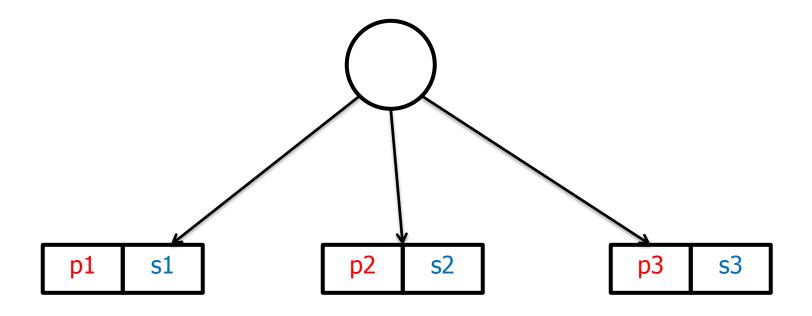
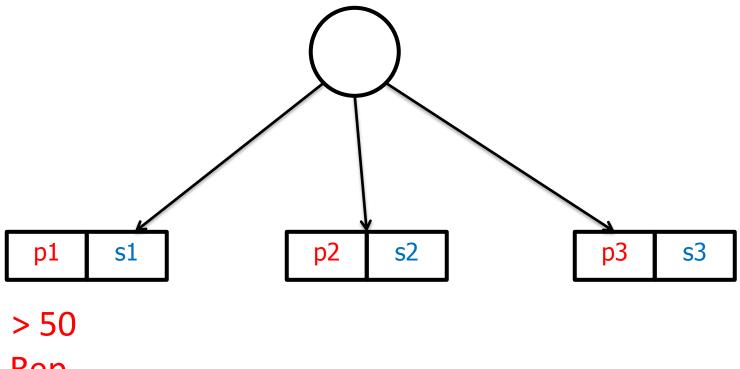
Sentential Decision Diagrams and their Applications

Guy Van den Broeck, Arthur Choi, and Adnan Darwiche

Nov 4, 2015, INFORMS

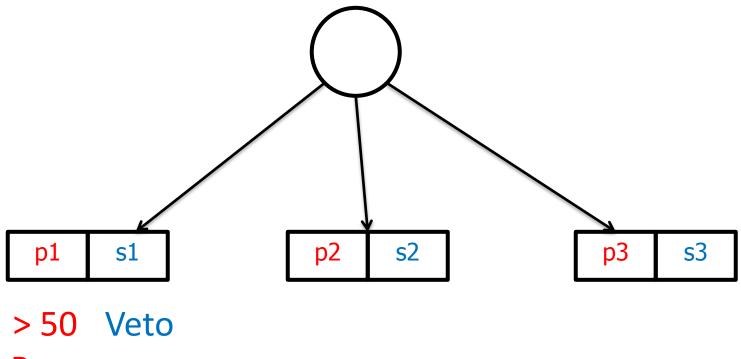


US Senate: 54 Rep., 44 Dem., and 2 Indep.

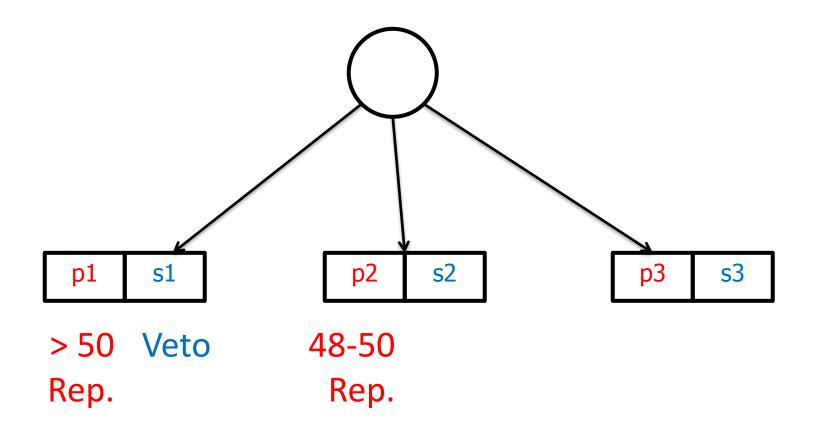


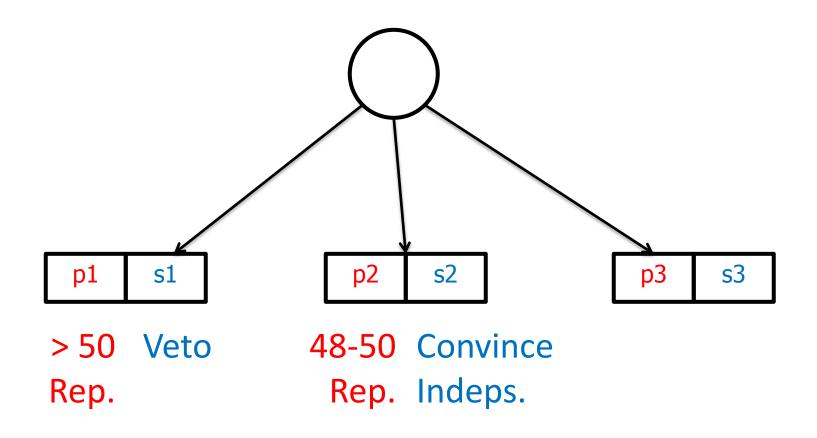
Rep.

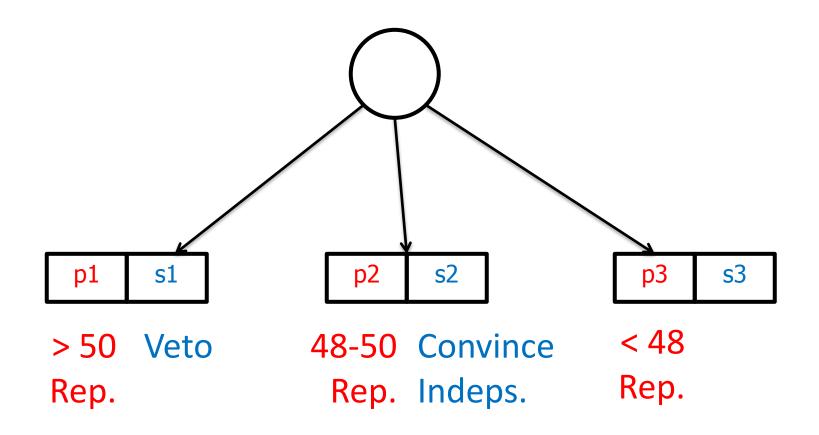
US Senate: 54 Rep., 44 Dem., and 2 Indep.

