
Sentential Decision Diagrams
and their Applications

Guy Van den Broeck,

Arthur Choi, and Adnan Darwiche

Nov 4, 2015, INFORMS

Basing Decisions on Sentences

p1 s1 p2 s2 p3 s3

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Basing Decisions on Sentences

p1 s1 p2 s2 p3 s3

> 50
Rep.

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Basing Decisions on Sentences

p1 s1 p2 s2 p3 s3

> 50
Rep.

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Veto

Basing Decisions on Sentences

p1 s1 p2 s2 p3 s3

> 50
Rep.

48-50
Rep.

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Veto

Basing Decisions on Sentences

p1 s1 p2 s2 p3 s3

> 50
Rep.

48-50
Rep.

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Veto Convince
Indeps.

Basing Decisions on Sentences

p1 s1 p2 s2 p3 s3

> 50
Rep.

< 48
Rep.

48-50
Rep.

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Veto Convince
Indeps.

Basing Decisions on Sentences

p1 s1 p2 s2 p3 s3

> 50
Rep.

< 48
Rep.

48-50
Rep.

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Veto Convince
Indeps.

Vote
Nay

Basing Decisions on Sentences






p1 s1 p2 s2 p3 s3

Basing Decisions on Sentences

Branch on sentences p1, p2, and p3:






p1 s1 p2 s2 p3 s3

Basing Decisions on Sentences

Branch on sentences p1, p2, and p3:

 p1, p2, p3 are mutually exclusive, exhaustive and not false




p1 s1 p2 s2 p3 s3

Basing Decisions on Sentences

Branch on sentences p1, p2, and p3:

 p1, p2, p3 are mutually exclusive, exhaustive and not false

 p1, p2, p3 are called primes and represented by SDDs


p1 s1 p2 s2 p3 s3

Basing Decisions on Sentences

Branch on sentences p1, p2, and p3:

 p1, p2, p3 are mutually exclusive, exhaustive and not false

 p1, p2, p3 are called primes and represented by SDDs
 s1, s2, s3 are called subs and represented by SDDs

p1 s1 p2 s2 p3 s3

Basing Decisions on Sentences

f (A, B, C, D) =
 (A  B)  (C  D)

A B ¬A A ¬B ¬A C D ¬C





  A ¬B C D

Basing Decisions on Sentences

f (A, B, C, D) =
 (A  B)  (C  D)

A B ¬A A ¬B ¬A C D ¬C





  A ¬B C D

A  B A  B

Basing Decisions on Sentences

f (A, B, C, D) =
 (A  B)  (C  D)

A B ¬A A ¬B ¬A C D ¬C





  A ¬B C D

A  B A  B

primes,subs primes,subs



C



¬A A



¬A A



¬B B D



¬B B ¬D







 

   

   

f (A, B, C, D) (A  (B  D))  C

SDDs as Boolean Circuits

C

¬A A ¬A A

¬B B D ¬B B ¬D







=

(X,Y)-Partitions

p1 s1 p2 s2 p3 s3

> 50
Rep.

< 48
Rep.

48-50
Rep.

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Veto Convince
Indeps.

Vote
Nay

(X,Y)-Partitions

p1 s1 p2 s2 p3 s3

> 50
Rep.

< 48
Rep.

48-50
Rep.

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Veto Convince
Indeps.

Vote
Nay

(X,Y)-Partitions

p1(X) s1(Y) p2(X) s2(Y) p3(X) s3(Y)

> 50
Rep.

< 48
Rep.

48-50
Rep.

US Senate: 54 Rep., 44 Dem., and 2 Indep.

Veto Convince
Indeps.

Vote
Nay

(X,Y)-Partitions

p1(X) s1(Y) p2(X) s2(Y) p3(X) s3(Y)

US Senate: 54 Rep., 44 Dem., and 2 Indep.

f (X, Y) = p1(X) s1(Y) …  pn(X) sn(Y)

Variable order becomes variable tree (vtree)

Variable order becomes variable tree (vtree)

Vtree 6

2 5

B
0

A

1

D

3

C

4

vtree

Variable order becomes variable tree (vtree)

Vtree 6

2 5

B
0

A

1

D

3

C

4

vtree

Variable order becomes variable tree (vtree)

Vtree 6

2 5

B
0

A

1

D

3

C

4

vtree

Variable order becomes variable tree (vtree)

