
Rsat 1.03: SAT Solver Description

Knot Pipatsrisawat and Adnan Darwiche

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095
{thammakn,darwiche}@cs.ucla.edu

Abstact

Rsat is a DPLL–based solver that inherits many of the effec-
tive techniques introduced by MiniSat [3, 4] and Zchaff [6].
Rsat employs three improvements that have proven quite
effective empirically. First, it employs techniques for re-
ducing the time spent on Boolean constraint propagation.
Next, it introduces a new technique that enables the solver to
better focus on subproblems. Finally, Rsat employs an im-
proved phase selection technique that has been designed to
prevent the solver from repeating work it has already done
upon backtracking.

1. Basic Algorithms and Data Structures

Rsat was originally developed as a SAT solver to be embed-
ded in exhaustive search algorithms used by model counters
and knowledge compilers [2]. In particular, the solver was
engineered to enable a recursive high–level structure, with
primitives that provide flexible control over its search pro-
cedure (non–chronological backtracking in particular). Rsat
includes an iterative interface too, which is more appropri-
ate for standard SAT solving as it avoids overflowing the
runtime stack when solving very large problems.

Rsat uses a standard conflict–directed backtracking mech-
anism, as employed by Zchaff, with a clause learning scheme
that is very similar to the one employed by MiniSat [4].
In particular, learned clauses are derived from implication
graphs using the FirstUIP method [7], and then strength-
ened further using the conflict minimization technique de-
scribed in [1]. The decision heuristic in Rsat is also similar
to the one used by MiniSat, but its branching heuristic is
different and is discussed later. The data structures used in
Rsat are based on the two–watched literal scheme [6]. Rsat
puts a special emphasis on using lightweight data structures
to minimize memory usage. It tries to enhance cache per-
formance by avoiding special structures for variables and
literals. Instead, similar attributes are grouped together as
they are often accessed at the same time.

2. Prioritized Implication Queue

Rsat manages the implication queue in a slightly different
manner from conventional methods. Instead of dequeuing
the first literal in the queue that was implied, Rsat uses the
same heuristic as the decision heuristic to select a variable
from the implication queue to process next. This idea was
largely inspired by the work described in [5]. We exper-
imented with several variations of this algorithm and the
above algorithm seemed to yield the best performance.

The main reason behind prioritization is to cut down the
amount of time used to perform Boolean constraint prop-
agation. The hope is that, with prioritization, more con-
strained variables will tend to be processed first and, hence,
conflicts, if they exist, will be detected faster. Prioritizing
the implication queue should also help the solver to focus
on a particular part of the problem better, because conflict-
ing clauses encountered will tend to contain literals that
were involved in recent conflicts. Intuitively, this should
have positive effects on the performance of the solver, be-
cause staying focused on a subproblem will allow the solver
to make the most use of learned clauses and help it derive
strong clauses faster.

3. Improved Phase Selection Heuristic

Rsat uses an unconventional phase selection heuristic that
was designed to avoid solving the same part of the problem
multiple times. Our empirical results show that SAT solvers
based on the standard DPLL framework could end up solv-
ing certain subproblems multiple times due to backtracking.
Even if some of these subproblems can be solved easily the
first time, there is no guarantee that they will continue to be
easily solved in a different state of the solver.

To overcome this problem, every time Rsat backtracks,
it remembers every assignment it erases. Rsat then uses
these saved assignments in making further decisions. This
technique significantly improves the performance of Rsat,
as it helps in avoiding situations where the solver keeps



erasing the progress it has made thus far.

4. References

[1] BEAME, P., KAUTZ , H., AND SABHARWAL , A. Un-
derstanding the power of clause learning.Proceedings
of the Eighteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI-2003)(2003).

[2] DARWICHE, A. New advances in compiling CNF to
decomposable negation normal form. InProceedings of
European Conference on Artificial Intelligence(2004),
pp. 328–332.

[3] EÉN, N., AND SÖRENSSON, N. Minisat a sat solver
with conflict-clause minimization.The International
Conference on Theory and Applications of Satisfiabil-
ity Testing(2003).

[4] EÉN, N., AND SÖRENSSON, N. Minisat a sat solver
with conflict-clause minimization.The International
Conference on Theory and Applications of Satisfiabil-
ity Testing(2005).

[5] LEWIS, M. D. T., SCHUBERT, T., AND BECKER,
B. W. Early conflict detection based bcp for sat solv-
ing. The International Conference on Theory and Ap-
plications of Satisfiability Testing(2004).

[6] MOSKEWICZ, M., MADIGAN , C., ZHAO, Y., ZHANG,
L., AND MALIK , S. Chaff: Engineering an efficient
sat solver.39th Design Automation Conference (DAC)
(2001).

[7] ZHANG, L., MADIGAN , C., MOSKEWICZ, M., AND

MALIK , S. Efficient conflict driven learning in a
boolean satisfiability solver.Proceedings of ICCAD
2001(2001).


