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Abstract

We propose a distance measure between two probability dis-
tributions, which allows one to bound the amount of belief
change that occurs when moving from one distribution to
another. We contrast the proposed measure with some well
known measures, including KL-divergence, showing how
they fail to be the basis for bounding belief change as is done
using the proposed measure. We then present two practi-
cal applications of the proposed distance measure: sensitivity
analysis in belief networks and probabilistic belief revision.
We show how the distance measure can be easily computed
in these applications, and then use it to bound global belief
changes that result from either the perturbation of local con-
ditional beliefs or the accommodation of soft evidence. Fi-
nally, we show that two well known techniques in sensitivity
analysis and belief revision correspond to the minimization
of our proposed distance measure and, hence, can be shown
to be optimal from that viewpoint.

Introduction
We propose in this paper a distance measure which allows
one to bound the amount of belief change that results from
transforming one probabilistic state of belief into another.
Specifically, given a probability distributionPr representing
an initial state of belief, and a distributionPr ′ representing
a new state of belief, we define a distance measure which
allows us to tightly bound belief change as follows:1/k ≤
O′(α | β)/O(α | β) ≤ k. Here,k is a constant that depends
on the proposed distance,α andβ are arbitrary events,O(α |
β) is the odds of eventα given β with respect toPr , and
O′(α | β) is the odds of eventα givenβ with respect toPr ′.
We show a number of theoretical results about the proposed
measure and then present two of its key applications.

On the theoretical side, we prove that our proposed mea-
sure satisfies the three properties of distance. We also con-
trast our distance measure with classical measures, such as
KL-divergence (Kullback & Leibler 1951), and show how
the classical measures fail to be the basis for bounding be-
lief change in the sense given above. Specifically, we show
that belief change between two states of belief can be un-
bounded, even when their KL-divergence tends to zero.
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On the practical side, we present two main applications of
our proposed distance measure. The first application is sen-
sitivity analysis in belief networks, an area which concerns
itself with bounding global belief change that results from
applying a local perturbation to a belief network (Laskey
1995; Castillo, Gutíerrez, & Hadi 1997; Kjaerulff & van der
Gaag 2000; Darwiche 2000; Chan & Darwiche 2001). We
show three key results here. First, we show that ifPr is the
distribution induced by a belief networkN , and if Pr ′ is
the distribution induced by a belief networkN ′ that results
from changing some conditional probability table (CPT) in
N , then the distance betweenPr and Pr ′ can be com-
puted locally by only examining the changed CPT. Sec-
ond, we use our distance measure to provide a bound on
global belief change that results from a local CPT change,
and show that our bound generalizes and provides more in-
sights into the bound given by Chan and Darwiche recently
(Chan & Darwiche 2001). Finally, we use our proposed dis-
tance measure to prove the optimality of a prevalent, but
formally unjustified, technique in the literature on sensitiv-
ity analysis relating to changing the CPTs of multivalued
variables (Laskey 1995; Kjaerulff & van der Gaag 2000;
Darwiche 2000).

The second application we consider for our distance mea-
sure is in belief revision (G̈ardenfors 1988). Here, we
show how our distance measure can be used to bound belief
change that results from incorporating uncertain evidence
according to both Jeffrey’s rule (Jeffrey 1965) and Pearl’s
method of virtual evidence (Pearl 1988). We actually prove
the optimality of Jeffrey’s rule with regards to minimizing
belief change and, finally, consider the application of our
distance measure to quantifying the strength of evidence, as
measured by the amount of belief change it induces.

Proofs of theorems are omitted for space limitations and
are available in the full paper (Chan & Darwiche 2002).

A probabilistic distance measure

Our proposed measure is defined between two probability
distributions.

Definition 1 Let Pr and Pr ′ be two probability distribu-
tions over the same set of worldsw. We define a measure
D(Pr ,Pr ′) as follows:



D(Pr ,Pr ′)
def
= lnmax

w

Pr ′(w)
Pr(w)

− lnmin
w

Pr ′(w)
Pr(w)

,

where0/0 is defined as 1.

We will say that two probability distributionsPr andPr ′

have the same support, if for every worldw, Pr(w) = 0 iff
Pr ′(w) = 0. Note that if two distributionsPr andPr ′ do
not have the same support,D(Pr ,Pr ′) = ∞.