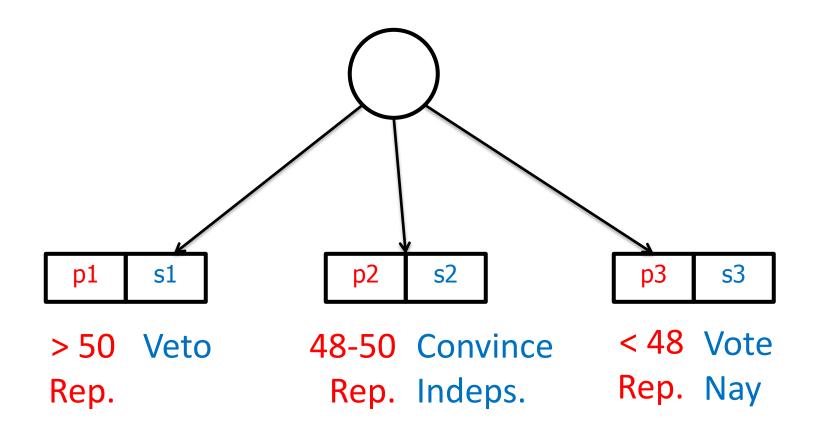


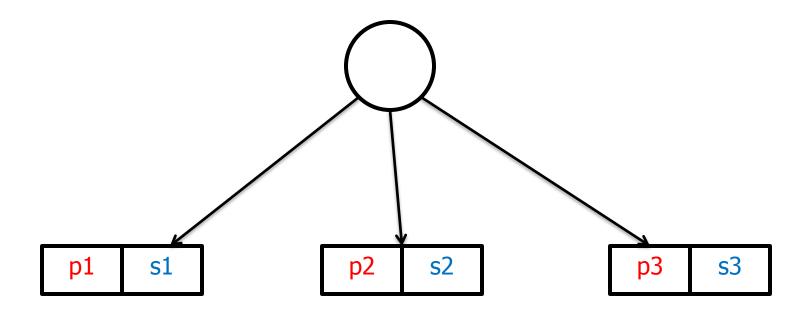
Rep.





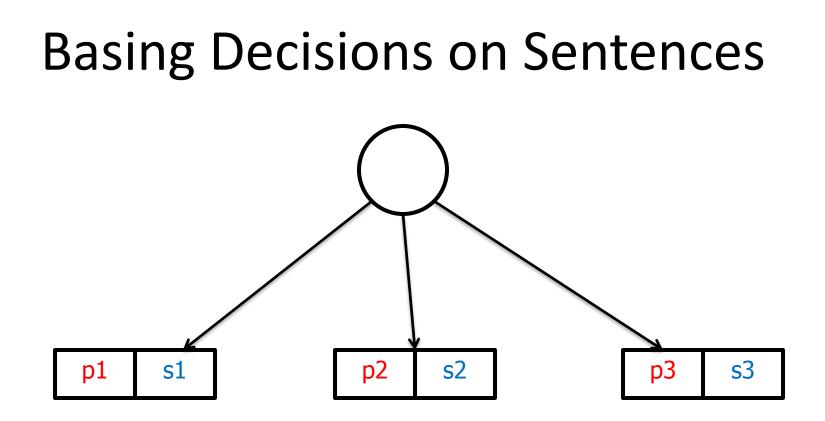






Basing Decisions on Sentences s1 p2 **s**2 р3 **s**3 **p1**

Branch on **sentences** p1, p2, and p3:



Branch on **sentences** p1, p2, and p3:

p1, p2, p3 are mutually exclusive, exhaustive and not false

Basing Decisions on Sentences р3 **s1** p2 **s**2 **s**3 p1

Branch on **sentences** p1, p2, and p3:

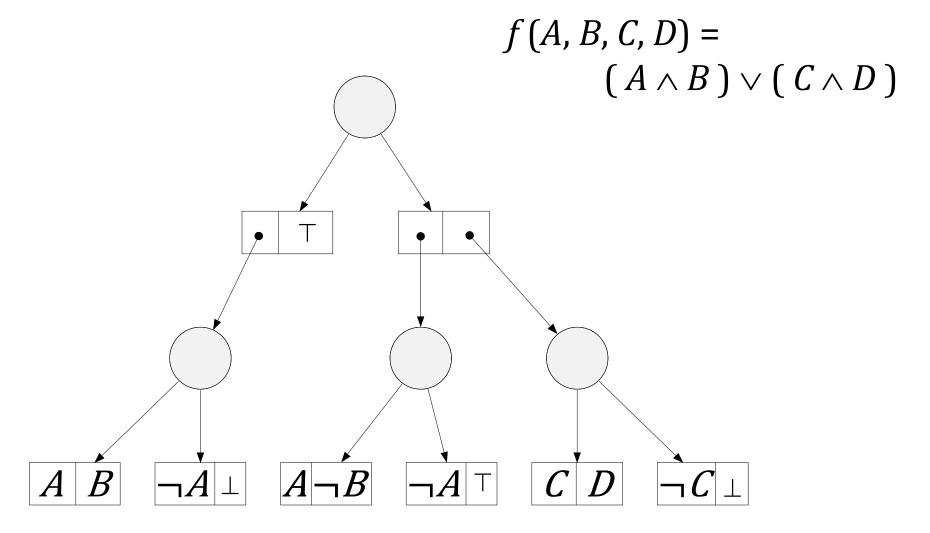
- p1, p2, p3 are mutually exclusive, exhaustive and not false
- p1, p2, p3 are called **primes** and represented by SDDs

Basing Decisions on Sentences р3 **s**1 p2 **s**2 **s**3 p1

Branch on **sentences** p1, p2, and p3:

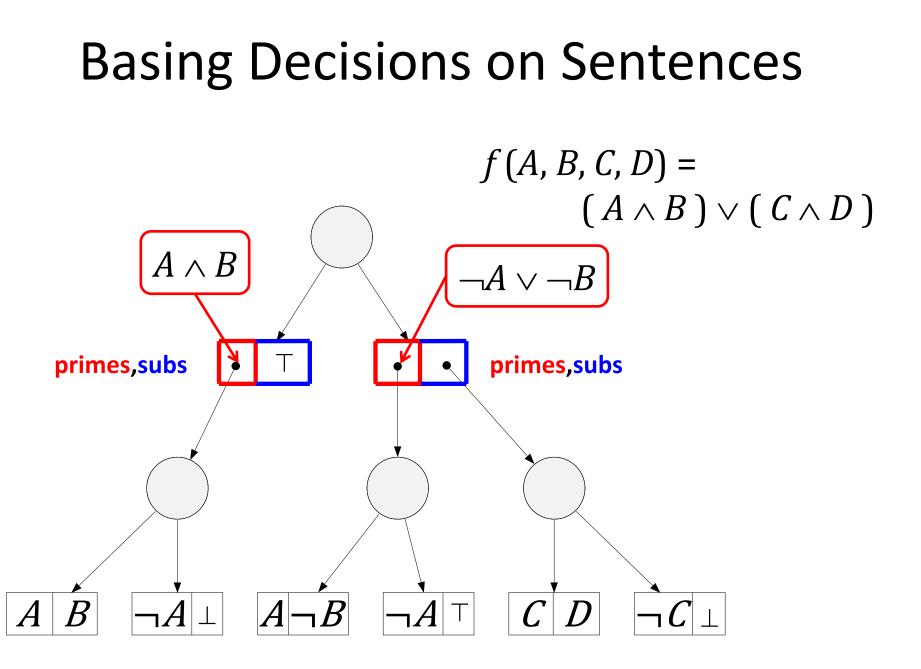
p1, p2, p3 are mutually exclusive, exhaustive and not false