OBDDs are SDDs

6

A

0

5

B

1

4

C

2

D

3

right-linear vtree

OBDDs are SDDs

6

A

0

5

B

1

4

C

2

D

3

right-linear vtree

OBDDs are SDDs

6

A

0

5

B

1

4

C

2

D

3

right-linear vtree

A

B

C

1

D

0

Ingredients for

Delicious Decision Diagrams

• Minimization

• Apply Function

• Succinctness

• Queries

M

A

Q

S

Ingredients for

Delicious Decision Diagrams

• Minimization

• Apply Function

• Succinctness

• Queries

M

A

Q

S

Compression

• An (X,Y)-partition: f (X, Y) = p1(X)s1(Y) …  pn(X)sn(Y)

is compressed when subs are distinct: si(Y) ≠ si(Y) if i≠j

• f(X,Y) has a unique compressed (X,Y)-partition

M

Compression

• An (X,Y)-partition: f (X, Y) = p1(X)s1(Y) …  pn(X)sn(Y)

is compressed when subs are distinct: si(Y) ≠ si(Y) if i≠j

• f(X,Y) has a unique compressed (X,Y)-partition

M

Compression

• An (X,Y)-partition: f (X, Y) = p1(X)s1(Y) …  pn(X)sn(Y)

is compressed when subs are distinct: si(Y) ≠ si(Y) if i≠j

• f(X,Y) has a unique compressed (X,Y)-partition



M

SDDs are Canonical

Equivalent sentences
have identical circuits.

A  (C ∨ D) (A  C) ∨ (A  D) ≡

=

For a fixed vtree (fixing X,Y throughout the
SDD), compressed SDDs are canonical!

M

OBDD Minimization

 24 ordering of 4 variables

 24 OBDDs for every function over 4 variables

 Searching for an optimal OBDD is searching
for an optimal variable order

ABCD  ABDC  ADBC  DABC  DACB  ADCB 

ACDB  ACBD  CABD  CADB  CDAB  DCAB 

DCBA  CDBA  CBDA  CBAD  BCAD  BCDA 

BDCA  DBCA  DBAC  BDAC  BADC  BACD

M

rrotate swap lrotate swap rrotate

s
w
a
p

swap rrotate swap lrotate lrotate

s
w
a
p

SDD Minimization
M

Ingredients for

Delicious Decision Diagrams

• Minimization

• Apply Function

• Succinctness

• Queries

M

A

Q

S

Efficient Apply Function

• Build Boolean combinations of existing circuits

• Compile arbitrary sentence incrementally

• Polytime Apply: one Apply cannot blow up size

 =

(A  (B  D))  (C ∨ D) (A  (B  D)) (C ∨ D)

 = O() x

A

Is Apply for SDDs Polytime?

• |α|x|β|
 recursive
 calls

• Polytime!

A

Ingredients for

Delicious Decision Diagrams

• Minimization

• Apply Function

• Succinctness

• Queries

M

A

Q

S

Succinctness

• Theory
– OBDD  SDD thus SDD never larger than OBDD

– Quasi-polynomial separation with OBDD
OBDD can be much larger than SDD

– Treewidth upper bounds (important in AI!)

• Practice
– SDD Compiler available and effective

– SDD Package: http://reasoning.cs.ucla.edu/sdd/

– Can obtain orders of magnitude improvements

S

A M

http://reasoning.cs.ucla.edu/sdd/
http://reasoning.cs.ucla.edu/sdd/
http://reasoning.cs.ucla.edu/sdd/

Ingredients for

Delicious Decision Diagrams

• Minimization

• Apply Function

• Succinctness

• Queries

M

A

Q

S

Queries

• OBDDs are Swiss army knife of supported queries

• SDDs are equally powerful

• Some enabled by canonicity + apply

• E.g., (Weighted) Model Counting for Probabilistic
reasoning (E.g., Pr(bill passes|Vote1=Yea))

Q

A

Application: Bayesian Networks

• Incrementally compile network M A

Application: Bayesian Networks

• Incrementally compile network M A

Application: Bayesian Networks

• Incrementally compile network M A



Application: Bayesian Networks

• Incrementally compile network M A



=

Application: Bayesian Networks

• Incrementally compile network

M A



=

Application: Bayesian Networks

• Incrementally compile network

• Compute probability of any query

M A

Q



=

Application: Bayesian Networks

• Incrementally compile network

• Compute probability of any query

• Better than state of the art (treewidth)

M A

Q

S



=

Application: Probabilistic Programming

Model = program with random numbers

State of the art inference: SDDs

reach(X,Y) :- flight(X,Y).
reach(X,Y) :- flight(X,Z), reach(Z,Y).

M P
0.6

0.9 0.8

0.7

A
L

0.8

0.9

M A Q S

Application: Tractable Learning

• Given: data

• Objective:

– learn a probability distribution

– ensure distribution is tractable for querying

• Unstructured space: Voting data

• Structured space: Movie recommendation

Learning in Unstructured Spaces

• Voting data from US House

1764 votes of 453 congressmen

• Learn distribution (Markov network)

• Represent as SDD to ensure tractability

• Query efficiency

M A

Q

S

Learning in Structured Spaces

• Must take at least one of Probability or Logic.

