marginals of other variables may not be exact.
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4.1 The Bethe Free Energy and the Approximate Probability of Evidence

In (Yedidia et al., 2005), a fixed point of iterative belief propagation was shown
to correspond precisely to stationary points of the Bethe free energy, which we
review below. This connection was a significant step towards understanding
belief propagation, and led to the highly influential generalized belief propa-
gation (GBP) algorithms (Yedidia et al., 2005); see Section 6 for a description
of GBP. In this section, we show that the Bethe free energy approximation
is in fact the exact probability of evidence (suitably corrected) of a simplified
Bayesian network found by deleting edges.

Consider first the KL–divergence between two distributions Pr and Pr ′ given
that each has been conditioned on evidence e:

KL(Pr ′(. | e),Pr(. | e)) =
∑

w

Pr ′(w | e) log
Pr ′(w | e)

Pr(w | e)
. (8)

The KL–divergence is non-negative and equal to zero if and only if Pr ′(.|e)
and Pr(.|e) are equivalent. However, the KL–divergence is not a true distance
measure in that it is not symmetric.

Note that the KL–divergence can be written as a sum of three components:

KL(Pr ′(. | e),Pr(. | e)) = U −H + log Pr(e)

where

• energy U = −
∑

XUE[ log ΘX|UλX ] = −
∑

XU

∑

xu Pr ′(xu|e) log θx|uλx is a
set of expectations over the original network parameters weighted by the
approximate distribution. Here θx|u is a network CPT, and λx is an evi-
dence indicator, where λe(x) = 1 if x is consistent with evidence e and zero
otherwise.
• entropy H = −

∑

w Pr ′(w|e) log Pr ′(w|e) is a measure of the uncertainty
associated with the approximate distribution Pr ′(.|e).

See (Cover and Thomas, 1991) for more on entropy and the KL–divergence.

The KL–divergence suggests a formulation of approximate inference as an
optimization problem. In particular, we can pick a parametrized form of an
approximate distribution Pr ′(.|e), and search for an instance of it that (hope-
fully) minimizes the KL–divergence. Since the log Pr(e) term is independent
of the choice of an approximating distribution, we can equivalently minimize a
free energy F = U−H. This formulation thus reveals two competing properties
of Pr ′(.|e) that minimize a free energy F , and hence, the KL–divergence:

• Pr ′(.|e) should match the original distribution by giving more weight to
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more likely parameters θx|u (i.e, minimize the energy U);
• Pr ′(.|e) should not favor unnecessarily one instantiation over another by

being evenly distributed (i.e., maximize the entropy H).

Note that in the case where Pr ′(.|e) and Pr(.|e) are equivalent, and the KL–
divergence is zero, we have that F = − log Pr(e).

In (Yedidia et al., 2005), iterative belief propagation was identified to be an
approximation as described above, where the approximating distribution is
assumed to factorize as follows:

Pr ′(. | e) =
∏

XU

Pr ′(XU | e)
∏

U∈U Pr ′(U | e)
, (9)

Note how this form is in terms of only the marginals that Pr ′ assigns to parents
and families. A number of observations are in order about this assumption.
First, this choice of Pr ′(.|e) is expressive enough to describe distributions
Pr(.|e) induced by polytree networks N . That is, if N is a polytree, then the
corresponding distribution Pr(.|e) does indeed factorize according to Equa-
tion 9. In the case where N is not a polytree, then we are simply trying to fit
Pr(.|e) into an approximation Pr ′(.|e) as if it were generated by a polytree
network.

This choice of distribution specifies a particular approximation to the free
energy F = U −H, known as the Bethe free energy:

Fβ = Uβ −Hβ

where Uβ is the Bethe average energy

Uβ = −
∑

XU

E[ log ΘX|UλX ] (10)

and Hβ is the Bethe approximate entropy

Hβ =
∑

XU

H(XU | e)−
∑

XU

∑

U∈U

H(U | e), (11)

where our expectations and entropies are now based on marginal approxima-
tions b(xu|e) and b(u|e) from IBP:

• E[ log ΘX|UλX ] =
∑

xu b(xu | e) log θx|uλx

• H(XU|e) = −
∑

xu b(xu | e) log b(xu | e)
• H(U |e) = −

∑

u b(u | e) log b(u | e)

Under certain consistency and normalization constraints, one can show that
family marginals b(xu|e) and node marginals b(u|e) are stationary points of
the Bethe free energy if and only if IBP messages are a fixed point of iterative
belief propagation.
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As we stated earlier, when a network is a polytree, the distribution Pr(.|e)
does indeed factorize according to Equation 9. Thus, the corresponding KL–
divergence is zero, and we have that Fβ is exactly − log Pr(e). In principle, we
can simply use Fβ as an approximation to the probability of evidence, even
when a network is not a polytree, i.e., Prβ(e) = exp{−Fβ}. As the following
theorem asserts, this approximation is precisely an edge-corrected probability
of evidence, as suggested by Proposition 1.

Theorem 4 Let N be a Bayesian network, and let N ′ be the result of deleting
edges U → X in N. Suppose further that the edge parameters of network N ′

satisfy Condition 1, and that N ′ is rendered a polytree. Then

Prβ(e) = Pr ′(e′) ·
1

z
where z =

∏

U→X

zUX =
∏

U→X

∑

u

PM (Û=u)SE (U=u).

That is, the Bethe approximation of the probability of evidence is actually
the corrected probability of evidence of an approximate ed-bp network, but
interestingly, for any polytree approximation N ′. Moreover, when the original
network N happens to be a polytree, the correction yields the exact value
of Pr(e). In general, when N has (undirected) cycles, the correction of the
probability of evidence is approximate and leads to a class of region-based
free energy approximations when an arbitrary number of edges are deleted
(Yedidia et al., 2005); see Appendix D for the relationship between ed-bp

and iterative joingraph propagation approximations.

The following proposition parallels the correspondence between fixed points
of IBP and stationary points of the Bethe free energy (Yedidia et al., 2005).

Proposition 2 Let N be a Bayesian network, and let N ′ be the result of
deleting edges U → X in N. Edge parameters of N ′ are an ed-bp fixed point
if and only if the edge parameters are a stationary point of Pr ′(e′) · 1

z
.

This proposition tells us that an IBP fixed point that is stationary in the Bethe
free energy Fβ is an ed-bp fixed point that is stationary in an edge-corrected
probability of evidence. Note again that the factor z is the correction factor
for the correction scheme based on Proposition 1, which is exact in the case
where a single zero-MI edge is deleted.

4.2 An Example

Consider again our example from Section 2.1, where we delete a single edge
A→ B, using ed-bp edge parameters:
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Ŝ A ΘŜ|A = SE (A)

true true 0.3438

true false 0.6562

Â ΘÂ = PM (Â)

true 0.8262

false 0.1738

Here, the probability of evidence in the approximate network is Pr ′(e′) ≈
0.1446, whereas the true probability of evidence is Pr(e) = 0.38. In this ex-
ample, A → B is not a zero-MI edge, so the factor zAB ≈ 0.3438 · 0.8262 +
0.6562 · 0.1738 = 0.3981 does not provide an exact correction. However,
Pr ′(e′) · 1

zAB
≈ 0.3633 provides a better approximation to Pr(e) than Pr ′(e′)

does alone.