- p1, p2, p3 are called primes and represented by SDDs
- s1, s2, s3 are called subs and represented by SDDs



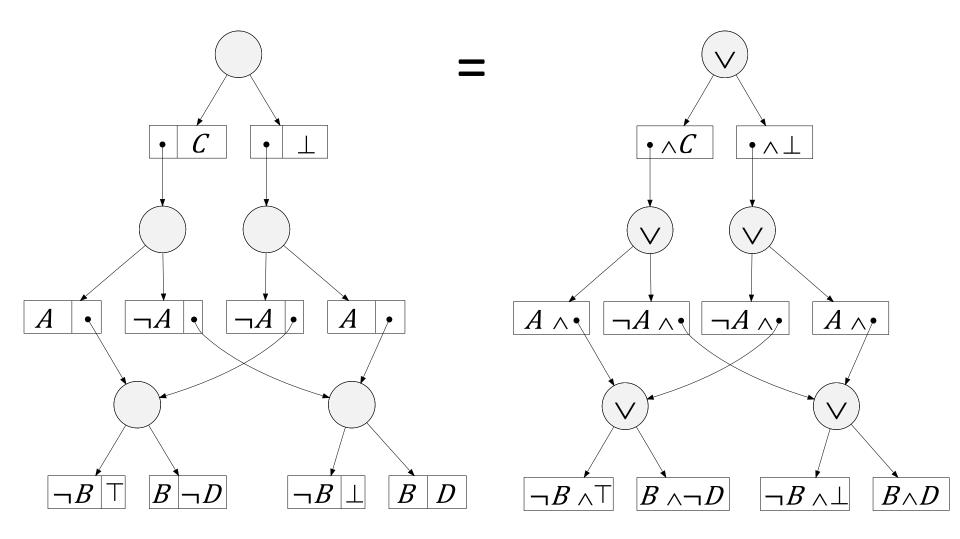
Basing Decisions on Sentences f(A, B, C, D) = $(A \wedge B) \vee (C \wedge D)$ $A \wedge B$ $\neg A \lor \neg B$ ٦Â RR Τ

A

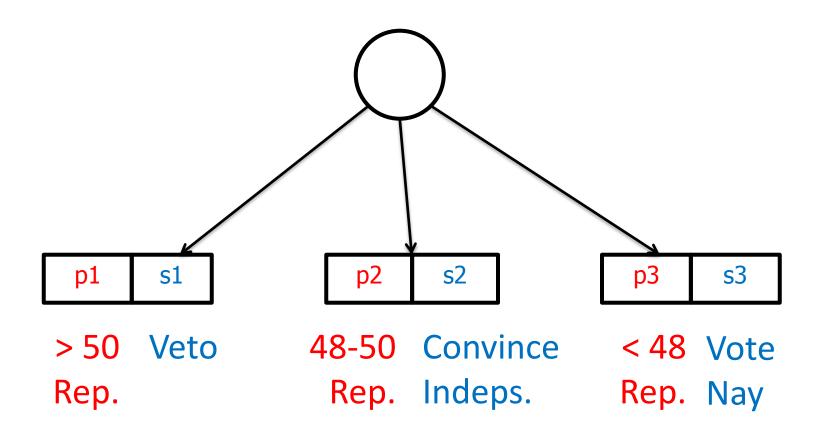


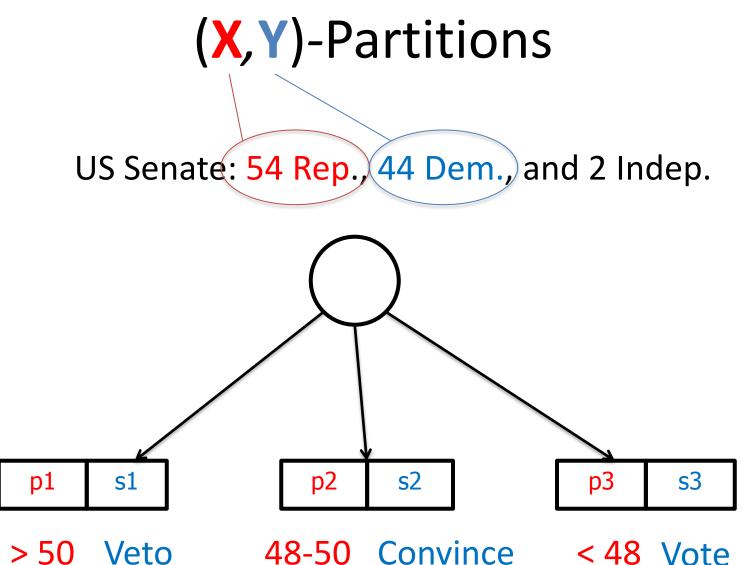
SDDs as Boolean Circuits

 $f(A, B, C, D) (A \oplus (B \land D)) \land C$



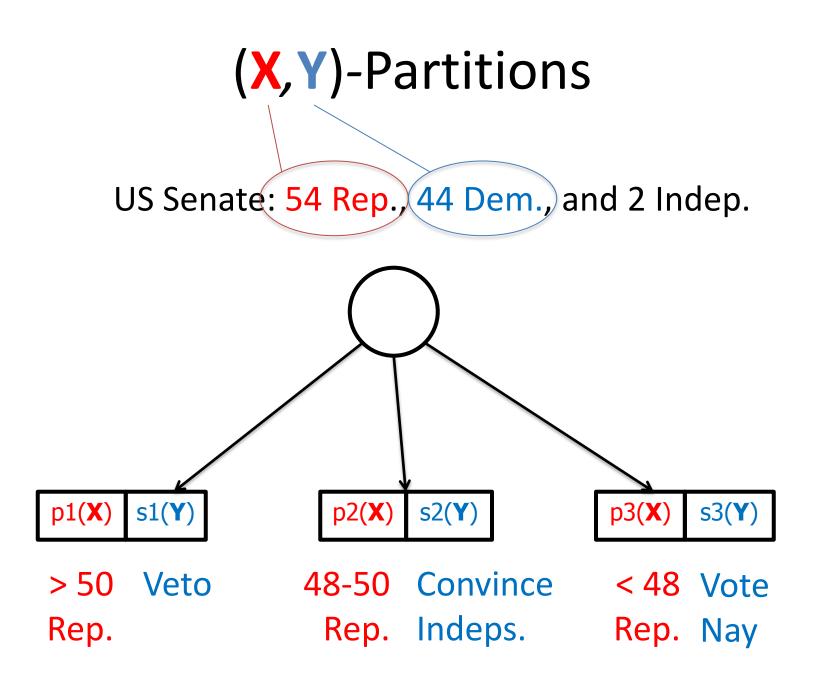
(X,Y)-Partitions





Rep.

