
Re
ursive ConditioningAny{spa
e
onditioning method with treewidth{bounded
omplexityAdnan Darwi
heComputer S
ien
e DepartmentUniversity of CaliforniaLos Angeles, CA 90095darwi
he�
s.u
la.eduO
tober 3, 2000Abstra
tWe introdu
e an any{spa
e algorithm for exa
t inferen
e in Bayesian networks,
alled re
ursive
ondi-tioning. On one extreme, re
ursive
onditioning takes O(n) spa
e and O(n exp(w log n)) time|where nis the size of a Bayesian network and w is the width of a given elimination order|therefore, establishinga new
omplexity result for linear{spa
e inferen
e in Bayesian networks. On the other extreme, re
ur-sive
onditioning takes O(n exp(w)) spa
e and O(n exp(w)) time, therefore, mat
hing the
omplexityof state{of{the{art algorithms based on
lustering and elimination. In between linear and exponentialspa
e, re
ursive
onditioning
an utilize memory at in
rements of X-bytes, where X is the number ofbytes needed to store a
oating point number in a
a
he. Moreover, the algorithm is equipped with aformula for
omputing its average running time under any amount of spa
e, hen
e, providing a valuabletool for time{spa
e tradeo�s in demanding appli
ations. Re
ursive
onditioning is therefore the �rstalgorithm for exa
t inferen
e in Bayesian networks to o�er a smooth tradeo� between time and spa
e,and to expli
ate a smooth, quantitative relationship between these two important resour
es.1 Introdu
tionConditioning algorithms have been of major interest to the Bayesian network
ommunity sin
e the introdu
-tion of
utset
onditioning as one of the �rst methods for inferen
e in multiply{
onne
ted networks [25, 26℄.Most of the interest in
onditioning methods stems from their intuitive appeal as they are based on the prin-
iple of reasoning by
ases|a very
ommon form of human reasoning. Reasoning by
ases is amenable toparallelization, fa
ilitates time{spa
e tradeo� [12℄, and appears to be best positioned for exploiting
ontext{spe
i�
 independen
e [2℄.The best known
onditioning method is
utset
onditioning, whi
h is also known as the loop{
utset method[25, 26, 28℄. The best known fa
t about this method is its linear spa
e
omplexity, whi
h is very attra
tivewhen
ompared to the exponential spa
e
omplexity (in treewidth) of state{of{the{art algorithms based on
lustering [19, 30, 18, 17℄ and elimination [29, 20, 11, 32℄. The worst known fa
t about
utset
onditioningis its time
omplexity, whi
h is exponential in the size of loop{
utset. The loop{
utset
an be quite large,even for networks whi
h
an be solved in linear time and spa
e using other methods.There have been improvements and variations on
utset
onditioning whi
h redu
e its running time under
ertain
onditions [16, 5, 13℄. For example, dynami

onditioning [5℄ and lo
al
onditioning [13℄ are knownto take linear time on some networks for whi
h
utset
onditioning is known to be exponential. But bothmethods lose the linear spa
e
omplexity of
utset
onditioning. Moreover, neither the time nor the spa
e
omplexity of these methods are bounded formally. Bounded
onditioning [16℄ will also redu
e the runningtime of
utset
onditioning, but at the expense of returning approximate answers.In this paper, we introdu
e a method for
onditioning, re
ursive
onditioning, whi
h is
hara
terized byits any{spa
e behavior as it
an use as mu
h spa
e as is made available to it.1