We can also compute the Bethe average energy Uβ ≈ 2.648 and the Bethe
approximate entropy Hβ ≈ 1.635, giving us for the Bethe free energy Fβ =
Uβ −Hβ ≈ 1.013 (using natural logarithms). The Bethe approximation to the
probability of evidence is Prβ(e) = exp{−Fβ} ≈ 0.3633, which is indeed the
probability of evidence Pr ′(e′) of our approximate network, after applying a
correcting factor zAB.

Suppose now for the network given in Figure 3, that we replace the CPT for
D with the following:

B C D ΘD|BC

true true true 0.162

true false true 0.81

false true true 0.18

false false true 0.9

(omitting the redundant rows for D= false). Still conditioning on evidence
e : D= true, we find that this time edge A → B is in fact a zero-MI edge,
when we use the ed-bp edge parameters:

Ŝ A ΘŜ|A = SE (A)

true true 0.4894

true false 0.5106

Â ΘÂ = PM (Â)

true 0.9231

false 0.0769

The probability of evidence in the approximate network is Pr ′(e′) ≈ 0.2121
and our correction factor is zAB ≈ 0.4894 · 0.9231 + 0.5106 · 0.0769 = 0.4910.
Our corrected probability of evidence is Pr ′(e′) · 1

zAB
= 0.432 which is now

exactly the true probability of evidence Pr(e).
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The Bethe average energy is Uβ ≈ 2.067 and the Bethe approximate entropy
is Hβ ≈ 1.228, giving us the Bethe free energy Fβ = Uβ −Hβ ≈ 0.8393. Since
our corrected probability of evidence is exact, the Bethe approximation yields
the exact result Prβ(e) = exp{−Fβ} = 0.432.

4.3 Deciding Which Edges to Recover

In Section 3.3, we proposed a mutual information heuristic for improving
marginal approximations that is based on recovering first those edges with
a large mutual information. Since Proposition 1 tells us that a corrected prob-
ability of evidence is exact when a single zero-MI edge is deleted, we may
expect the same mutual information heuristic to be effective for improving
approximations to the probability of evidence as well. Indeed, we shall show
empirically that this is the case in the following section.

5 Experiments

In this section, we provide experimental comparisons of the approximations
given by ed-bp, IBP, and the Bethe free energy. Our goal is to highlight
the impact that good (and bad) heuristics for edge recovery can have on the
quality of the resulting approximations.

The experiments in this section were performed on a 2.83GHz Intel Xeon
Processor (E5440). 5

5.1 Edge Recovery and Marginal Approximations

We start by observing the degree to which ed-bp and edge recovery is capable
of improving the quality of marginal approximations given by IBP, over a
selection of real-world and random networks. 6

5 An inference system based on ed-bp participated in the Probabilistic Inference
Evaluation at UAI’08 (Darwiche et al., 2008), which included other systems based
on belief propagation and its generalizations. Note, however, that some of these
systems, including the ones based on ed-bp and IJGP, did use other techniques,
such as preprocessing—including, for example, the use of SAT engines. Hence, it is
not obvious how to distinguish the merits of the different variants of BP, as opposed
to those based on the preprocessing used.
6 Many of the networks used here in the empirical analysis are available at
http://www.cs.huji.ac.il/labs/compbio/Repository/. Networks emdec and
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For each network, we generated at least 100 evidence instantiations, found by
setting all leaf nodes according to their joint distribution (except for networks
emdec and tcc, where we set values on leaves at random as the joint dis-
tribution is highly skewed). For each evidence instantiation, we averaged the
marginal errors over all unobserved variables, where the error of a marginal
approximation for a variable X is the KL–divergence KL(Pr(X|e),Pr ′(X|e′))
between the exact and approximate marginals. We considered only instances
where IBP converged within 200 iterations (less than 3 instances per 100
networks did not converge), where convergence for IBP (and ed-bp) was de-
termined when every message (or parameter) of an iteration is within 10−8 of
the previous.

Consider Figure 11, which depicts the improved approximations for a variety
of Bayesian networks, comparing IBP and our edge recovery algorithm. The
x–axes of these figures correspond to the number of edges recovered, starting
from no edges recovered (a polytree approximation/IBP) to all edges recovered
(original network/exact inference). We determined initial polytrees randomly,
and recovered 1

10
-th of the deleted edges at a time. We also used a jointree algo-

rithm for exact inference in ed-bp. We compared edge recovery with adaptive
rankings (er+a), static rankings (er+s), and random recovery. Further, we
reversed the rankings (recovering edges with the lowest mutual information)
for the non-random cases (er-a, er-s).

In Figure 11, we see that in the alarm and pigs networks, significant improve-
ments can be seen in recovery by er+a and er+s over random recovery, even
when a small number of edges are recovered. In networks water, noisy-or (de-
scribed later in the section), tcc and emdec, we observed that er+a yields
better approximations than er+s, after recovering the first set of edges, and
that er+s typically yields better approximations than random recovery. In
networks hailfinder and pigs, we see that static recovery can perform as
well as adaptive recovery for certain networks. In network win95pts, er+s

happened to perform better than er+a. In all networks, we see heuristics er-

a and er-s can similarly identify edges that do not have as much impact on
the approximation. In fact, we see that a substantial number of edges can be
recovered without much benefit, highlighting the importance of a good edge
recovery heuristic.

Consider Figure 12, which examines the computational impact edge recovery
has in the pigs network. First, we compare the effect that edge recovery has on
approximation quality (as in Figure 11) and the size of the resulting jointree.
Here, the size of a jointree is measured as the number of entries in cluster
tables, summed over all clusters, then taking the log2. This roughly estimates
the complexity of a Hugin-based jointree algorithm. We see that recovery by

tcc are noisy-or networks for diagnosis, courtesy of HRL Laboratories, LLC.
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Fig. 11. Quality of approximation vs edges recovered.

er+a happens to result in jointrees that are modestly more compact than
those found by random edge recovery. On the other hand, er-a results in
more computationally demanding jointrees. More importantly, we see that
as we start to recover edges, we can indeed identify better approximations,
without impacting much the computational complexity of inference. We have
made similar observations for other networks as well, including the barley

network in Figure 13.
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Fig. 12. Effect of edge recovery on quality of approximation, complexity of iteration,
convergence rate, and running time.
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Fig. 13. Effect of edge recovery on quality of approximation, complexity of iteration,
convergence rate, and running time.

It is important to note here that when recovering edges, we may increase net-
work complexity, but we may also reduce convergence time. Hence, one must
factor both issues when evaluating the costs incurred when recovering edges.
In particular, we see in the second row of Figure 12 that er+a can improve the
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rate of convergence as more edges are recovered. Combined with only modest
gains in the complexity of inference, the overall time to compute an ed-bp

approximation with edges recovered can in fact be computationally more effi-
cient than ed-bp in a polytree with no edges recovered, and correspondingly,
IBP. Indeed, we observe that this is the case in the fourth plot of Figure 12.