Our first result on the defined measure is that it satisfies
the three properties of distance, hence, it is adistance mea-
sure.

Theorem 1 Let Pr , Pr ′ andPr ′′ be three probability dis-
tributions over the same set of worlds. The distance measure
given in Definition 1 satisfies these three properties:

Positiveness: D(Pr ,Pr ′) ≥ 0, andD(Pr ,Pr ′) = 0 iff
Pr = Pr ′;
Symmetry: D(Pr ,Pr ′) = D(Pr ′,Pr);

Triangle Inequality: D(Pr ,Pr ′) + D(Pr ′,Pr ′′) ≥
D(Pr ,Pr ′′).

The interest in the defined distance measure stems from
two reasons. First, it can be easily computed in a number of
practical situations which we discuss in later sections. Sec-
ond, it allows us to bound the difference in beliefs captured
by two probability distributions.

Theorem 2 LetPr andPr ′ be two probability distributions
over the same set of worlds. Letα andβ be two events. We
then have:

e−D(Pr ,Pr ′) ≤ O′(α | β)
O(α | β)

≤ eD(Pr ,Pr ′),

whereO(α | β) = Pr(α | β)/Pr(α | β) is the odds of event
α givenβ with respect toPr , and O′(α | β) = Pr ′(α |
β)/Pr ′(α | β) is the odds of eventα givenβ with respect
to Pr ′.1 The bound is tight in the sense that for every pair
of distributionsPr andPr ′, there are eventsα andβ such
that:

O′(α | β)
O(α | β)

= eD(Pr ,Pr ′),
O′(α | β)
O(α | β)

= e−D(Pr ,Pr ′).

We can express the bound of Theorem 2 in two other use-
ful forms. First, we can use logarithms:

| ln O′(α | β)− ln O(α | β)| ≤ D(Pr ,Pr ′). (1)

Second, we can use probabilities instead of odds:

p e−d

p (e−d − 1) + 1
≤ Pr ′(α | β) ≤ p ed

p (ed − 1) + 1
, (2)

wherep = Pr(α | β) is the initial belief inα givenβ, and
d = D(Pr ,Pr ′) is the distance. The bounds ofPr ′(α |
β) are plotted againstp for several different values ofd in
Figure 1.

1Of course, we must havePr(β) 6= 0 andPr ′(β) 6= 0 for the
odds to be defined.

In the applications we shall discuss next,Pr is a distri-
bution which represents some initial state of belief, andPr ′

is a distribution which represents a new state of belief. The
new state of belief results form applying some kind of (usu-
ally local) change to the initial state. Examples include the
change in some conditional belief or the incorporation of
new evidence. Our goal is then to assess the global impact
of such local belief changes. According to Theorem 2, if we
are able to compute the distance measureD(Pr ,Pr ′), then
we can bound global belief change in a very precise sense.
For example, we can use Equation 2 to compute the bound
on any queryPr ′(α | β). We will later show two applica-
tions from sensitivity analysis and belief revision where the
distance measure can be computed efficiently.

But first, we need to settle a major question: Can we
bound belief change in the sense given above using one of
the classical probabilistic measures? We show next that this
is not possible using at least two of the most commonly used
measures.

Kullback-Leibler (KL) divergence One of the most com-
mon measures for comparing probability distributions is the
KL-divergence (Kullback & Leibler 1951).

Definition 2 Let Pr and Pr ′ be two probability distribu-
tions over the same set of worldsw. The KL-divergence
betweenPr andPr ′ is defined as:

KL(Pr ,Pr ′)
def
= −

∑
w

Pr(w) ln
Pr ′(w)
Pr(w)

.2

The first thing to note about KL-divergence is that it is
incomparable with our distance measure.

Example 1 Consider the following distributions,Pr , Pr ′

andPr ′′, over worldsw1, w2 andw3:

Pr(w1) = .50, Pr(w2) = .25, Pr(w3) = .25;
Pr ′(w1) = .50, Pr ′(w2) = .30, Pr ′(w3) = .20;
Pr ′′(w1) = .43, Pr ′′(w2) = .32, Pr ′′(w3) = .25.