- On one extreme, re
ursive
onditioning uses linear spa
e, leading to a time
omplexity ofO(n exp(w logn)),where n is the number of network nodes and w is the width of a given elimination order.- On the other extreme, re
ursive
onditioning uses O(n exp(w)) spa
e, leading to a time
omplexity ofO(n exp(w)).Therefore, if given enough spa
e, re
ursive
onditioning will mat
h the spa
e and time
omplexity of
lus-tering and elimination methods. However, if less spa
e is given to re
ursive
onditioning, its running timewill in
rease until it hits O(n exp(w logn)) with linear spa
e, whi
h is a new
omplexity result for inferen
ein Bayesian networks. Interestingly enough, this running time is in
omparable to the running time of
utset
onditioning, O(n exp(
)), where
 is the loop{
utset size.To introdu
e the key intuition underlying re
ursive
onditioning, we note that the main power of
on-ditioning is its ability to redu
e network
onne
tivity. In
utset
onditioning, this power is exploited forredu
ing a multiply{
onne
ted network into a singly{
onne
ted network that
an be solved using the (linear)polytree algorithm. In re
ursive
onditioning, however, this power is exploited to de
ompose a network intosmaller subnetworks that
an be solved independently. Ea
h of these subnetworks is then solved re
ursivelyusing the same method, until we rea
h boundary
onditions where we try to solve single{node networks.The de
omposition of a problem into smaller problems is a
lassi
al example of the divide{and{
onquer
omputational paradigm. Alan George is
redited for having used this te
hnique in 1973 to solve systemsof linear equations [15℄. His algorithm, termed nested disse
tion, was later generalized [21℄ and appliedto other problems, su
h as network reliability [27℄. The appli
ation of nested disse
tion to inferen
e inBayesian networks was also investigated independently by Gregory Cooper in [3℄, under the name re
ursivede
omposition. We will have more to say about the relationship between re
ursive
onditioning and previousworks in Se
tion 6.4.A key
on
ept in
utset
onditioning is that of a loop{
utset, whi
h is a set of nodes that when instantiatedwill render the network singly{
onne
ted. In re
ursive
onditioning, the
onditioning pro
ess is driven bya new graphi
al stru
ture, whi
h we
all a dtree. This tree spe
i�es many
utsets, ea
h to be used at adi�erent level of the re
ursive
onditioning pro
ess. As we shall see later, a dtree is a simple
on
ept and itis extremely easy to
onstru
t one. There are typi
ally many dtrees for a Bayesian network, any of whi
h
an be used to drive re
ursive
onditioning. Some of these dtrees, however, will lead to more work thanothers. The quality of a dtree is measured by its width, whi
h we also introdu
e in this paper, and thedi�erent
omplexities of re
ursive
onditioning will be expressed in terms of the width of used dtree. Weshall show that given an elimination order of width w for a Bayesian network, we
an
onstru
t in lineartime a
orresponding dtree of width � w.One of the more interesting things about re
ursive
onditioning is how it utilizes spa
e. Re
ursive
onditioning solves a network by de
omposing it into smaller, independent subnetworks. A
lose examinationof the algorithm reveals that it
an solve some subnetworks many times, therefore, leading to many redundant
omputations. By
a
hing the solutions of subnetworks, re
ursive
onditioning will avoid su
h redundan
y.This will redu
e its running time, but will also in
rease its spa
e requirements. When all redundan
iesare avoided, re
ursive
onditioning will run in O(n exp(w)) time, but it will also take that mu
h spa
e tostore the solutions of subnetworks. What is important, however, is that we
an
a
he as many results asour available memory would allow, leading to any{spa
e behavior. Moreover, we shall provide a formulawhi
h
an be used to
ompute (in linear time) the average running time of re
ursive
onditioning under anyamount of available spa
e. This equips the algorithm with a very important tool for time{spa
e tradeo�,whi
h appears to be ne
essary for
ertain appli
ations:- One
lass of su
h appli
ations involves
omputationally demanding networks, whose memory require-ments (using
lassi
al algorithms) ex
eed existing resour
es. Not only
an one use re
ursive
ondition-ing on these networks, but one
an also
ompute the extra time entailed by running under the limitedmemory. This extra time
an then be used to make a de
ision on whether to a
quire more memory.- Another
lass of appli
ations involves embedded systems, where only a �xed amount of memory (typ-i
ally modest) is available for the Bayesian network appli
ation. Here, one
an subtra
t the memoryneeded to store the re
ursive
onditioning
ode and asso
iated network, and then run the algorithmunder the remaining amount of memory. Re
all that re
ursive
onditioning allows one to tradeo� spa
e2