Finally, in Figure 14, we compare time and accuracy trade-offs for a number
of approximations:

• ed-bp (tree): an ed-bp approximation using a random spanning tree (which
corresponds to IBP);
• ed-bp ( 2

10
, 5

10
): adaptive edge recovery (er+a) starting with a random

spanning-tree, recovering 2
10

-ths and 5
10

-ths of the model edges, recovering
1
10

-th of the model edges at a time;
• hak loop3: a convergent generalized belief propagation (GBP) algorithm

(Heskes et al., 2003; Yedidia et al., 2005);
• mf seqrnd: a mean-field algorithm;
• treeep: a Tree-EP algorithm (Minka and Qi, 2003).

We describe GBP, mean-field and EP in Section 6. The implementations we
used come from the freely available libDAI library Mooij (2008); hak loop3,
mf seqrnd and treeep are the aliases of the algorithms used from this
library. Note that our implementation of ed-bp and er+a is in Java, whereas
the libDAI library is implemented in C++. In general, we expect C++ to be
more computationally efficient than Java. We ran each algorithm with a limit
of 200 iterations, with a convergence threshold of 10−8. Note that the running
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times we report for edge recovery accumulate the time to rank edges and to
re-run ed-bp.

We evaluated these algorithms over the networks alarm, emdec, hailfinder,
pathfinder, pigs, water, and win95pts. Each plot point in Figure 14 rep-
resents a network and algorithm, averaged over 200 evidence instantiations
(which were generated in the same way we described previously). We see that
the mean field approximation mf seqrnd is less accurate, and it is the only
algorithm we evaluated that does not generalize belief propagation. Of the
remaining approximations, we find that ed-bp (tree) tends to be the most
efficient, but tends to have less accurate approximations. As expected, we find
that recovering edges via er+a tends to improve the approximation at the
expense of longer running times. hak loop3 and treeep, both also gen-
eralizations of belief propagation, improve on the accuracy of ed-bp (tree),
but we find that in these networks, they tend to be more computationally
expensive to compute than er+a, even when half of the model edges are
recovered. Note that the algorithm hak loop3 that we evaluated is a con-
vergent, double-loop algorithm, which are typically less efficient, although we
found the corresponding single-loop implementation gbp loop3 to exhibit
unsatisfactory convergence behaviour in the benchmarks we evaluated.

5.2 Edge Recovery and Approximations to the Probability of Evidence

We evaluate now the effectiveness of edge recovery in improving approxima-
tions to the probability of evidence, as compared to the Bethe free energy
approximation. Here we measure the quality of an approximation in terms of
the relative error in the log probability of evidence: | log Pr(e) − log Pr ′(e′) ·
1
z
|/ log Pr(e). Again, we start with a random spanning tree approximation of

the original network, which now corresponds to the Bethe free energy approx-
imation, and recover edges until all edges are recovered.

In Figure 15, we see that our edge recovery heuristics have a similar impact on
the quality of a Pr(e) approximation as they do on marginals approximations
(in Figure 11). When no edges are recovered, our approximation is a polytree,
and we have the Bethe approximation Prβ(e) = exp{−Fβ} of the probabil-
ity of evidence. As we start to recover, we see that er+a and er+s can be
considerably more effective than edge recovery, in terms of improving an ap-
proximation. We further note that a poor choice in edge recovery heuristics
can in fact lead to a worse approximation than that given by the Bethe free
energy.

Noisy-or networks. We conclude this section by examining more closely the set
of experiments on random two-layer noisy-or networks. We generated over 100
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Fig. 15. Quality of approximation vs edges recovered.

randomly parametrized noisy-or networks, each with 20 roots and 20 sinks,
where sinks are given 4 random parents. For each network, we chose some ran-
dom number k between 0 and 20, and observed k sinks as positive findings and
the remaining sinks as negative findings. Priors for the roots, and suppressor
probabilities for the sinks, were also generated randomly.

Deleting an edge in a two-layer noisy-or network effectively disconnects a cause
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variable C from an effect variable E, where a clone Ĉ replaces C as a a cause
of E. In this situation, we may appeal to the semantics of edge deletion to
reason how well ed-bp and the Bethe approximation may perform. With no
positive findings, for example, we know that all causes are pairwise mutually
independent, including a cause C and its clone Ĉ in a noisy-or network where
edges have been deleted. Starting from a tree-structured approximation (cor-
responding to the Bethe approximation), every recoverable edge is zero-MI,
and will remain zero-MI up to the point where all edges are recovered. Thus
we may infer that all corrections to the probability of evidence to be exact
throughout, and thus also that the Bethe approximation is exact.

Consider Figure 16, which compares the quality of our approximations on
the probability of evidence. On the left, we plot the overall behavior, just
as in Figure 15. On the right of Figure 16, we observe how the quality of
an approximation varies with the number of positive findings in a noisy-or
network. We have 4 pairs of plots: the dotted lines represent random recovery,
and the solid lines represent recovery using er+a. Each pair corresponds to
averages over a range of positive findings: 0, 1–5, 6–10, and 11–20. With no
positive findings, we see that ed-bp yields exact results, as predicted, even
when no edges are recovered. Given this, it is not unexpected to see that as the
number of positive findings increase the quality of the approximations degrade
as there are fewer and fewer zero-MI edges.

6 Related Work

Iterative belief propagation has received a good deal of interest over the years
as an approximate inference algorithm, particularly since revolutionary de-
coders for error correction have been shown to be instances of this algorithm
(Frey and MacKay, 1997; McEliece et al., 1998). A number of formulations,
generalizations, and alternatives to IBP have since been proposed.

In this paper, we proposed a framework for approximate inference based on
deleting edges that subsumes, as a degenerate case, this influential algorithm.
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In particular, we have shown that

• IBP marginal approximations are the exact marginals of a simplified net-
work found by deleting edges; and
• the Bethe approximation to the probability of evidence is the exact proba-

bility of evidence (suitably corrected) in the same simplified network.

In particular, we found that belief propagation approximations correspond to
simplified networks where:

• every edge is deleted from the original model;
• but also where enough edges have been deleted from the original model to

render the model a polytree, any polytree.

Some of these properties are evident, or analogous to, properties of belief
propagation visible from other, albeit disparate, perspectives. For example,
IBP marginal approximations also arise from a fully-disconnected expectation
propagation approximation (Minka, 2001). They have also been characterized
in terms of trees embedded in network re-parametrizations (Wainwright et al.,
2003). As we highlighted in Section 4, belief propagation also arises from
free-energy approximations based on tree-based factorizations of probability
distributions (Yedidia et al., 2005).

Considering that these observations were previously made from what were
seemingly different perspectives, we argue that an edge deletion perspective is
a particularly natural one for analyzing and understanding belief propagation.
For example, an edge deletion semantics allowed us to propose a new, but
simple, edge recovery algorithm for effectively finding approximations more
structured and more accurate than that of iterative belief propagation. Indeed,
in other generalizations of belief propagation, it is a non-trivial task to identify,
for a given model, the form that a good approximation should take.