Computing the KL-divergence gives us:KL(Pr ,Pr ′) =
.0102 andKL(Pr ,Pr ′′) = .0137. Computing our distance
measure gives us:D(Pr ,Pr ′) = .405 andD(Pr ,Pr ′′) =
.398. Therefore, according to KL-divergence,Pr ′ is closer
to Pr thanPr ′′, while according to our distance measure,
Pr ′′ is closer toPr thanPr ′.

We are now faced with two questions:

1. Can we use KL-divergence to bound belief change as we
did using our distance measure? The answer is no as we
show next.

2. Given that our goal is to minimize belief change, should
we try to minimize our distance measure or some other
measure, such as KL-divergence? We answer this ques-
tion only partially in the following sections, by showing
that two proposals that come from the literatures on sen-
sitivity analysis and belief revision do correspond to the
minimization of our distance measure.
2Note that KL-divergence is asymmetric, and is thus technically

not a distance measure.
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Figure 1: The bounds ofPr ′(α | β), as given by Equation 2, plotted against the initial beliefp = Pr(α | β) for several different
values of distanced = D(Pr ,Pr ′): (from left to right)d = .1, d = 1, d = 2 andd = 3.

The following example addresses the first question.

Example 2 Consider the following distributions,Pr and
Pr ′, over worldsw1, w2 andw3:

Pr(w1) = p, Pr(w2) = q − p, Pr(w3) = 1− q;
Pr ′(w1) = kp, Pr ′(w2) = q − kp, Pr ′(w3) = 1− q;

wherep, q and k are constants, with0 ≤ p ≤ q ≤ 1 and
0 ≤ k ≤ q/p. The KL-divergence betweenPr andPr ′ is:

KL(Pr ,Pr ′) = −p ln k − (q − p) ln
q − kp

q − p
.

Assume we have eventsα = w1 andβ = w1, w2. The odds
ratio of α givenβ betweenPr andPr ′ is:

O′(α | β)
O(α | β)

=
k(q − p)
q − kp

.

We can see that asp approaches0, the KL-divergence also
approaches0, while the odds ratioO′(α | β)/O(α | β)
approachesk.

This example shows that we can make the KL-divergence
arbitrarily close to0, while keeping some odds ratio ar-
bitrarily close to some constantk. In this example, we
condition on eventβ, which has a probability ofq that
can be arbitrarily large. However, the probability ofα,
which is p according toPr and kp according toPr ′, is
very small. Hence, although we havePr ′(α)/Pr(α) = k,
this ratio is ignored by KL-divergence because the term
−p ln k is very small asp approaches0. More generally,
the “contribution” of a worldw to KL-divergence is equal
to −Pr(w) ln(Pr ′(w)/Pr(w)). Therefore for a fixed ratio
Pr ′(w)/Pr(w), this “contribution” becomes closer to0 as
Pr(w) decreases, and becomes infinitesimal whenPr(w)
approaches0.

Euclidean distance Another popular measure to compare
two probability distributions is the Euclidean distance.

Definition 3 Let Pr and Pr ′ be two probability distribu-
tions over the same set of worldsw. The Euclidean distance
betweenPr andPr ′ is defined as:

ED(Pr ,Pr ′)
def
=

∑
w

√
(Pr ′(w)− Pr(w))2.

That is, when computing the Euclidean distance, we add
up the squared differences between pairs of probability val-
ues. Therefore, this measure has the same problem as KL-
divergence: even if there is a large relative difference for the
probability of a world with respect toPr andPr ′, it will be
ignored if this probability is very small. Consequently, we
cannot provide any guarantee on the ratioO′(α | β)/O(α |
β), no matter how small the Euclidean distance is (unless it
is zero).

To summarize, neither KL-divergence nor Euclidean dis-
tance can be used to provide guarantees on the ratioO′(α |
β)/O(α | β), as we did in Theorem 2 using our distance
measure.