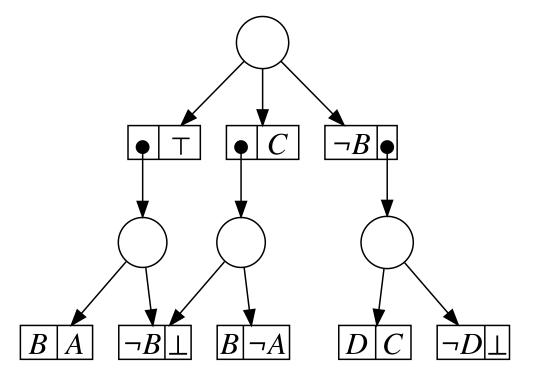
48-50 Convince Rep. Indeps. < 48 Vote Rep. Nay

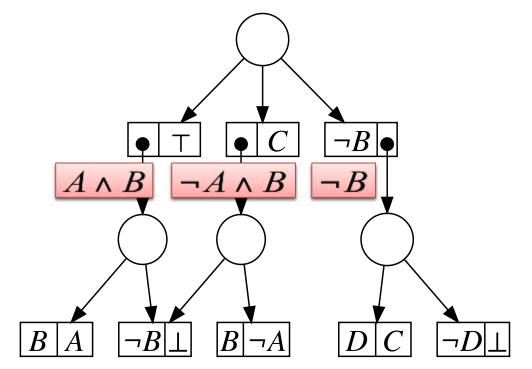


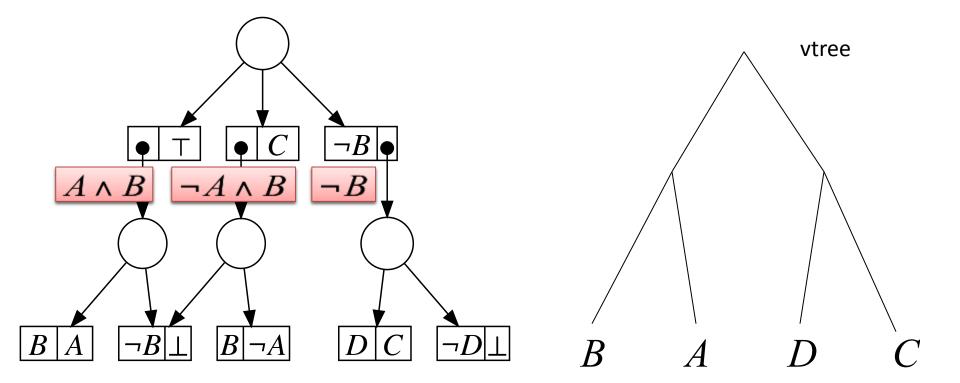
(X,Y)-Partitions US Senate: 54 Rep., 44 Dem., and 2 Indep. s2(**Y**) p2(**X**) p3(**X**) p1(**X**) s1(**Y**) s3(**Y**)

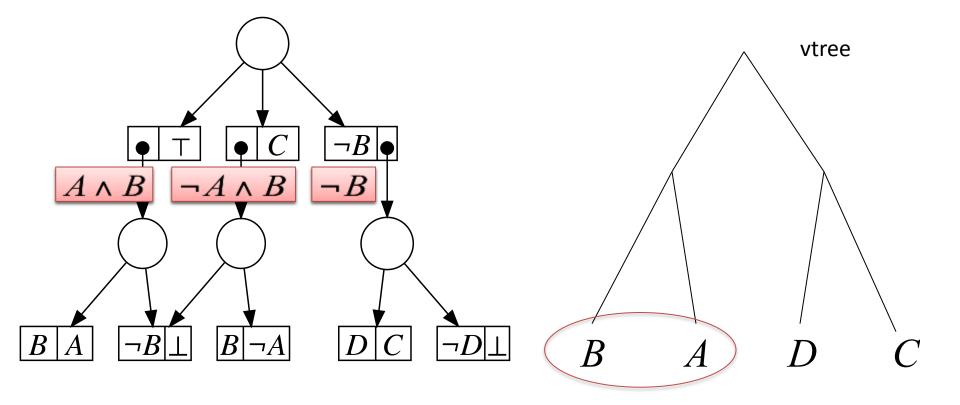
 $f(\mathbf{X}, \mathbf{Y}) = p_1(\mathbf{X}) s_1(\mathbf{Y}) \lor \dots \lor p_n(\mathbf{X}) s_n(\mathbf{Y})$

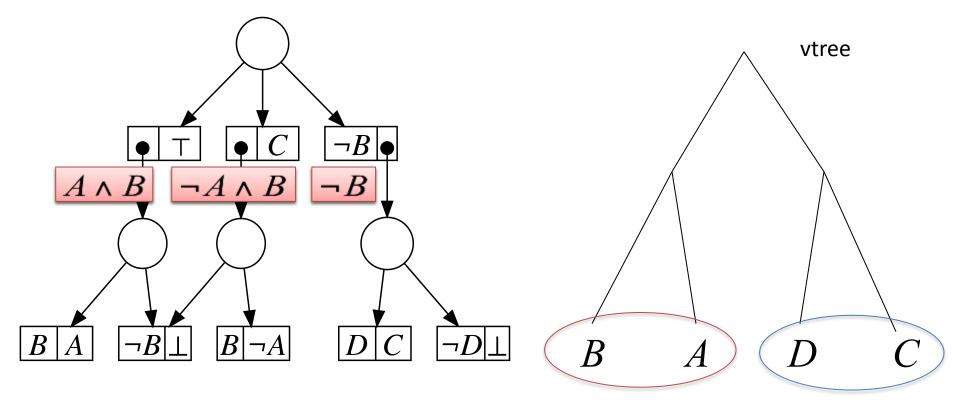
 $f = (A \wedge B) \vee (B \wedge C) \vee (C \wedge D)$



