
RSat 2.0: SAT Solver Description

Knot Pipatsrisawat and Adnan Darwiche
{thammakn,darwiche}@cs.ucla.edu

University of California, Los Angeles

1 Introduction

RSat 2.0 is a DPLL-based complete SAT solver that employs many modern tech-
niques such as those used in MiniSat [3] and Chaff [8]. RSat 2.0 is an improved
version of RSat [10], which won the third place in the SAT-Race 2006 competi-
tion [11]. While RSat 2.0 is designed to perform best on industrial SAT instances,
we expect the solver to exhibit reasonable efficiency on other categories of in-
stance as well. This document briefly describes the important techniques used
in RSat 2.0.

2 Basic Algorithms

RSat 2.0 uses the 2-watched literal scheme [8], which is very critical to the effi-
cient Boolean constraint propagation. Moreover, Boolean constraint propagation
mechanism of RSat 2.0 is boosted with a heuristic for ordering implications to
be processed. This mechanism helps reduce the amount of work the solver has
to do to detect each conflict. The idea is largely based on the work in [6].

RSat 2.0 utilizes conflict clause learning with conflict clause minimization
technique [1] that helps reduce the size of learned clauses. Learned clauses are
deleted based on their usefulness in recent resolution proofs. Learn clause dele-
tion is performed once the number of clauses reaches a slowly increasing limit.

RSat 2.0 periodically restarts to counter the heavy-tailed effects common in
combinatorial search [4]. The precise restarting policy used will be described in
more details in Section 4.

3 New Component Caching Scheme

Similar to RSat, RSat 2.0 utilizes a lightweight component caching scheme called
progress saving, which is described in great details in [9]. This component caching
scheme helps reduce the amount of work repetition that is inherent in backtrack-
ing SAT solvers.

The caching scheme used by RSat 2.0 is a refinement of the original technique
used by RSat in the SAT-Race 2006 competition. In particular, progress saving
is occasionally disabled in the hope to prevent the caching scheme from getting
stuck in a cycle of bad assignments.



4 Improved Restarting Policy

An improved restarting policy is used in RSat 2.0. This new policy is largely
motivated by the work in [5]. According to the policy, the limit on the number
of conflicts experienced by the solver before it has to restart is set according to
the Luby’s series [7]. In RSat 2.0, the Luby’s unit is set to 512.

5 Preprocessor

RSat 2.0 takes advantage of the SatElite preprocessor [2] used by the winner
of the last SAT competition [12]. Empirical results have shown that RSat 2.0
benefits from the integration with SatElite, even though SatElite shows some
difficulties on instances with too many clauses and literals. In the event that
SatElite cannot properly handle the input, RSat 2.0 continues to solve the orig-
inal input.

References

1. Beame, P., Kautz, H., and Sabharwal, A. Understanding the power of clause
learning. Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-2003) (2003).

2. Eén, N., and Biere, A. Effective preprocessing in sat through variable and
clause elimination. In International Conference on Theory and Applications of
Satisfiability Testing (SAT) (2005).

3. Eén, N., and Sörensson, N. Minisat a sat solver with conflict-clause minimiza-
tion. The International Conference on Theory and Applications of Satisfiability
Testing (2005).

4. Gomes, C. P., Selman, B., and Crato, N. Heavy-tailed distributions in com-
binatorial search. In Principles and Practice of Constraint Programming (1997),
pp. 121–135.

5. Huang, J. The effect of restarts on the efficiency of clause learning. In AAAI-06
Workshop on Learning for Search (2006).

6. Lewis, M. D. T., Schubert, T., and Becker, B. W. Early conflict detection
based bcp for sat solving. The International Conference on Theory and Applica-
tions of Satisfiability Testing (2004).

7. Luby, M., Sinclair, A., and Zuckerman, D. Optimal speedup of las vegas
algorithms. In Israel Symposium on Theory of Computing Systems (1993), pp. 128–
133.

8. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and Malik, S. Chaff:
Engineering an efficient sat solver. 39th Design Automation Conference (DAC)
(2001).

9. Pipatsrisawat, K., and Darwiche, A. A lightweight component caching tech-
nique for satisfiability solvers. Paper submitted to SAT’07.

10. Rsat sat solver homepage. http://reasoning.cs.ucla.edu/rsat.
11. SAT-RACE’06 homepage. http://fmv.jku.at/sat-race-2006/.
12. SAT’05 Competition Homepage, http://www.satcompetition.org/2005/.