Applications to sensitivity analysis
We now consider a major application of our distance mea-
sure to sensitivity analysis in belief networks (Laskey 1995;
Castillo, Gutíerrez, & Hadi 1997; Kjaerulff & van der Gaag
2000; Darwiche 2000; Chan & Darwiche 2001). A belief
network is a graphical probabilistic model, composed of two
parts: a directed acyclic graph where nodes represent vari-
ables, and a set of conditional probability tables (CPTs), one
for each variable (Pearl 1988; Jensen 2001). The CPT for
variableX with parentsU defines a set of conditional be-
liefs of the formθx|u = Pr(x | u), wherex is a value of
variableX, u is an instantiation of parentsU, andθx|u is
the probability value ofx givenu, and is called a network
parameter.

One of the key questions with respect to belief networks
is this: what can we say about the global effect of changing
some parameterθx|u to a new valueθ′x|u? That is, what is
the effect of such a local parameter change on the value of
some arbitrary queryPr(α | β)?

Chan and Darwiche (2001) have provided a partial answer
to this question, for the case where: variableX is binary (it
has only two values,x andx); α is the valuey of some vari-
ableY ; β is the instantiatione of some variablesE, and
neitherθx|u nor θ′x|u is extreme (equal to 0 or 1). Specifi-
cally under these conditions, they have shown that:

| ln O′(y | e)− ln O(y | e)| ≤
∣∣∣∣∣ln

θ′x|u
θ′x|u

− ln
θx|u
θx|u

∣∣∣∣∣ .

Using the above bound, Chan and Darwiche have provided



a formalization of a number of intuitions relating to the sen-
sitivity of probabilistic queries to changes in network pa-
rameters. We will now show how our distance measure can
be used to derive a generalization of the above bound, which
applies without any of the previously mentioned restrictions.

Suppose that our initial belief network isN and it induces
a probability distributionPr . By changing the CPT for vari-
ableX, we produce a new belief networkN ′ that induces a
probability distributionPr ′. If we are able to compute the
distance betweenPr andPr ′, D(Pr ,Pr ′), we can then use
Theorem 2 to provide a guarantee on the global effect of the
local CPT change. As it turns out, the distance can be com-
puted locally as given by the following theorem.

Theorem 3 Let N andN ′ be belief networks which induce
distributionsPr andPr ′ respectively, and letX be a vari-
able with parentsU in networkN . Suppose thatN ′ is ob-
tained fromN by changing the conditional probability dis-
tribution of variableX given parent instantiationu from
ΘX|u to Θ′X|u, i.e. we change parameterθx|u to θ′x|u for
every valuex. If Pr(u) > 0, then:

D(Pr ,Pr ′) = D(ΘX|u, Θ′X|u).

The above theorem shows that the distance between the
global probability distributions induced by networksN and
N ′ is exactly the distance between the local distributions of
X givenu, assuming that all other local distributions inN
andN ′ are the same.

Theorem 3 is of great practical importance as it allows
us to invoke Theorem 2 to provide a generalized sensitivity
analysis formula for belief networks.

Corollary 1 LetN andN ′ be belief networks which induce
distributionsPr andPr ′ respectively, and letX be a vari-
able with parentsU in networkN . Suppose thatN ′ is ob-
tained fromN by changing the conditional probability dis-
tribution of variableX given parent instantiationu from
ΘX|u to Θ′X|u, i.e. we change parameterθx|u to θ′x|u for
every valuex. If Pr(u) > 0, then:

e−D(ΘX|u,Θ′X|u) ≤ O′(α | β)
O(α | β)

≤ eD(ΘX|u,Θ′X|u).

The bound of Chan and Darwiche is a special case of
Corollary 1, whenX has only two valuesx andx. In this
case, the distanceD(ΘX|u, Θ′X|u) is equal to:

D(ΘX|u, Θ′X|u) =

∣∣∣∣∣ln
θ′x|u
θx|u

− ln
θ′x|u
θx|u

∣∣∣∣∣

=

∣∣∣∣∣ln
θ′x|u
θ′x|u

− ln
θx|u
θx|u

∣∣∣∣∣ .

We have therefore generalized their results on sensitivity
analysis to arbitrary events and belief networks. We have
also relaxed the condition that neitherθx|u nor θ′x|u can be
extreme.