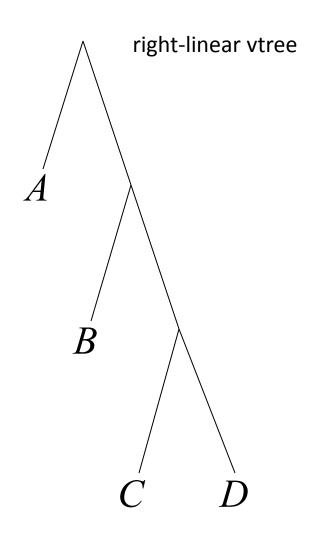




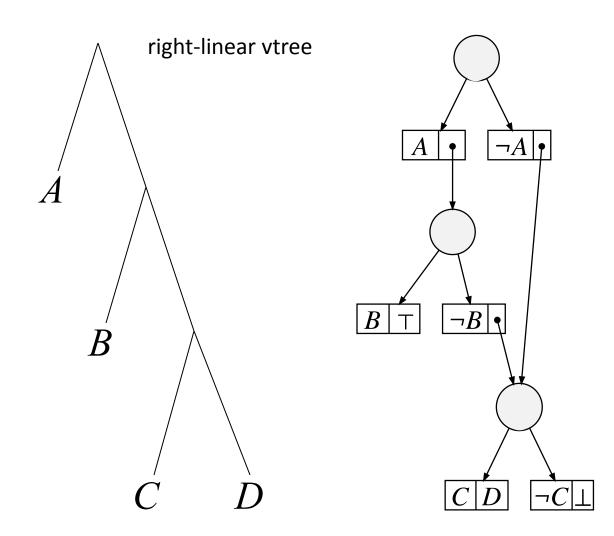




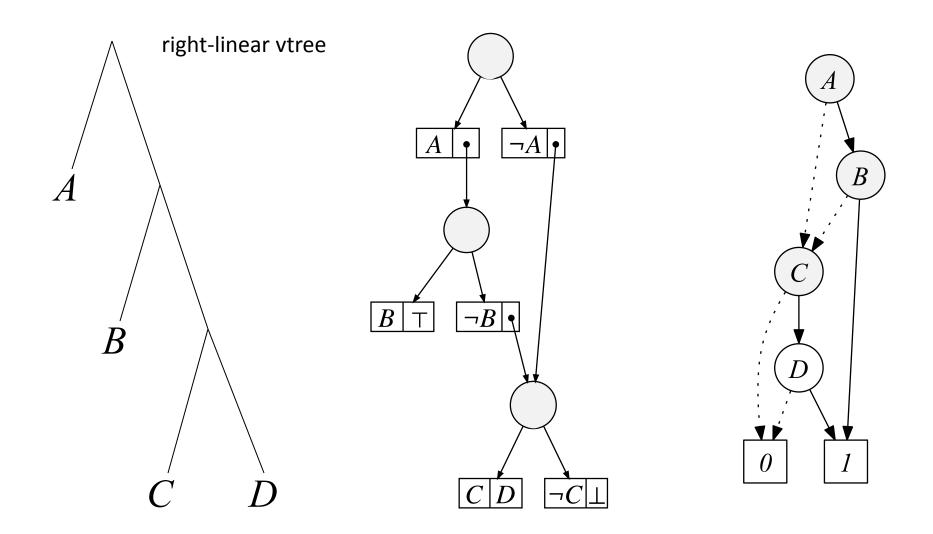
OBDDs are SDDs



OBDDs are SDDs



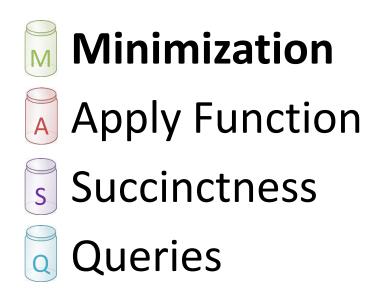
OBDDs are **SDDs**



Ingredients for *Delicious Decision Diagrams*

Minimization
 Apply Function
 Succinctness
 Queries

Ingredients for Delicious Decision Diagrams



Compression

- An (**X**, **Y**)-partition: $f(\mathbf{X}, \mathbf{Y}) = p_1(\mathbf{X})s_1(\mathbf{Y}) \lor ... \lor p_n(\mathbf{X})s_n(\mathbf{Y})$ is **compressed** when subs are distinct: $s_i(\mathbf{Y}) \neq s_i(\mathbf{Y})$ if $i \neq j$
- *f*(**X**,**Y**) has a **unique** compressed (**X**,**Y**)-partition

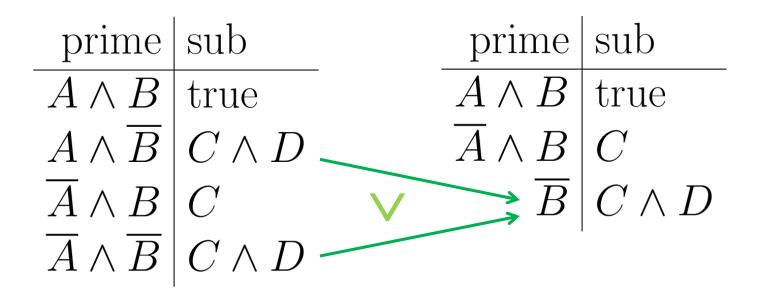
Compression

- An (**X**, **Y**)-partition: $f(\mathbf{X}, \mathbf{Y}) = p_1(\mathbf{X})s_1(\mathbf{Y}) \lor ... \lor p_n(\mathbf{X})s_n(\mathbf{Y})$ is **compressed** when subs are distinct: $s_i(\mathbf{Y}) \neq s_i(\mathbf{Y})$ if $i \neq j$
- *f*(**X**,**Y**) has a **unique** compressed (**X**,**Y**)-partition

prime	sub
$A \wedge B$	true
$A \wedge \overline{B}$	$C \wedge D$
$\overline{A} \wedge B$	C
$\overline{A}\wedge\overline{B}$	$C \wedge D$

Compression

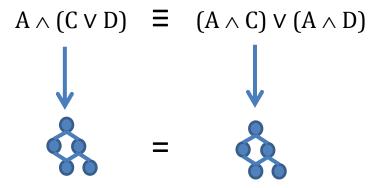
- An (**X**, **Y**)-partition: $f(\mathbf{X}, \mathbf{Y}) = p_1(\mathbf{X})s_1(\mathbf{Y}) \lor ... \lor p_n(\mathbf{X})s_n(\mathbf{Y})$ is **compressed** when subs are distinct: $s_i(\mathbf{Y}) \neq s_i(\mathbf{Y})$ if $i \neq j$
- *f*(**X**,**Y**) has a **unique** compressed (**X**,**Y**)-partition



SDDs are Canonical

For a fixed vtree (fixing **X**, **Y** throughout the SDD), compressed SDDs are **canonical**!

Equivalent sentences have identical circuits.



OBDD Minimization

24 ordering of 4 variables

 $\begin{array}{l} ABCD \Rightarrow ABDC \Rightarrow ADBC \Rightarrow DABC \Rightarrow DACB \Rightarrow ADCB \Rightarrow \\ ACDB \Rightarrow ACBD \Rightarrow CABD \Rightarrow CADB \Rightarrow CDAB \Rightarrow DCAB \Rightarrow \\ DCBA \Rightarrow CDBA \Rightarrow CBDA \Rightarrow CBAD \Rightarrow BCAD \Rightarrow BCDA \Rightarrow \\ BDCA \Rightarrow DBCA \Rightarrow DBAC \Rightarrow BDAC \Rightarrow BADC \Rightarrow BACD \end{array}$

- 24 OBDDs for every function over 4 variables
- Searching for an optimal OBDD is searching for an **optimal variable order**

SDD Minimization



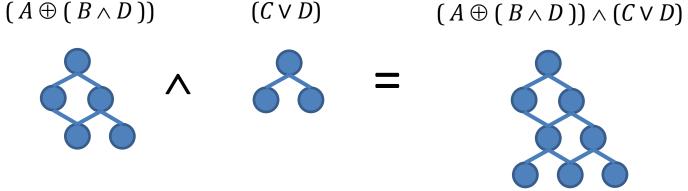
Ingredients for Delicious Decision Diagrams

Minimization
Apply Function
Succinctness

Queries

Efficient Apply Function

- Build Boolean combinations of existing circuits
- Compile arbitrary sentence incrementally



• Polytime Apply: one Apply cannot blow up size

$$| \mathbf{x} | \mathbf{x}$$

Is Apply for SDDs Polytime?