Generalizations of belief propagation.

Among generalizations of IBP, generalized belief propagation (GBP) algo-
rithms are one of the most notable (Yedidia et al., 2005), and perhaps one of
the most general (Welling et al., 2005; Wainwright et al., 2003). Whereas IBP
passes messages along edges in a network N , GBP algorithms pass messages
according to an auxiliary structure composed of regions of N , where larger
regions provide more accurate approximations. ed-bp can in fact be simu-
lated by a particular class of GBP algorithms based on joingraphs (Aji and
McEliece, 2001; Dechter et al., 2002); for details, see Appendix D. Therefore,
our method identifies a new subclass of GBP, where our edge recovery pro-
cedure can be seen as an approach to identifying good GBP approximations,
and in particular, good joingraphs.
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Expectation propagation (EP) algorithms are another class of algorithms
where belief propagation falls as a special case (Minka, 2001; Welling et al.,
2005). EP is based on assuming a simplified model as a base approximation,
which is iteratively fitted with other more structured approximations. Iter-
ative belief propagation arises as a special case of expectation propagation
in the case where the base approximation is fully-disconnected, and we try
to fit into it models where individual families are recovered. EP and ed-bp

both correspond to IBP in the fully-disconnected case (where every edge is
deleted, in the case of ed-bp). Unlike ed-bp, the tree-structured nature of
IBP approximations is not as evident in EP, as an EP approximation based
on a tree will incorporate higher-order structure, and will typically begin to
provide improved approximations (Minka and Qi, 2003).

We can see the tree-structured nature of IBP in tree-based re-parametrizations
(TRP) (Wainwright et al., 2003). This algorithm re-parametrizes a model, also
in an iterative fashion, by re-factorizing trees embedded in the network. The
original distribution is left invariant to this iterative process, but interestingly,
exact inference in any tree-structured subnetwork of the model yields the same
marginal approximations given by IBP.

Among these generalizations of IBP, the design of approximating structures
has received considerably less attention. In GBP, one needs to provide a re-
gion graph, which specifies (roughly) which regions of the original network
should be handled exactly, and to what extent different regions should be
mutually consistent. Similarly, in TRP, one needs to specify a hypergraph or
joingraph on which a re-parametrization is performed. In EP, one needs to
specify an EP-graph, which organizes a set of approximate models around a
base approximation.

The only proposal that the authors are aware of for the systematic design
of approximations in this class are region pursuit algorithms (Welling, 2004;
Welling et al., 2005), which start with an IBP approximation and looks for
good candidates among a set of proposed regions, using local message prop-
agations to evaluate those that should be added to the approximation. In
particular, regions are added when they lead to the greatest change in the
distribution. This approach relies in part on the assumption that a more struc-
tured approximation will lead to an improved approximation. However, one
still needs a number of heuristics to help avoid those regions that will in fact
lead to worse approximations (Yedidia et al., 2005; Welling et al., 2005).

Variational approximations.

Variational methods are another class of algorithms that formulate approxi-
mate inference as the problem of exact inference in some simplified model, of-
ten seeking to minimize the KL–divergence (e.g., Jordan et al., 1999; Jaakkola,
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2001; Wiegerinck, 2000; Geiger et al., 2006; Choi and Darwiche, 2006b). One
example is the mean-field method, where we seek to approximate a network
N by a fully-disconnected approximation N ′ (Haft et al., 1999). Other varia-
tional approaches typically assume particular structures in their approximate
models, such as chains (Ghahramani and Jordan, 1997), trees (Frey et al.,
2000; Minka and Qi, 2003), or disconnected subnetworks (Saul and Jordan,
1995; Xing et al., 2003).

Although IBP can also be viewed from a variational perspective (Yedidia et al.,
2005), mean-field and related methods are distinct in that such approximations
guarantee lower bounds on the probability of evidence, whereas the Bethe
approximation (and the edge-corrected probability of evidence we proposed)
is in general not a bound. On the other hand, it is often observed that the
Bethe approximation is a more accurate approximation for the probability of
evidence (see, e.g., Weiss, 2001).

Edge deletion in probabilistic graphical models.

Other methods of edge deletion have been proposed for Bayesian networks
(Suermondt, 1992; van Engelen, 1997; Kjærulff, 1994), some of which can be
re-phrased from a variational perspective. All of these approaches, however,
approximate a network independent of the given evidence, which is a dramatic
departure from ed-bp, and can lead to much worse behavior for less likely
evidence. That is, these approaches approximate a network once for all queries,
while ed-bp approximates a network for each specific query.

7 Conclusion

We have proposed a method for approximate inference in Bayesian networks,
which reduces the problem into one of exact inference on an approximate
network obtained by deleting edges. We have shown how the influential IBP
algorithm corresponds to an instance of our framework, where one deletes
enough edges from the network to render it a polytree, even a fully discon-
nected one. The proposed framework and its subsumption of IBP leads to
a number of theoretical and practical implications that we explored in this
paper.

On the theoretical side, our method leads to a new characterization of the
fixed points of IBP, as well as the Bethe free energy approximation. This new
perspective on IBP and its fundamental connection to the Bethe free energy is
stated in terms of Bayesian networks alone (without appeal to concepts from
statistical physics, for example). On the practical side, it leads to a practical
and intuitive method for improving the quality of IBP approximations by
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recovering those edges whose deletion is expected to worsen the quality of
approximation the most. We hope that a simple edge deletion framework will
make iterative belief propagation, and particularly its generalizations, more
inviting to both practitioners and researchers in fields outside of artificial
intelligence and information theory.
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APPENDIX

A Edge Deletion in Undirected Models

In this section, we highlight the semantics of edge deletion in pairwise Markov
random fields (MRFs). The upcoming results, as well as their proofs, are
analogous to the case for Bayesian networks, and can be extended to other
undirected models, including factor graphs.

Let an MRF M have a graph (E ,V) with edges (i, j) ∈ E and nodes i ∈ V.
Each node i of the graph is associated with a variable Xi taking on values xi,
with corresponding edge potentials ψ(Xi, Xj) and node potentials ψ(Xi). The
distribution Pr induced by M is defined as follows:

Pr(x)
def
=

1

Z

∏

(i,j)∈E

ψ(Xi =xi, Xj =xj)
∏

i∈V

ψ(Xi =xi),

where x denotes an instantiation x1, . . . , xn of network variables and where Z
is the partition function:

Z
def
=

∑

x

∏

(i,j)∈E

ψ(Xi =xi, Xj =xj)
∏

i∈V

ψ(Xi =xi).

We will also be interested in computing marginal probabilities:

Pr(Xi =xi)
def
=

∑

x:Xi=xi

Pr(x)

We shall assume that any observations on variables Xi are incorporated into
node potentials ψ(Xi).
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Fig. A.1. To delete an edge (top), we introduce an auxiliary node (middle), and
delete the resulting equivalence edge, adding edge parameters (bottom).