We now close this section with a final application of
our distance measure. SupposeX is a variable with par-
entsU, valuesx1, x2 andx3, and parametersθx1|u = .6,

θx2|u = .3 andθx3|u = .1. Suppose further that we want
to change the parameterθx1|u = .6 to θ′x1|u = .8. As a
result, we will need to change the other parametersθx2|u
andθx3|u so that the sum of all three parameters remains to
be 1. BecauseX is multivalued, there are infinitely many
ways to change the other two parameters and the question
is: which one of them should we choose? One popular
scheme, which we will call theproportional scheme,dis-
tributes the mass1 − θ′x1|u = 1 − .8 = .2 among the other
two parameters proportionally to their initial values. That
is, the new parameters will beθ′x2|u = .2(.3/.4) = .15
and θ′x3|u = .2(.1/.4) = .05. This scheme has been
used in all approaches to sensitivity analysis we are famil-
iar with (Laskey 1995; Kjaerulff & van der Gaag 2000;
Darwiche 2000), yet without justification. As it turns out,
we can use our distance measure to prove the optimality of
this scheme in a very precise sense.

Theorem 4 When changing a parameterθx|u to θ′x|u for a
multivalued variableX, the proportional scheme, i.e. the
one that setsθ′xi|u = (1 − θ′x|u)(θxi|u/(1 − θx|u)) for all
xi 6= x, leads to the smallest distance between the original
and new distributions ofX, which is given by:

D(ΘX|u, Θ′X|u) =

∣∣∣∣∣ln
θ′x|u
θx|u

− ln
θ′x|u
θx|u

∣∣∣∣∣

=

∣∣∣∣∣ln
θ′x|u
θ′x|u

− ln
θx|u
θx|u

∣∣∣∣∣ ,

where we defineθ′x|u = 1− θ′x|u andθx|u = 1− θx|u.

Theorem 4 thus justifies the use of the proportional
scheme on the grounds that it leads to the tightest bound
on the amount of associated belief change.

Applications to belief revision
The problem of probabilistic belief revision can be defined
as follows. We are given a probability distributionPr , which
captures a state of belief and assigns a probabilityp to some
eventγ. We then obtain evidence suggesting a probability
of q 6= p for γ. Our goal is to change the distributionPr
to a new distributionPr ′ such thatPr ′(γ) = q. The are
two problems here. First, usually there are many choices for
Pr ′. Which one should we adopt? Second, if we decide to
choose the new state of beliefPr ′ according to some spe-
cific method, can we provide any guarantee on the amount
of belief change that will be undergone as a result of moving
from Pr to Pr ′?

As for the first question, we will consider two methods
for updating a probability distribution in the face of new ev-
idence: Jeffrey’s rule (Jeffrey 1965) and Pearl’s method of
virtual evidence (Pearl 1988). As for the second question,
we will show next that we can indeed provide interesting
guarantees on the amount of belief change induced by both
methods. We present the guarantees first and then some of
their applications.



Jeffrey’s rule We start with Jeffrey’s rule for accommo-
dating uncertain evidence.

Definition 4 Let Pr be a probability distribution over
worlds w, and let γ1, . . . , γn be a set of mutually exclu-
sive and exhaustive events that are assigned probabilities
p1, . . . , pn, respectively, byPr . Suppose we want to change
Pr to a new distributionPr ′ such that the probabilities of
γ1, . . . , γn becomeq1, . . . , qn, respectively. Jeffrey’s rule
defines the new distributionPr ′ as follows:

Pr ′(w)
def
= Pr(w)

qi

pi
, if w |= γi.

The main result we have about Jeffrey’s rule is that the
distance between probability distributionsPr andPr ′ can
be computed directly from the old and new probabilities of
γ1, . . . , γn. This immediately allows us to invoke Theorem 2
as we show next.

Theorem 5 LetPr andPr ′ be two distributions, wherePr ′

is obtained by applying Jeffrey’s rule toPr as given in Def-
inition 4. We then have:

D(Pr ,Pr ′) = lnmax
i

qi

pi
− lnmin

i

qi

pi
.

We immediately get the following bound.

Corollary 2 If O andO′ are the odds functions before and
after applying Jeffrey’s rule as given in Definition 4, then:

e−d ≤ O′(α | β)
O(α | β)

≤ ed,

whered = ln maxi (qi/pi)− lnmini (qi/pi).
To consider an example application of Corollary 2, we use

a simple example from Jeffrey (1965).