Algorithm 1 Apply(α, β, \circ)

- 1: if α and β are constants or literals then
- return $\alpha \circ \beta$ *II result is a constant or literal* 2:
- 3: else if $Cache(\alpha, \beta, \circ) \neq nil$ then
- **return** Cache(α, β, \circ) // has been computed before 4:
- 5: else
- $\gamma \leftarrow \{\}$ 6:
- for all elements (p_i, s_i) in α do 7:
- for all elements (q_i, r_j) in β do 8:
- $p \leftarrow \operatorname{Apply}(p_i, q_j, \wedge)$ 9:
- if p is consistent then 10:
- 11:
- $s \leftarrow \operatorname{Apply}(s_i, r_j, \circ)$ add element (p, s) to γ 12:

- |α|x|β| recursive calls
- **Polytime**! •

return Cache (α, β, \circ) \leftarrow UniqueD (γ) 14:

Ingredients for *Delicious Decision Diagrams*

Minimization
 Apply Function
 Succinctness
 Queries

Succinctness

- Theory
 - OBDD \subset SDD thus SDD **never larger** than OBDD
 - Quasi-polynomial separation with OBDD OBDD can be **much larger** than SDD
 - Treewidth upper bounds (important in AI!)
- Practice
 - SDD Compiler available and effective
 - SDD Package: <u>http://reasoning.cs.ucla.edu/sdd/</u>
 - Can obtain orders of magnitude improvements

Ingredients for *Delicious Decision Diagrams*

Minimization
 Apply Function
 Succinctness
 Queries

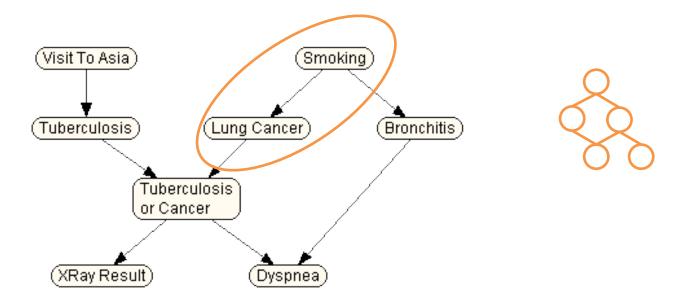
Q

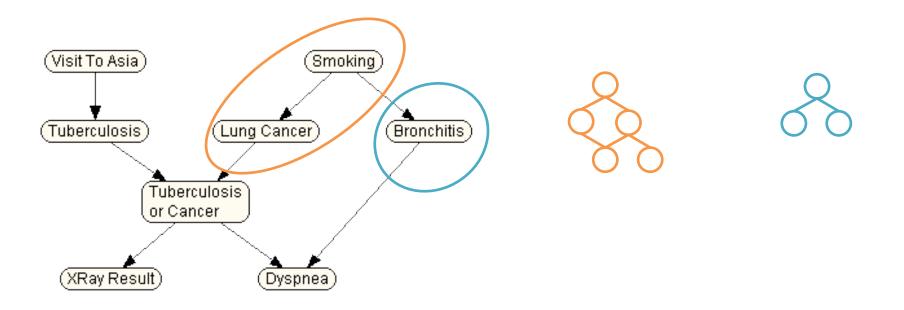
Queries

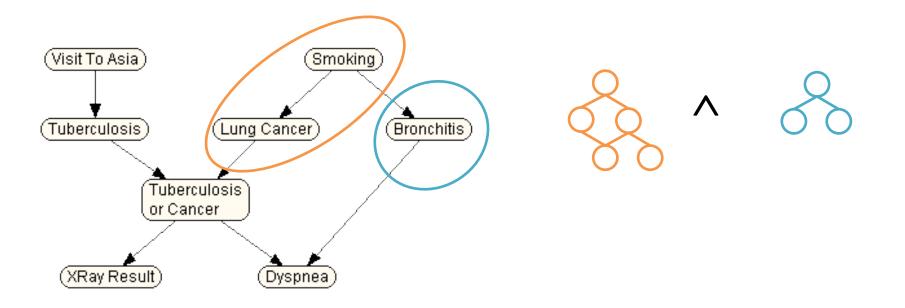
- OBDDs are Swiss army knife of supported queries
- SDDs are equally powerful

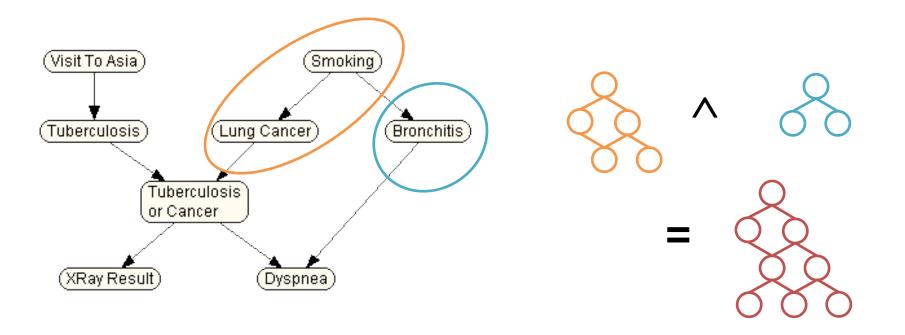
Query	Description	OBDD	SDD
CO	consistency		
VA	validity		\checkmark
CE	clausal entailment		\checkmark
IM	implicant check		\checkmark
EQ	equivalence check		\checkmark
СТ	model counting		\checkmark
SE	sentential entailment		\checkmark
ME	model enumeration		

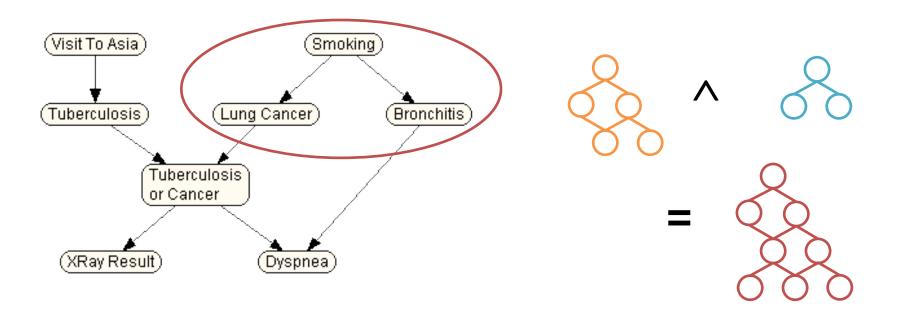
- Some enabled by canonicity + apply
- E.g., (Weighted) Model Counting for Probabilistic reasoning (E.g., Pr(bill passes | Vote1=Yea))