An equivalence edge (i, j) in an MRF connects two variables Xi and Xj with
the same domain, where the potential φ(Xi, Xj) denotes an equivalence con-
straint:

φ(Xi =xi, Xj =xj) =











1, if xi = xj;

0, otherwise.

We now define the deletion of an equivalence edge, and show later that it is
sufficient to assume that we only delete equivalence edges (equivalence edges
were also used in Choi and Darwiche, 2006b).

Definition 2 (Edge Deletion) Let (i, j) be an equivalence edge in a pair-
wise Markov random field M . We say that the equivalence edge (i, j) is deleted
when it results in a network that is obtained from M as follows:

• The edge (i, j) is removed from the graph.
• Auxiliary potentials θ(Xi) and θ(Xj) are added for variables Xi and Xj.

When deleting multiple edges, we may introduce multiple, yet distinct, poten-
tials θ(Xi) for the same node Xi. We shall also collectively refer to auxiliary
potentials θ(Xi) and θ(Xj) as edge parameters.

To delete an MRF edge (i, j) that is not an equivalence edge, we use the
technique illustrated in Figure A.1:

• we introduce an auxiliary node k between i and j;
• introduce an equivalence constraint on the edge (i, k);
• copy the original potential of edge (i, j) to (k, j);
• and delete the equivalence edge (i, k).

Note that both the original model and the extended one will have the same
treewidth in this case, and will also agree on the distribution over their com-
mon variables.

Now, let an MRF M have edges E ∪ E ′, where E ′ is a set of equivalence edges
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that we wish to delete. We can now define the distribution Pr induced by
M , and the distribution Pr ′ induced by the resulting approximation M ′, as
follows:

Pr(x) =
1

Z
Ψ(x)Φ(x)

Pr ′(x; Θ) =
1

Z ′(Θ)
Ψ(x)Θ(x)

where

• Ψ(x) =
∏

(i,j)∈E ψ(Xi =xi, Xj =xj)
∏

i∈V ψ(Xi =xi) are the original network
potentials;
• Φ(x) =

∏

(i,j)∈E ′ φ(Xi =xi, Xj =xj) are the equivalence edges deleted in M ;
• Θ(x) =

∏

(i,j)∈E ′ θ(Xi =xi)θ(Xj =xj) are the edge parameters added to M ′;

Moreover, the partition function Z and the approximate partition function Z ′

are now defined as:

Z =
∑

x

Ψ(x)Φ(x) and Z ′(Θ) =
∑

x

Ψ(x)Θ(x).

When we make a specific choice of parameters Θ, we shall simply refer to the
distribution Pr ′(.), leaving the choice of Θ implicit.

In an undirected model, we can think of deleting an equivalence edge (i, j) as
ignoring a constraint that equates variables Xi and Xj. The edge parameters
may then be used to compensate for this lost equivalence, by forcing some
weaker notion of equivalence between these variables.

Since we are deleting an equivalence constraint Xi and Xj, remember that
they take on the same states x. Consider then the following theorem, which
is analogous to Theorems 1, 2 and 3 for Bayesian networks.

Theorem 5 Let M be a pairwise MRF, and let M ′ be the result of deleting
equivalence edges (i, j) ∈ E ′ in M . The following two conditions are equivalent:

(C1) Equivalence between marginals for variables Xi and Xj, which are com-
putable from edge parameters: for all states x of Xi and Xj:

Pr ′(Xi =x) = Pr ′(Xj =x) ∝ θ(Xi =x)θ(Xj =x).

(C2) Fixed point conditions on edge parameters:

θ(Xi =x) = α
∂Z ′

∂θ(Xj =x)
θ(Xj =x) = α

∂Z ′

∂θ(Xi =x)
,

for all states x, where α is a normalizing constant.
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Moreover, if M ′ has a tree structure, then for every IBP fixed point in M ,
there exists a set of edge parameters that satisfy the above conditions for M ′

(and vice versa) where:

• b(Xi =xi) = Pr ′(Xi =xi), for each i ∈ V;
• b(Xi =xi, Xj =xj) = Pr ′(Xi =xi, Xj =xj), for each (i, j) ∈ E;

where b(.) are the approximate marginals given by IBP.

We assume here that θ(Xi) and θ(Xj) each sum to one. Note again that
the partial derivatives of Condition (C2) can be computed efficiently in tra-
ditional inference frameworks (Darwiche, 2003; Park and Darwiche, 2004).
Condition (C2) further suggests an ed-bp algorithm for parametrizing edges
in MRFs, analogous to Algorithm 1 for Bayesian networks.

In a pairwise MRF, the Bethe free energy Fβ is defined as follows:

Fβ = Uβ −Hβ

where Uβ is the Bethe average energy

Uβ = −
∑

(i,j)∈E

E[ logψ(Xi, Xj) ]−
∑

i∈V

E[ logψ(Xi) ]

and Hβ is the Bethe approximate entropy

Hβ = −
∑

(i,j)∈E

H(Xi, Xj) +
∑

i∈V

(ni − 1)H(Xi),

where ni is the number of neighbors of node i, and where the expectations E[ . ]
and entropies H(.) are with respect to the marginal approximations b(Xi, Xj)
and b(Xi) given by IBP. Under certain consistency and normalization con-
straints, one can show that the approximate marginals are a stationary point
of the Bethe free energy if and only if IBP messages are a fixed point of it-
erative belief propagation (Yedidia et al., 2005). We can further use Fβ as an
approximation to the partition function, i.e., Zβ = exp{−Fβ}. As in Theo-
rem 6, this approximation is an edge-corrected partition function.

Theorem 6 Let M be a pairwise MRF, and let M ′ be the result of deleting a
set of equivalence edges E ′ in M with ed-bp edge parameters, but further that
M ′ is rendered a tree. Then

Zβ = Z ′ ·
1

z
where z =

∏

(i,j)∈E ′

zij =
∏

(i,j)∈E ′

∑

x

θ(Xi =x)θ(Xj =x).

When M ′ is not a tree, the edge-corrected partition function Z ′ · 1
z

corresponds
to an approximation ZJG = exp{−FJG} of a particular joingraph free energy
FJG (Yedidia et al., 2005; Aji and McEliece, 2001); see Appendix D.
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As in Proposition 2, we can instead characterize the fixed points of ed-bp

(and hence the fixed points of IBP) as a stationary point of an edge-corrected
partition function.

Proposition 3 Let M be a pairwise MRF, and let M ′ be the result of deleting
a set of equivalence edges E ′ in M with ed-bp edge parameters. Edge param-
eters of M ′ are an ed-bp fixed point if and only if the edge parameters are a
stationary point of Z ′ · 1

z
.

B Proofs for Section 3

In the main text, we opted to refer to edge parameters by PM (Û) and SE (U).
In our proofs, in contrast, we shall typically refer directly to the correspond-
ing CPTs ΘÛ and ΘŜ|U . More specifically, we shall usually refer to the CPT

parameter θû for the edge parameter PM (Û= û), and the CPT parameter θŝ|u

for the edge parameter SE (U=u). Moreover, when we set variables Û and U
to the same state u, we will refer to the CPT parameters θu and θŝ|u instead

of the edge parameters PM (Û=u) and SE (U=u). This choice of notation
should simplify the presentation of our proofs, and should be unambiguous in
context.