A B C D

E

b

a

a
b

.90 .10

.20 .80

d

c

c
d

.50 .50

.40 .60 b

c
b

c

.30

.15 .85

.70

aa

.60 .40 b

b

d

d

b

d

b

d

e e

.25 .75

.75.25

.90

.05 .95

.10Figure 1: A Bayesian network.at in
rements of X{bytes, where X is the number of bytes needed to store a
oating point number ina
a
he.- Finally, appli
ations in whi
h Bayesian network inferen
e runs as a ba
kground pro
ess in an operatingsystem are be
oming more popular. In these appli
ations, memory usage should be as invisible aspossible to ensure transparen
y with respe
t to end{users. A theory of any{spa
e reasoning appearsessential in redu
ing the used memory in these appli
ations.This paper is stru
tured as follows. In Se
tion 2, we dis
uss the basi
 intuition behind
onditioningand illustrate its
omputational power. We also
ontrast
utset
onditioning with re
ursive
onditioning,therefore, introdu
ing the key prin
iple behind our presented method. In Se
tion 3, we dis
uss the linear{spa
e version of re
ursive
onditioning and introdu
e the
on
ept of a dtree. In Se
tion 4, we introdu
ethe exponential{spa
e version of re
ursive
onditioning and provide a number of its properties. We thenintrodu
e the any{spa
e version of re
ursive
onditioning in Se
tion 5 and show that the �rst two versionsare only extremes. In Se
tion 6, we study the relationship between dtrees, elimination orders and jointrees,showing polynomial time transformations from one to the other. We �nally
lose in Se
tion 7 with some
on
luding remarks.2 The Computational Power of Making AssumptionsA very
ommon form of human reasoning|whi
h is dominant in mathemati
al proofs|is that of reasoningby
ases or assumptions. To solve a
ompli
ated problem, we try to simplify it by
onsidering a number of
ases whi
h
orrespond to a set of mutually ex
lusive and exhaustive assumptions. We then solve ea
h ofthe
ases under its
orresponding assumption, and
ombine the results to obtain a solution to the originalproblem. In probabilisti
 reasoning, this is best illustrated by the identity:Pr(x) =X
 Pr(x;
); (1)where x and
 are instantiations of variablesX and C, respe
tively.1 Here, we try to
ompute the probabilityof instantiation x by
onsidering a number of
ases, ea
h
orresponding to an assumption
 (an instantiationof variables C). We then
ompute the probability of x under ea
h assumption
, and add up the results toget the probability of x.In general, solving a problem be
omes easier when we make assumptions and probabilisti
 reasoning isno ex
eption. Consider, for example, the multiply{
onne
ted network N of Figure 1. Suppose further thatour goal is to
ompute the probability of some event, say e, with respe
t to this network, denoted PrN (e). Ifwe perform this
omputation under the assumption b, therefore
omputing PrN (e; b), we
an use the singly{
onne
ted network <N ; b> of Figure 2 instead. That is, we are guaranteed to obtain the same probabilityfor e; b with respe
t to either network.1We are using the standard notation: variables are denoted by upper{
ase letters and their values by lower{
ase letters. Setsof variables are denoted by bold{fa
e upper{
ase letters and their instantiations are denoted by bold{fa
e lower{
ase letters.For variable A and value a, we often write a instead of A=a. We will use the same
onvention for variables A and theirinstantiation a. For a variable A with values true and false, we use a to denote A=true and a to denote A=false.3