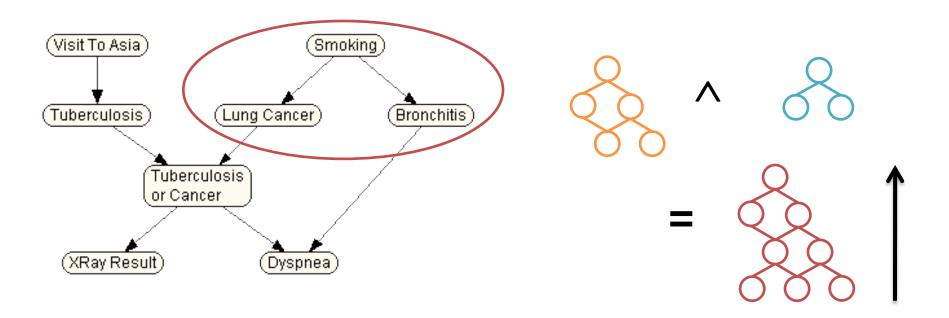




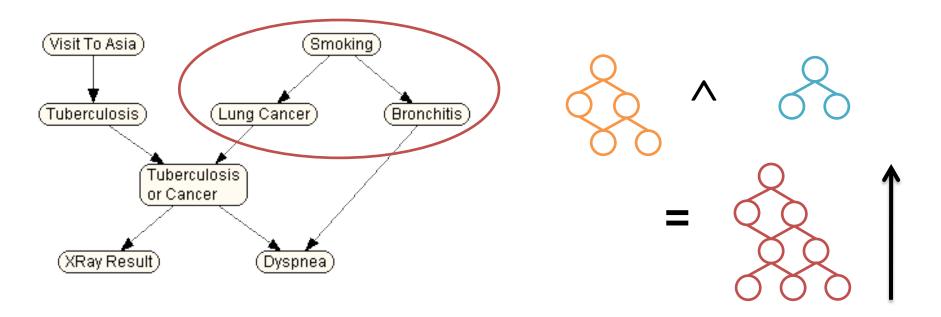




- Incrementally compile network
- Compute probability of any query



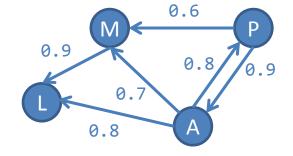
- Incrementally compile network
- Compute probability of any query
- Better than state of the art (treewidth) s



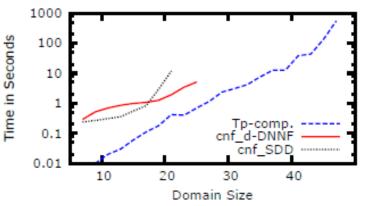
Application: Probabilistic Programming

Model = program with random numbers

```
reach(X,Y) :- flight(X,Y).
reach(X,Y) :- flight(X,Z), reach(Z,Y).
```



State of the art inference: SDDs

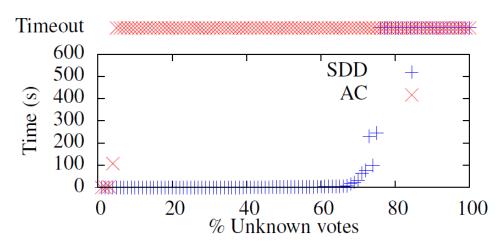


Application: Tractable Learning

- Given: data
- Objective:
 - learn a probability distribution
 - ensure distribution is tractable for querying
- Unstructured space: Voting data
- Structured space: Movie recommendation

Learning in Unstructured Spaces

- Voting data from US House 1764 votes of 453 congressmen
- Learn distribution (Markov network)
- Represent as SDD to ensure tractability
- Query efficiency



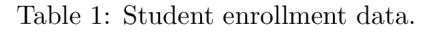
Learning in Structured Spaces

Student enrollment constraints:

- Must take at least one of Probability or Logic. $P \lor L$
- Probability is a prerequisite for AI. $A \Rightarrow P$
- The prerequisites for KR is either AI or Logic. $K \Rightarrow (P \lor L)$

 $w = A \land K \land L \land \neg P$ impossible

\mathbf{L}	Κ	Р	А	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3

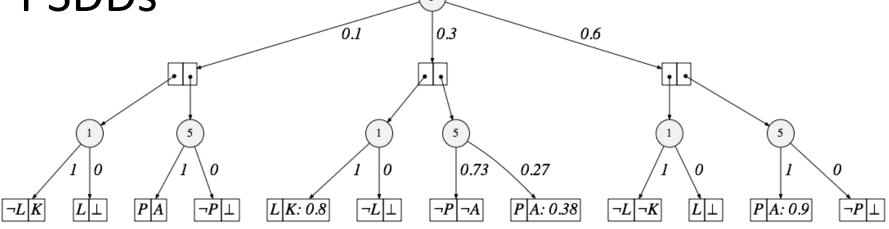


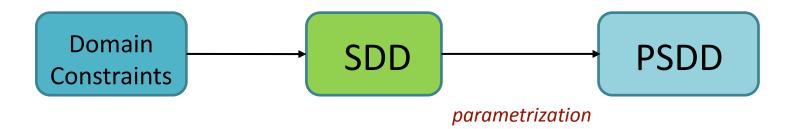
Example: Rankings and Permutations

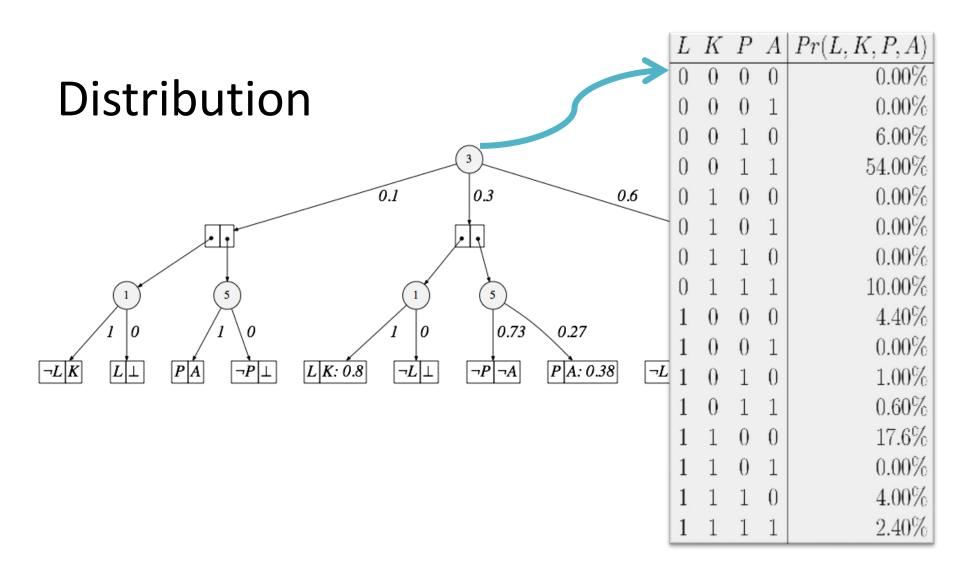
rank	user 1	rank	user 2	rank	user 3
1	The Godfather	1	Star Wars V: The Empire Strikes Back	1	The Usual Suspects
2	Raiders of the Lost Ark	2	Star Wars IV: A New Hope	2	One Flew over the Cuckoo's Nest
3	Casablanca	3	The Godfather	3	The Godfather: Part II
4	The Shawshank Redemption	4	The Shawshank Redemption	4	Monty Python and the Holy Grail
5	Schindler's List	5	The Usual Suspects	5	Star Wars IV: A New Hope
:	÷	:	:	:	÷