We note now that the conditions on the ed-bp edge parameters in Theorem 1
have the following probabilistic semantics:

θu = α
∂Pr ′(e′)

∂θŝ|u

= α
Pr ′(U=u, e′)

θŝ|u

= Pr ′(U=u | e′ \ ŝ) (B.1)

θŝ|u = α
∂Pr ′(e′)

∂θu

= α
Pr ′(Û=u, e′)

θu

= αPr ′(e′ | Û=u) (B.2)

Again, θu is the CPT parameter for variable Û corresponding to the edge
parameter PM (Û=u), and θŝ|u is the CPT parameter for variable Ŝ corre-
sponding to the edge parameter SE (U=u).

Throughout our proofs, when it is convenient, we shall interchange among the
equivalent characterizations of ed-bp given by Condition 1, Theorem 1, and
Equations B.1 and B.2 above.

Proof of Theorem 1 We first show Condition 1 implies the fixed point con-
ditions given by Equations 3 and 4. Note first that Equation B.1 tells us that
θu = Pr ′(Û=u) = Pr ′(U=u|e′ \ ŝ), so Equations 2 and 3 are equivalent. Thus
it suffices to show, given Equations 2 and 3, that Equation 1 holds if and only
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if Equation 4 holds:

θŝ|u = α
∂Pr ′(e′)

∂θu

by Eqs. 4, B.2

⇐⇒ θŝ|u
∂Pr ′(e′)

∂θŝ|u

= α
∂Pr ′(e′)

∂θŝ|u

∂Pr ′(e′)

∂θu

⇐⇒ θŝ|u
∂Pr ′(e′)

∂θŝ|u

= θû

∂Pr ′(e′)

∂θu

by Eqs. 3, B.1

⇐⇒ Pr ′(U=u, e′) = Pr ′(Û=u, e′)

⇐⇒ Pr ′(U=u | e′) = Pr ′(Û=u | e′).

Note that the normalizing constant α for θu and θŝ|u are in fact the same

value, α = [Pr ′(e′ \ ŝ)]
−1

(see Eq. B.1), for a network satisfying Condition 1.
To see why, let αSE and αPM denote the normalizing constants for θŝ|u and θu

respectively. First, we multiply Equations 3 and 4 together:

αSE

∂Pr ′(e′)

∂θu

· θu = αPM

∂Pr ′(e′)

∂θŝ|u

· θŝ|u

and thus αSE ·Pr ′(Û=u, e′) = αPM ·Pr ′(U=u, e′). Summing for all states u,
we have αSEPr ′(e′) = αPMPr ′(e′), and thus αSE = αPM = α. 2

Proof of Lemma 1 By Theorem 1, Condition 1 is equivalent to an ed-bp

fixed point given by Equations 3 and 4. Thus, we show an ed-bp fixed point
is necessary and sufficient for exact marginals when deleting an edge splits a
network into two independent subnetworks.

First, let Ŝ= ŝ be the soft evidence introduced when deleting the edge U → X.
Let eU , ŝ denote the evidence instantiated in the subnetwork of N ′ contain-
ing variable U , and let eX denote the evidence in the subnetwork containing
variable X. Now, in the original network N we have:

Pr(xU , eU)Pr(eX |U=u)

= Pr(xU , eU |U=u)Pr(eX |U=u)Pr(U=u)

= Pr(xU , e|U=u)Pr(U=u) by d–separation

∝ Pr(xU |e)

In the approximate network N ′ we have:

Pr ′(xU , eU)θŝ|u ∝ Pr ′(xU |eU , ŝ)

= Pr ′(xU |e
′) by d–separation

Observe that after pruning nodes and edges inN andN ′ for queries Pr(xU , eU)
and Pr ′(xU , eU), the resulting networks are equivalent. Thus, we know that
Pr(xU , eU) = Pr ′(xU , eU). Similarly, Pr(eX |U=u) = Pr ′(eX |Û=u). In an
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Fig. B.1. Correspondence between parameter updates ed-bp in a fully disconnected
network and message passing in IBP.

ed-bp network, θŝ|u ∝ Pr ′(eX |Û=u) (Eq. B.2), so we can conclude that
Pr(xU |e) = Pr ′(xU |e

′).

Similarly to show that Pr(xX |e
′) = Pr ′(xX |e

′) holds if and only if Equa-
tion B.1 holds. 2

Proof of Theorem 2 We shall show the correspondence between ed-bp and
IBP, by induction. Let a variable X in network N have parents Ui and children
Yj. Observe that X is the center of a star in N ′ whose arms are auxiliary

variables Ûi and Ŝj introduced by deleting edges Ui → X and X → Yj,

respectively; see Figure B.1 (left). For an iteration t, let PM t
i(Ûi) parametrize

clone variable Ûi and let SE t
j(X) parametrize soft evidence variable Ŝj. Then

at iteration t = 0, we are given that π0
X(Ui) = PM 0

i (Ûi) for all edges Ui → X,
and λ0

Yj
(X) = SE 0

j(X) for all edges X → Yj.

We first want to show, for an iteration t > 0 and for an edge X → Yj, that
the IBP message that variable X passes to its child Yj is the same as the

parameters for the clone X̂ that was made a parent of Yj. That is, we want

to show πt
Yj

(X) = PM t
j(X̂). Assume for notation that all evidence e is virtual

in N , and that the evidence in the star of X in N ′ is e′
X . Starting from

Equation B.1, we have:

PM t
j(X̂=x) = Pr ′

t−1(X=x | e′ \ ŝj) = Pr ′
t−1(X=x | e′

X \ ŝj),

since X is independent of all evidence other than the evidence e′
X that is

directly connected to X. Letting û denote an instantiation of the clones that
became parents of X in N ′, we have

PM t
j(X̂=x) = αPr ′

t−1(X=x, e′
X \ ŝj) = α

∑

û

Pr ′
t−1(X=x, û, e′

X \ ŝj).

We then factorize into the subnetwork parameters of the star centered at X:

PM t
j(X̂=x) = α

∑

û

θx|û

∏

i

θt−1
ûi

∏

k 6=j

θt−1
ŝk|x

= α
∑

û

θx|û

∏

i

PM t−1
i (Ûi = ûi)

∏

k 6=j

SE t−1
k (X=x).
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Finally, by our inductive hypothesis, we have the desired BP update equation:

PM t
j(X̂=x) = α

∑

u

θx|u

∏

i

πt−1
X (Ui =ui)

∏

k 6=j

λt−1
Yj

(X=x) = πt
Yj

(X=x).

Similarly to show that λt
Yj

(X) = SE t
j(X), and that bt(X|e) = Pr ′

t(X|e
′). 2

Proof of Theorem 3 It suffices to show that an ed-bp fixed point and its
node marginals are invariant to the deletion or recovery of a single edge, as
long as the approximation is a polytree before and after the operation. Any
polytree network N ′ can then be transformed to another polytree network N ′′

via a finite sequence of deletion and recovery operations.