• Probability is a prerequisite for AI.

• The prerequisites for KR is either AI or Logic.

w = A  K  L  P impossible

Student enrollment constraints:

Example:
Rankings and Permutations

rank user 1

1 The Godfather

2 Raiders of the Lost Ark

3 Casablanca

4 The Shawshank Redemption

5 Schindler’s List

⋮ ⋮

rank user 2

1 Star Wars V: The Empire Strikes Back

2 Star Wars IV: A New Hope

3 The Godfather

4 The Shawshank Redemption

5 The Usual Suspects

⋮ ⋮

rank user 3

1 The Usual Suspects

2 One Flew over the Cuckoo’s Nest

3 The Godfather: Part II

4 Monty Python and the Holy Grail

5 Star Wars IV: A New Hope

⋮ ⋮

Learn rankings of movies (permutations):
Predict new movies given preferences

Distributions over Structured Spaces:
PSDDs

Domain
Constraints

SDD PSDD

parametrization

Distribution

Distribution

Distribution

Reasoning with PSDDs
Example: Preference Distributions

observe:
• favorite movie is Star Wars V

rank movie

1 Star Wars V: The Empire Strikes Back

2 Star Wars IV: A New Hope

3 The Godfather

4 The Shawshank Redemption

5 The Usual Suspects

observe:
• favorite movie is Star Wars V
• no other Star Wars movie in top-5
• at least one comedy in top-5

rank movie

1 Star Wars V: The Empire Strikes Back

2 American Beauty

3 The Godfather

4 The Usual Suspects

5 The Shawshank Redemption

Conclusions

• SDD a strict superset of OBDD:

– Characterized by trees, which include orders

– Branch over sentences, which include literals

• SDDs maintain key properties of OBDDs:

– Canonical, Polytime* Apply, Queries, etc.

• SDDs are more succinct

– Treewidth instead of pathwidth

• Lots of applications in probabilistic AI and ML

M A

Q S

References

• Darwiche, Adnan. "SDD: A new canonical representation of propositional
knowledge bases." Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). Vol. 22. No. 1. 2011.

• Xue, Yexiang, Arthur Choi, and Adnan Darwiche. "Basing decisions on sentences in
decision diagrams." Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012.

• Choi, Arthur, and Adnan Darwiche. "Dynamic minimization of sentential decision
diagrams." In Twenty-Seventh AAAI Conference on Artificial Intelligence. 2013.

• Razgon, Igor. "On OBDDs for CNFs of bounded treewidth." arXiv preprint
arXiv:1308.3829 (2013).

• Choi, Arthur, Doga Kisa, and Adnan Darwiche. "Compiling probabilistic graphical
models using sentential decision diagrams." Symbolic and Quantitative
Approaches to Reasoning with Uncertainty. Springer Berlin Heidelberg, 2013. 121-
132

• Kisa, Doga, et al. "Probabilistic sentential decision diagrams." Proceedings of the
14th International Conference on Principles of Knowledge Representation and
Reasoning (KR). 2014.

References

• Vlasselaer, Jonas, et al. "Compiling probabilistic logic programs into sentential
decision diagrams." Workshop on Probabilistic Logic Programming (PLP), Vienna.
2014.

• Kisa, Doga, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. "Probabilistic
sentential decision diagrams: Learning with massive logical constraints.“. 2014

• Oztok, Umut, and Adnan Darwiche. "On compiling cnf into decision-dnnf."
InPrinciples and Practice of Constraint Programming, pp. 42-57. Springer
International Publishing, 2014.

• Van den Broeck, Guy, and Adnan Darwiche. "On the role of canonicity in
knowledge compilation." Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence. 2015.

• Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche. "Tractable learning for
structured probability spaces: a case study in learning preference distributions."
Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI).
2015.

References

• Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche. "Tractable learning for
structured probability spaces: a case study in learning preference distributions."
Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI).
2015.

• Oztok, Umut, and Adnan Darwiche. "A top-down compiler for sentential decision
diagrams." Proceedings of the 24th International Conference on Artificial
Intelligence. AAAI Press, 2015.

• Vlasselaer , Jonas, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc
De Raedt. Anytime Inference in Probabilistic Logic Programs with Tp-
compilation, In Proceedings of 24th International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

• Bekker, Jessa, Jesse Davis, Arthur Choi, Adnan Darwiche, and Guy Van den
Broeck. Tractable Learning for Complex Probability Queries, In Advances in Neural
Information Processing Systems 28 (NIPS), 2015.

