ED-BP: Belief Propagation via Edge Deletion

UCLA Automated Reasoning Group

Arthur Choi, Adnan Darwiche, Glen Lenker, Knot Pipatsrisawat

Last updated 07/15/2010: See the **speaker notes** on each slide for commentary (PowerPoint only).

ED-BP: Idea

loopy BP

Characterizing Belief Propagation

• ED-BP characterization:

$$Pr(X_i = x) = Pr(X_j = x)$$

= $\theta(X_i = x) \theta(X_j = x)/z_{ij}$

• in a tree:

- MAR: BP marginals
- PR: Bethe
- MPE: BP max-marginals

Edge Deletion

exact

Edge Recovery

loopy BP

exact

Edge Recovery: Old Idea

loopy BP

[CD06]: target quality: use mutual information

Edge Recovery: New Idea

loopy BP

Challenge UAI-10: encourage convergence, residual recovery

ED-BP: Residual Recovery

- Recover edges based on how close they are to convergence
- ED-BP characterization:

$$Pr(X_i = x) = Pr(X_j = x)$$
$$= \theta(X_i) \theta(X_j) / z_{ij}$$

• Ongoing: try residuals as in residual BP

Exact Solvers

- Exact inference in a simplified network: ED-BP can use any black box inference engine
 - currently using vanilla Hugin and Shenoy-Shafer jointree algorithms
 - not currently using Ace, or other advanced inference engines ...

PR Task: 20 Seconds MAR Task: 20 Seconds

Solver	Score
edbr	1.7146
vgogate	2.1620
libDai	2.2775

Solver	Score
edbq	0.2390
libDai2	0.3064
vgogate	0.4409

PR Task: 20 Minutes MAR Task: 20 Minutes

Solver	Score
vgogate	1.2610
edbp	1.3063
libDai	2.0707

Solver	Score
ijgp	0.1722
edbq	0.1742
libDai3	0.2810

PR Task: 1 Hour

MAR Task: 1 Hour

Solver	Score
vgogate	1.2609
edbr	1.2699
libDai	2.0707

Solver	Score
ijgp	0.1703
edbr	0.1753
libDai3	0.2639

PR Task: 1 Hour

MAR Task: 1 Hour

Solver	Score
vgogate	1.2609
edbr	1.2699
libDai	2.0707

Solver	Score
ijgp	0.1703
edbr	0.1753
libDai3	0.2639

Congratulations Vibhav

More Slides on the ED-BP Solver

ED-BP: The Solver

- Based on UAI'08 solver, new MPE version
- Numerous improvements
 - pre-processing
 - initial spanning tree
 - internal inference engine for *exact* reasoning
 - edge recovery
 - led to biggest impact in performance

ED-BP: The Solver

- Pre-processing
 - lightweight
 - RSat: infer fixed values from network zero's
- Initial spanning tree
 - random spanning tree
 - max spanning tree (mutual information)
- Black box engine for exact inference
 - jointree algorithms: shenoy-shafer versus hugin
 - in the future: compilation to ACs (Ace)

References

Arthur Choi, Hei Chan, and Adnan Darwiche. On Bayesian Network Approximation by Edge Deletion. In *Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI)*, 2005.

Arthur Choi and Adnan Darwiche. An Edge Deletion Semantics for Belief Propagation and its Practical Impact on Approximation Quality. In *Proceedings of the 21st National Conference on Artificial Intelligence* (AAAI), 2006.

Arthur Choi and Adnan Darwiche. A Variational Approach for Approximating Bayesian Networks by Edge Deletion. In *Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence (UAI)*, 2006.

Arthur Choi, Mark Chavira, and Adnan Darwiche. Node Splitting: A Scheme for Generating Upper Bounds in Bayesian Networks. In *Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (UAI)*, 2007.

Arthur Choi and Adnan Darwiche. Approximating the Partition Function by Deleting and then Correcting for Model Edges. In *Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI)*, 2008.

Arthur Choi and Adnan Darwiche. Focusing Generalizations of Belief Propagation on Targeted Queries. In *Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI)*, 2008.

Arthur Choi and Adnan Darwiche. Many-Pairs Mutual Information for Adding Structure to Belief Propagation Approximations. In *Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI)*, 2008.

Arthur Choi and Adnan Darwiche. Approximating MAP by Compensating for Structural Relaxations. In *Proceedings of the Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS)*, 2009.

Arthur Choi, Trevor Standley, and Adnan Darwiche. Approximating Weighted Max-SAT Problems by Compensating for Relaxations. In *Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming (CP)*, 2009.