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 p1, p2, p3 are called primes and represented by SDDs 
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US Senate: 54 Rep., 44 Dem., and 2 Indep. 

f (X, Y) = p1(X) s1(Y) …  pn(X) sn(Y) 
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SDDs are Canonical 

Equivalent sentences 
have identical circuits. 

A  (C ∨ D) (A  C) ∨ (A  D) ≡ 

= 

For a fixed vtree (fixing X,Y throughout the 
SDD), compressed SDDs are canonical! 
 

M 



OBDD Minimization 

 24 ordering of 4 variables 

 

 

 

 

 

 24 OBDDs for every function over 4 variables 

 Searching for an optimal OBDD is searching 
for an optimal variable order 

 

ABCD    ABDC    ADBC    DABC    DACB    ADCB   

ACDB    ACBD    CABD    CADB    CDAB    DCAB   

DCBA    CDBA    CBDA    CBAD    BCAD    BCDA   

BDCA    DBCA    DBAC    BDAC    BADC    BACD 
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Efficient Apply Function 

• Build Boolean combinations of existing circuits 

• Compile arbitrary sentence incrementally 
 
 
 
 

• Polytime Apply: one Apply cannot blow up size 

 

 = 

( A  ( B  D ))  (C ∨ D)  ( A  ( B  D ))  (C ∨ D) 

 

 

 = O( ) x 
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Is Apply for SDDs Polytime? 

• |α|x|β|  
 recursive  
 calls 

• Polytime! 

A 
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Succinctness 

• Theory 
– OBDD  SDD thus SDD never larger than OBDD 

– Quasi-polynomial separation with OBDD 
OBDD can be much larger than SDD 

– Treewidth upper bounds (important in AI!) 

• Practice 
– SDD Compiler available and effective 

– SDD Package: http://reasoning.cs.ucla.edu/sdd/ 

– Can obtain orders of magnitude improvements 
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Queries 

• OBDDs are Swiss army knife of supported queries 

• SDDs are equally powerful 

 

 

 

 

 

• Some enabled by canonicity + apply 

• E.g., (Weighted) Model Counting  for Probabilistic 
reasoning (E.g., Pr(bill passes|Vote1=Yea)) 

Q 

A 
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Application: Bayesian Networks 

• Incrementally compile network 

• Compute probability of any query 

• Better than state of the art (treewidth) 
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Application: Probabilistic Programming 

Model = program with random numbers 

 
 
 

 

State of the art inference: SDDs 

reach(X,Y) :- flight(X,Y). 
reach(X,Y) :- flight(X,Z), reach(Z,Y). 
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Application: Tractable Learning 

• Given: data 

• Objective:  

– learn a probability distribution 

– ensure distribution is tractable for querying 

• Unstructured space: Voting data 

• Structured space: Movie recommendation 



Learning in Unstructured Spaces 

• Voting data from US House 

1764 votes of 453 congressmen 

• Learn distribution  (Markov network) 

• Represent as SDD to ensure tractability 

• Query efficiency 
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Learning in Structured Spaces 

• Must take at least one of Probability or Logic. 
 
 

• Probability is a prerequisite for AI. 
 

 
• The prerequisites for KR is either AI or Logic. 

 
 
 
w = A  K  L  P   impossible 

Student enrollment constraints: 



Example: 
Rankings and Permutations 

rank user 1 

1 The Godfather 

2 Raiders of the Lost Ark 

3 Casablanca 

4 The Shawshank Redemption 

5 Schindler’s List 

⋮ ⋮ 

rank user 2 

1 Star Wars V: The Empire Strikes Back 

2 Star Wars IV: A New Hope 

3 The Godfather 

4 The Shawshank Redemption 

5 The Usual Suspects 

⋮ ⋮ 

rank user 3 

1 The Usual Suspects 

2 One Flew over the Cuckoo’s Nest 

3 The Godfather: Part II 

4 Monty Python and the Holy Grail 

5 Star Wars IV: A New Hope 

⋮ ⋮ 

Learn rankings of movies (permutations): 
Predict new movies given preferences 



Distributions over Structured Spaces: 
PSDDs 

Domain 
Constraints 

SDD PSDD 

parametrization 



Distribution 
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Reasoning with PSDDs 
Example: Preference Distributions 

observe: 
• favorite movie is Star Wars V 

rank movie 

1 Star Wars V: The Empire Strikes Back 

2 Star Wars IV: A New Hope 

3 The Godfather 

4 The Shawshank Redemption 

5 The Usual Suspects 

observe: 
• favorite movie is Star Wars V 
• no other Star Wars movie in top-5 
• at least one comedy in top-5 

rank movie 

1 Star Wars V: The Empire Strikes Back 

2 American Beauty 

3 The Godfather 

4 The Usual Suspects 

5 The Shawshank Redemption 



Conclusions 

• SDD a strict superset of OBDD: 

– Characterized by trees, which include orders 

– Branch over sentences, which include literals 

• SDDs maintain key properties of OBDDs: 

– Canonical, Polytime* Apply, Queries, etc. 

• SDDs are more succinct  

– Treewidth instead of pathwidth 

• Lots of applications in probabilistic AI and ML 
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