Example 3 Assume that we are given a piece of cloth,
where its color can be one of: green (cg), blue (cb), or violet
(cv). We also want to know whether in the next day, the cloth
will be sold (s), or remain unsold (s). Our original state of
belief is given by the probability distribution of the worlds
Pr :

Pr(s, cg) = .12, Pr(s, cb) = .12, Pr(s, cv) = .32,
Pr(s, cg) = .18, Pr(s, cb) = .18, Pr(s, cv) = .08.

Therefore, our original state of belief on the color of the
cloth (cg, cb, cv) is given by the distribution(.3, .3, .4). As-
sume that we now inspect the cloth by candlelight, and we
want to revise our state of belief on the color of the cloth to
the new distribution(.7, .25, .05) using Jeffrey’s rule. The
distance between the original and new distributions of the
worlds can be computed by simply examining the original
and new distributions on the color variable as given by The-
orem 5. Specifically, the distance between the two distribu-
tions isln(.7/.3)− ln(.05/.4) = 2.93. We can now use this
distance to provide a bound on the change in any of our be-
liefs. Consider for example our belief that the cloth is green
given that it is sold tomorrow,Pr(cg|s), which is initially
.214. Suppose we want to find the bound on the change in
this belief induced by the new evidence. Given Corollary 2
and Equation 2, we have:

.0144 ≤ Pr ′(cg|s) ≤ .836,

which suggests that a dramatic change in belief is possible
in this case. If we actually apply Jeffrey’s rule, we get the
new distributionPr ′:

Pr ′(s, cg) = .28, Pr ′(s, cb) = .10, Pr ′(s, cv) = .04,
Pr ′(s, cg) = .42, Pr ′(s, cb) = .15, Pr ′(s, cv) = .01,

according to whichPr ′(cg|s) = .667, which does sug-
gest a dramatic change. On the other hand, if the new
evidence on the color of the cloth is given by the distri-
bution (.25, .25, .50) instead, the distance between the old
and new distributions will be.406, and our bound will be:
.153 ≤ Pr ′(cg|s) ≤ .290, which is obviously much tighter
as this evidence is much weaker.

We close this section by showing that Jeffrey’s rule com-
mits to a probability distribution which minimizes our dis-
tance measure. Hence, Jeffrey’s rule leads to the strongest
bound on the amount of belief change.

Theorem 6 The new distributionPr ′ obtained by applying
Jeffrey’s rule to an initial distributionPr is optimal in the
following sense. Among all possible distributions that as-
sign probabilitiesq1, . . . , qn to eventsγ1, . . . , γn, Pr ′ is the
closest toPr , according to the distance measure defined in
Definition 1.

Pearl’s method We now consider Pearl’s method of vir-
tual evidence. According to this method, we also have a
new evidenceη that bears on a set of mutually exclusive and
exhaustive eventsγ1, . . . , γn, but the evidence is not speci-
fied as a set of new probabilities for these events. Instead,
for eachγi, i 6= 1, we are given a numberλi which is inter-
preted as the ratioPr(η | γi)/Pr(η | γ1). That is,λi rep-
resents the likelihood ratio that we would obtain evidence
η given γi, compared with givenγ1. Note that under this
interpretation, we must haveλ1 = 1.

Definition 5 Let Pr be a probability distribution over
worlds w, and let γ1, . . . , γn be a set of mutually exclu-
sive and exhaustive events that are assigned probabilities
p1, . . . , pn, respectively, byPr . Suppose we want to change
Pr to a new distributionPr ′ to incorporate virtual evidence
η, specified byλ1, . . . , λn, with λ1 = 1 and λi = Pr(η |
γi)/Pr(η | γ1) if i 6= 1. Pearl’s method of virtual evidence
defines the new distributionPr ′ as follows:

Pr ′(w)
def
= Pr(w)

λi∑
j pjλj

, if w |= γi.

Again, we can easily compute the distance between dis-
tributionsPr andPr ′ using only local information.

Theorem 7 LetPr andPr ′ be two distributions, wherePr ′

is obtained fromPr by accommodating virtual evidence as
given by Definition 5. We then have:

D(Pr ,Pr ′) = ln max
i

λi − lnmin
i

λi.