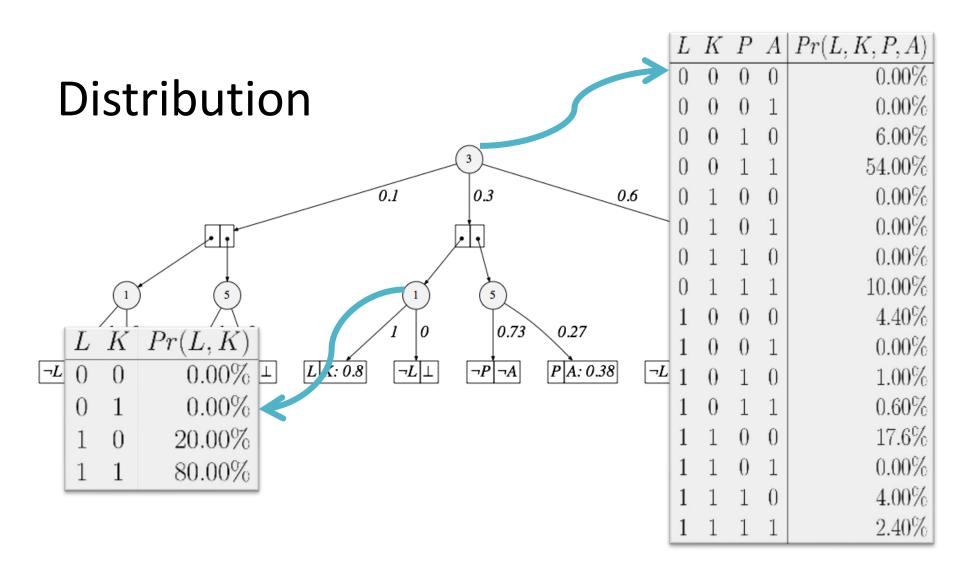
Learn rankings of movies (permutations): Predict new movies given preferences

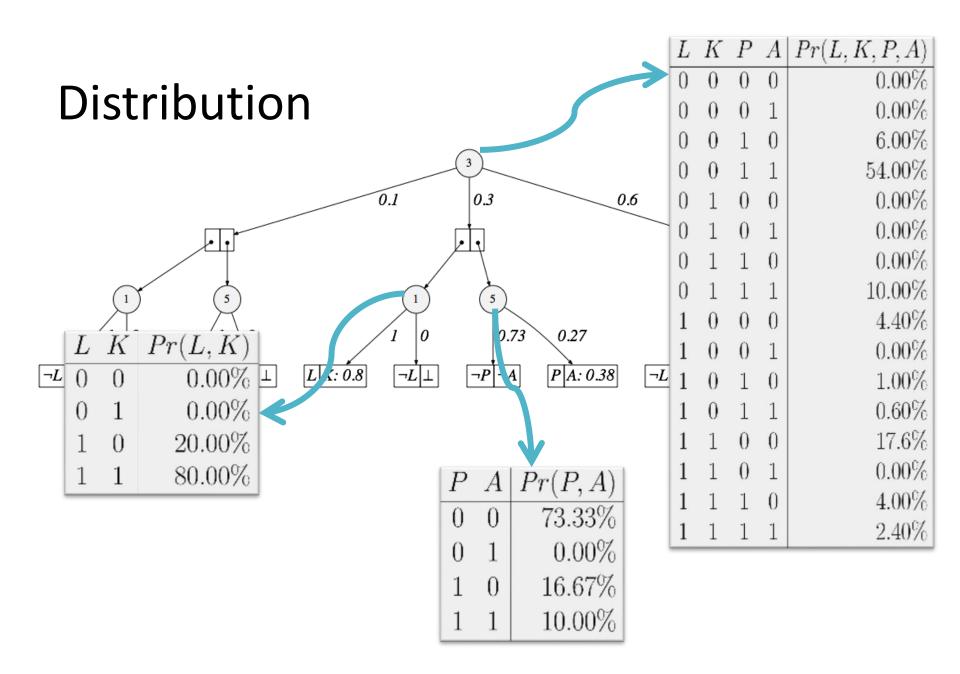
Distributions over Structured Spaces: PSDDs











Reasoning with PSDDs Example: Preference Distributions

observe:

• favorite movie is Star Wars V

rank	movie	
1	Star Wars V: The Empire Strikes Back	
2	Star Wars IV: A New Hope	
3	The Godfather	
4	The Shawshank Redemption	
5	The Usual Suspects	

observe:

- favorite movie is Star Wars V
- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie	
1	Star Wars V: The Empire Strikes Back	
2	American Beauty	
3	The Godfather	
4	The Usual Suspects	
5	The Shawshank Redemption	

Conclusions

- SDD a strict **superset** of OBDD:
 - Characterized by trees, which include orders
 - Branch over sentences, which include literals
- SDDs maintain key properties of OBDDs:
 Canonical, Polytime* Apply, Queries, etc.
- SDDs are more **succinct**

Treewidth instead of pathwidth

• Lots of applications in probabilistic AI and ML

References

- Darwiche, Adnan. "SDD: A new canonical representation of propositional knowledge bases." Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). Vol. 22. No. 1. 2011.
- Xue, Yexiang, Arthur Choi, and Adnan Darwiche. "Basing decisions on sentences in decision diagrams." Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012.
- Choi, Arthur, and Adnan Darwiche. "Dynamic minimization of sentential decision diagrams." In Twenty-Seventh AAAI Conference on Artificial Intelligence. 2013.
- Razgon, Igor. "On OBDDs for CNFs of bounded treewidth." *arXiv preprint arXiv:1308.3829* (2013).
- Choi, Arthur, Doga Kisa, and Adnan Darwiche. "Compiling probabilistic graphical models using sentential decision diagrams." Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Springer Berlin Heidelberg, 2013. 121-132
- Kisa, Doga, et al. "Probabilistic sentential decision diagrams." Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). 2014.

References

- Vlasselaer, Jonas, et al. "Compiling probabilistic logic programs into sentential decision diagrams." Workshop on Probabilistic Logic Programming (PLP), Vienna. 2014.
- Kisa, Doga, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. "Probabilistic sentential decision diagrams: Learning with massive logical constraints.". 2014
- Oztok, Umut, and Adnan Darwiche. "On compiling cnf into decision-dnnf." InPrinciples and Practice of Constraint Programming, pp. 42-57. Springer International Publishing, 2014.
- Van den Broeck, Guy, and Adnan Darwiche. "On the role of canonicity in knowledge compilation." Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.
- Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche. "Tractable learning for structured probability spaces: a case study in learning preference distributions." Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI). 2015.

References

- Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche. "Tractable learning for structured probability spaces: a case study in learning preference distributions." Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI). 2015.
- Oztok, Umut, and Adnan Darwiche. "A top-down compiler for sentential decision diagrams." Proceedings of the 24th International Conference on Artificial Intelligence. AAAI Press, 2015.
- Vlasselaer, Jonas, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt. Anytime Inference in Probabilistic Logic Programs with Tpcompilation, In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.
- Bekker, Jessa, Jesse Davis, Arthur Choi, Adnan Darwiche, and Guy Van den Broeck. Tractable Learning for Complex Probability Queries, In Advances in Neural Information Processing Systems 28 (NIPS), 2015.