A single edge deleted. First, observe that since N ′ is a polytree, deleting any
edge splits the network into two independent subnetworks. If we fix the pa-
rameters for edges already deleted, then the resulting network, N ′′, will have
the same node marginals as N ′ by Lemma 1. Moreover, all edges originally
deleted in N ′ will continue to satisfy Condition 1, and thus N ′′ will also be an
ed-bp approximation with respect to the original network N .

To see why, consider an edge U → X that was deleted in N ′. Clearly, Equa-
tion 1 of Condition 1 continues to hold in N ′′. As for Equation 2 consider the
fact that

Pr ′(U=u | e′) ∝ Pr ′(U=u, e′)

= Pr ′(U=u, e′ \ ŝ) · θŝ|u ∝ Pr ′(U=u | e′ \ ŝ) · θŝ|u.

Since the value of Pr ′(U=u|e′) does not change going from network N ′ to
network N ′′, and since we left θŝ|u fixed, the value of Pr ′(U=u|e′ \ ŝ) does not

change. Further, since the values of Pr ′(U=u|e′ \ ŝ) and Pr ′(Û= û) = θû do
not change, this edge must satisfy Condition 2 in network N ′′ as it did in N ′.

A single edge recovered. Say we recover an edge U → X into N ′, leaving all
edge parameters fixed, giving us network N ′′. We can then observe that N ′

is simply the result of deleting the single edge U → X from N ′′. Arguing as
before, it must be that N ′′ must have the same marginals as N ′, and further
that edges deleted in N ′′ continue to satisfy Condition 1. 2

Theorems 2 and 3 state a correspondence between IBP node marginals and
ed-bp node marginals in polytree approximations. It is also straightforward to
show that approximations to family marginals are also the same. In particular,
if X has parents U in network N , and X has parents U′ in N ′ (some of which
are cloned parents), the IBP marginals for a family XU in N are the ed-bp

marginals for a family XU′ in N ′.

Corollary 2 Let N be a Bayesian network and let N ′ be a polytree found
by deleting edges from N . Suppose we have an IBP fixed point in N and a
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corresponding ed-bp fixed point in N ′. Then, for each family XU in N and
the corresponding family XU′ in N ′, we have

• b(XU | e) = Pr ′(XU′ | e′).

C Proofs for Section 4

First, we derive two identities that will be useful to prove our theorems. Note
that we assume here that the original network N is strictly positive.

Lemma 2 Let N be a Bayesian network and N ′ be the result of deleting a
single edge U → X from N . Then:

Pr(e) =
∑

u

∂2Pr ′(e′)

∂θu∂θŝ|u

(C.1)

Proof Say, that we replace the edge U → X in N with a chain U → Û → X
where the edge U → Û denotes an equivalence constraint: θû|u = 1 iff û = u.
The resulting augmented network is equivalent to the original network over
the original variables, and in particular, it would yield the same probability
of evidence. Rather than deleting edge U → X, we can instead delete the
equivalence edge U → Û , adding only the auxiliary variable Ŝ as the clone
variable Û is already present. We thus observe:

Pr(e) =
∑

uû

Pr(U=u, Û= û, e)

=
∑

uû

∂Pr(e)

∂θû|u

θû|u =
∑

u=û

∂Pr(e)

∂θû|u

=
∑

u=û

∂2Pr ′(e′)

∂θû∂θŝ|u

=
∑

u

∂2Pr ′(e′)

∂θu∂θŝ|u

as desired. 2

Lemma 3 Let N be a Bayesian network and N ′ be the result of deleting a
single edge U → X from N . Then MI (U ; Û |e′) = 0 in N ′ if and only if

∂2Pr ′(e′)

∂θu∂θŝ|u

=
1

Pr ′(e′)

∂Pr ′(e′)

∂θu

∂Pr ′(e′)

∂θŝ|u

(C.2)

Proof (⇐) First, by multiplying [Pr ′(e′)]−1 · θuθŝ|u on both sides of Equa-
tion C.2, we find that:

1

Pr ′(e′)

∂2Pr ′(e′)

∂θu∂θŝ|u

θuθŝ|u =
1

Pr ′(e′)

∂Pr ′(e′)

∂θu

θu ·
1

Pr ′(e′)

∂Pr ′(e′)

∂θŝ|u

θŝ|u, (C.3)

which simplifies to

Pr ′(U=u, Û=u | e′) = Pr ′(U=u | e′)Pr ′(Û=u | e′). (C.4)
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Thus, U is independent of Û given e′, and MI (U ; Û |e′) = 0.

(⇒) If MI (U ; Û |e′) = 0, then we have Equations C.4 and Equation C.3. If all
edge parameters are non-negative, then Equation C.2 follows trivially. 2

Proof of Proposition 1 First, employing Equation 3, we have

zUX =
∑

u

θuθŝ|u =
∑

u

α
∂Pr ′(e′)

∂θŝ|u

θŝ|u = α
∑

u

Pr ′(U=u, e′) = αPr ′(e′). (C.5)

It remains to show that α = [Pr(e)]−1. Using Lemmas 2 and 3, we have:

Pr(e) =
∑

u

∂2Pr ′(e′)

∂θu∂θŝ|u

=
∑

u

1

Pr ′(e′)

∂Pr ′(e′)

∂θu

∂Pr ′(e′)

∂θŝ|u

.

Substituting in ∂Pr ′(e′)
∂θu

=
θŝ|u

α
from Equation 3, we have

Pr(e) =
1

α

∑

u

θŝ|u

Pr ′(e′)

∂Pr ′(e′)

∂θŝ|u

=
1

α

∑

u

Pr ′(U=u | e′) =
1

α

as desired. Note, from the proof of Theorem 1, that the normalizing constant α
is in fact the same value for both θû and θŝ|u. In particular, α = [Pr ′(e′ \ ŝ)]−1,
which is simply Pr ′(e) when a single edge is deleted. 2

Proof of Theorem 4 When a given network is a polytree, the Bethe free
energy is the exact free energy, and yields the exact probability of evidence.
Consider then the Bethe free energy Fβ of the original networkN and the exact
free energy F ′ of the approximate network N ′. Since Prβ(e) = exp{−Fβ} and
Pr ′(e′) = exp{−F ′}, in order to show that Prβ(e) = Pr ′(e′) · 1

z
, we need to

show that −Fβ = −F ′ − log z, or equivalently F ′ = Fβ − log z.

Let E[ . ] denote expectations and H ′(.) denote entropies, both with respect
to Pr ′(.)/b(.), which we use interchangeably since Theorem 2 and Corollary 2
tell us that family and node marginals of N ′ are IBP beliefs.

Since N ′ is fully-disconnected, the components of its exact free energy F ′ =
U ′ −H ′ are simply:

U ′ = −
∑

XÛ

E[ log ΘX|ÛλX ]−
∑

U→X

E[ log ΘÛΘŝ|U ]

H ′ =
∑

XÛ

H ′(XÛ | e′).