This immediately gives us the following bound.



Corollary 3 If O andO′ are the odds functions before and
after applying Pearl’s method as given in Definition 5, then:

e−d ≤ O′(α | β)
O(α | β)

≤ ed,

whered = ln maxi λi − lnmini λi.

For the special case where our evidenceη bears only on
¬γ versusγ, with λ = Pr(η | γ)/Pr(η | ¬γ), the above
bound reduces to| ln O′(α | β) − ln O(α | β)| ≤ | ln λ|.
Therefore, the bound is tighter whenλ is closer to 1. Clearly,
whenλ = 1, the evidence is trivial and the two distributions
are the same.

Consider the following example from Pearl (1988).

Example 4 On any given day, there is a burglary on any
given house with probabilityPr(b) = 10−4, while the alarm
of Mr. Holmes’ house will go off if there is a burglary with
probability Pr(a | b) = .95, and go off if there is no bur-
glary with probability Pr(a | b) = .01. One day, Mr.
Holmes’ receives a call from his neighbor, Mrs. Gibbons,
saying she may have heard the alarm of his house going
off. Mr. Holmes concludes that there is an 80% chance
that Mrs. Gibbons did hear the alarm going off. Accord-
ing to Pearl’s method, this evidence can be interpreted as:
λ = Pr(η | a)/Pr(η | a) = 4. Therefore, the distance be-
tween the original distributionPr , and the new distribution
Pr ′ which results from incorporating the virtual evidence, is
| ln λ| = | ln 4| = 1.386. We can use this distance to bound
the change in any of our beliefs. In particular, we may want
to bound the new probability that there was a burglary at
Mr. Holmes’ house. Equation 2 gives us:

2.50× 10−5 ≤ Pr ′(b) ≤ 4.00× 10−4.

If we actually apply Pearl’s method, we getPr ′(b) = 3.85×
10−4.

Our distance measure is then useful for approximate rea-
soning givensoft evidence, as we can use the bound to ap-
proximate the probability of any event after the accommoda-
tion of such evidence. The approximation itself takes con-
stant time to compute since we only need to compute the
distance measure and apply Equation 2. We stress, how-
ever, that the bound becomes trivial in the case ofhard evi-
dencesince the initial and new distributions no longer have
the same support in this case, making the distance between
them infinitely large.

We close this section by a final application of our distance
measure, relating to the notion ofevidence strength.

Example 5 Going back to Example 3, we ask: What kind
of evidence will assure us that our belief in the cloth being
green given that it is sold tomorrow, which is now at.214,
would not exceed.3? Equation 2 can be used in this case
to obtain a sufficient condition on the strength of evidence
which will ensure this. Specifically, Equation 2 gives us:

.214 e−d

.214 (e−d − 1) + 1
≤ Pr ′(cg|s) ≤ .214 ed

.214 (ed − 1) + 1
.

To ensure thatPr ′(cg|s) ≤ .3, we must find a distanced that
equates the above upper bound to.3. A value ofd = .454

has this property. Hence, any piece of evidence which has
a distance of no more than.454 from the current distribu-
tion on color, (.3, .3, .4), would guarantee thatPr ′(cg|s)
does not exceed.3. Following are some pieces of evidence
which satisfy this condition:(.25, .25, .5), (.25, .3, .45) and
(.35, .3, .35).

Conclusion
We proposed a distance measure between two probability
distributions, which allows one to bound the amount of be-
lief change that occurs when moving from one distribu-
tion to the other. We also contrasted the proposed measure
with some well known measures, including KL-divergence,
showing how they fail to be the basis for bounding belief
change as is done using the proposed measure. We then pre-
sented two practical applications of the proposed distance
measure: sensitivity analysis in belief networks and proba-
bilistic belief revision. We showed how the distance mea-
sure can be easily computed in these applications, and then
used it to bound global belief changes that result from ei-
ther the perturbation of local conditional beliefs or the ac-
commodation of soft evidence. Finally, we showed that two
well known techniques in sensitivity analysis and belief re-
vision correspond to the minimization of our proposed dis-
tance measure and, hence, can be shown to be optimal from
that viewpoint.
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