Here, XÛ denotes a family in N ′ (a variable X and its cloned parents Û).
Note that when we apply Equation 11 to network N ′, the entropies H ′(Û | e′)
in the family term cancel out the same entropies appearing in the parent term.
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Now, since

θuθŝ|u = α
∂Pr ′(e′)

∂θŝ|u

θŝ|u = αPr ′(e′)Pr ′(U=u | e′) = zUXPr ′(U=u | e′)

(see Equations 3 and C.5), we have

∑

U→X

E[ log ΘÛΘŜ|U ] =
∑

U→X

[

log zUX − H ′(U | e′)
]

=
∑

U→X

log zUX −
∑

U→X

H ′(U | e′)

= log z −
∑

XU

∑

U∈U

H ′(U | e′).

After substituting into U ′, we have the exact free energy for network N ′:

F ′ = U ′ −H ′

=
[

−
∑

XÛ

E[ log ΘX|ÛλX ]− log z +
∑

XU

∑

U∈U

H ′(U | e′)
]

−
[

∑

XÛ

H ′(XÛ | e′)
]

We then collect the terms that make up the Bethe free energy Fβ = Uβ −Hβ:

F ′ = U ′ −H ′

=
[

−
∑

XÛ

E[ log ΘX|ÛλX ]
]

−
[

∑

XÛ

H ′(XÛ | e′)−
∑

XU

∑

U∈U

H ′(U | e′)
]

− log z

= Uβ −Hβ − log z = Fβ − log z

giving us the desired result.

We now show that the property F ′ = Fβ− log z persists when we recover edges
into N ′, as long as the resulting network remains a polytree. When we recover
a single edge U → X into N ′, the resulting network N ′′ has one less pair of
edge parameters, so the resulting average energy U ′′, in terms of the average
energy U ′ for N ′, is:

U ′′ = U ′ + E[ log ΘÛΘŝ|U ] = U ′ + log zUX − H ′(U | e′).

Since network N ′′ has an additional edge U → X, the resulting entropy H ′′

loses the family entropy and the parent entropy terms for the clone Û (which
canceled each other out), and gains a new parent entropy for the original
parent U . The resulting entropy, in terms of the previous entropy H ′, is then
H ′′ = H ′ − H ′(U |e′). Noting that the newly introduced entropies H ′(U |e′) in
the average energy and the approximate entropy cancel each other out, the
new free energy in the network N ′′ where an edge has been recovered into N ′
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is

F ′′ = U ′′ −H ′′

= U ′ −H ′ + log zUX

= Uβ −Hβ − log z + log zUX

= Fβ − [log z − log zUX ]

where z
zUX

is the new correction factor for network N ′′ (we no longer have
to correct for the edge U → X). Since node and family marginals do not
change in N ′ and N ′′, the corrected probability of evidence is still equivalent
to the Bethe approximation for N , as long as the resulting network remains a
polytree. 2

Proof of Proposition 2 For simplicity, we implicitly assume that edge pa-
rameters will sum to one, i.e.,

∑

û θû =
∑

u θŝ|u = 1. One could otherwise
explicitly constructing the Lagrangian, with appropriate adjustments to the
proof below.

First, we show that a stationary point of f = Pr ′(e′) · 1
z

is an ed-bp fixed
point, as in Theorem 1. Consider a pair of edge parameters θu, θŝ|u. Setting to
zero the partial derivatives of f with respect to a parameter θu, we have:

∂f

∂θu

=
∂Pr ′(e′)

∂θu

·
1

z
−

Pr ′(e′)

z2
·
∂z

∂θu

= 0. (C.6)

Letting zUX =
∑

u θuθŝ|u we further have

∂z

∂θu

=
z

zUX

∂zUX

∂θu

=
z

zUX

θŝ|u.

Substituting into Equation C.6, and then multiplying by z:

∂f

∂θu

=
∂Pr ′(e′)

∂θu

−
Pr ′(e′)

zUX

· θŝ|u = 0.

Rearranging, we find that:

θŝ|u =
zUX

Pr ′(e′)

∂Pr ′(e′)

∂θu

. (C.7)

Summing these equations for all states u , and employing our normalization
constraint

∑

u θŝ|u = 1, we have

1 =
zUX

Pr ′(e′)

∑

u

∂Pr ′(e′)

∂θu

or equivalently

zUX

Pr ′(e′)
=

[

∑

u

∂Pr ′(e′)

∂θu

]−1

= α
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Substituting into Equation C.7, we have

θŝ|u = α
∂Pr ′(e′)

∂θu

as desired. We can derive the ed-bp update equation for θu in Equation 3
in the same way, thus showing a stationary point of a corrected probability
of evidence is a fixed point of ed-bp. Plugging in our update equations in
Equation C.6, we can similarly show that an ed-bp fixed point is a zero
gradient of f . 2

D ED-BP and IJGP

ed-bp can in fact be simulated by a particular class of GBP algorithms called
iterative joingraph propagation (IJGP) (Aji and McEliece, 2001; Dechter et al.,
2002). To specify an IJGP approximation, one must specify a joingraph on
which message passing is performed, which can by itself be a non-trivial task.
ed-bp can then be considered a means of designing an IJGP approximation,
where deleting edges in the model implies a particular choice of a joingraph.
We sketch the correspondence between ed-bp and IJGP below.

Let N be a Bayesian network and N ′ be the result of deleting edges U → X
from N . To parametrize N ′ using ed-bp, we can use a jointree algorithm for
exact inference in N ′. Further, we can choose a jointree where the CPTs ΘÛ

and ΘŜ|U are each assigned to unique leaf clusters (we can easily construct
one from any jointree for N ′, by introducing auxiliary clusters). Finally, for
each edge U → X deleted, we can connect in the jointree the two leaf clusters
containing ΘÛ and ΘŜ|U . When we relabel the clones Û by the label U , we
have a joingraph that we can use for IJGP.

We can then simulate ed-bp by running IJGP in our specially constructed
joingraph. We initialize IJGP messages in the same way we initialized edge
parameters in ed-bp. Each IJGP iteration t then consists of two message-
passing phases. First, we propagate messages (pull-push propagation) in the
original jointree embedded in our joingraph; this corresponds to propagating
messages in a jointree for N ′

t−1. Second, we propagate messages in parallel
across the remaining edges that connect the clusters containing ΘÛ and ΘŜ|U ;

this corresponds to computing parameters PM t(Û) and SE t(U) for network
N ′

t by performing inference in network N ′
t−1 (see Equations 5 and 6). Note that

a jointree message incoming a leaf cluster, which is assigned a unique CPT, is
equivalent to the partial derivative with respect to that CPT (as those that
are required to compute edge parameters).

In Section 4, we saw that an edge-corrected probability of evidence corre-
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sponds to the Bethe free energy approximation when the simplified network is
a polytree. In general, an edge-corrected probability of evidence corresponds
to a joingraph free energy (Aji and McEliece, 2001), induced from a joingraph
constructed in the way we described above.
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