d

c

c
d

.50 .50

.40 .60b

c
b

c

.30

.15 .85

.70

aa

.60 .40

d

c

c
d

.50 .50

.40 .60b

c
b

c

.30

.15 .85

.70

b

a

a
b

.90 .10

.20 .80

b

a

a
b

.90 .10

.20 .80

aa

.60 .40

d

d

b

A B C D

E

A B C D

E

e e

.25 .75

.75.25

d

e e

d .90 .10

.05 .95

Case b: Network <N, >b

Case b: Network <N, >

Figure 2: Instantiating variables to render the network singly{
onne
ted.Note that network <N ; b> of Figure 2 was obtained using a lo
al transformation to network N ofFigure 1:1. we deleted the edge B!E;22. we redu
ed the
onditional probability table (CPT) of node E frome ebd :25 :75bd :25 :75bd :90 :10bd :05 :95 to e ed :25 :75d :25 :75in order to re
e
t the assumption that B is instantiated to b.3. we re
orded the observation b (shown pi
torially by a box around the value b in the CPT for B).Note that the result of the above instantiation operation is not simply a Bayesian network, but a Bayesiannetwork together with some asso
iated eviden
e.In general, we will use the term instantiated network to refer to the pair <N ; e>, whi
h results frominstantiating e in network N as indi
ated above. Moreover, we will write Pr<N ;e>(x) to refer to the proba-bility of instantiation e;x with respe
t to the instantiated network <N ; e>. For example, in Figure 2, wewill write Pr<N ;b>(e) to mean the probability of b; e with respe
t to the instantiated network <N ; b>. Thismeans that when we instantiate eviden
e e in network N , we will only be
omputing probabilities of eventsof the form e;x with respe
t to the instantiated network.An instantiated network <N ; e> will always be- equivalent to network N as far as
omputing the probability of any instantiation e;x.3- less
onne
ted than network N (unless every variable in e is a leaf node in network N).2We
an also delete the edge B!C from network <N ; b>, simplifying it even further.3A
ommon
onfusion is that if Pr is the probability distribution spe
i�ed by the original network N , then Pr(: j e) is theprobability distribution spe
i�ed by the instantiated network <N ;e>. This is not true! The only relation between the twodistributions is that they agree on the probability of any instantiation e;x [5℄. We believe that part of the
onfusion stems fromthe term
onditioned network, whi
h we and others have used in the past to refer to <N ;e>. This is why we avoid the termin this paper, and use instantiated network instead. 4

1 2 3 n

Figure 3: A Bayesian network with a large loop{
utset.This very important result, whi
h formalizes the
omputational power of making assumptions, is the keyresult on whi
h
onditioning methods are based. To state this result more formally, we have:Pr<N ;e>(x) = PrN (e;x); (Conditioning) (2)for any instantiation x.Cutset
onditioning was the �rst method to identify this
omputational power and it exploited it byidentifying a set of variables C, known as a loop{
utset, whi
h when instantiated will render the networksingly{
onne
ted. It then performed a
ase analysis on the instantiations of C, redu
ing ea
h
ase to that ofsolving a singly{
onne
ted network (using the polytree algorithm). Spe
i�
ally, to
ompute the probabilityof any eviden
e e,
utset
onditioning uses Equation 2 as follows:PrN (e) =X
 PrN (e;
) =X
 Pr<N ;
>(e): (Cutset Conditioning) (3)This leads to O(exp(j C j))
alls to the polytree algorithm, one
all for ea
h singly{
onne
ted network<N ;
> (j C j is the number of variables in the loop{
utset C).The main problem with
utset
onditioning is that a large loop{
utset will lead to a blow up in thenumber of
ases that it has to
onsider. In Figure 3, for example, the loop{
utset
ontains n variables,leading
utset
onditioning to
onsider 2n
ases (when all variables are binary). It is worth mentioning,however, that
lustering and elimination methods
an solve this network in linear time. Again, although anumber of improvements have been suggested to redu
e the number of
ases
onsidered by
utset
onditioning[16, 5, 13, 2℄, the best bound we
urrently have on the worst{
ase
omplexity of any linear{spa
e
onditioningmethod is the one stating that
omplexity is exponential in the size of loop{
utset.In this paper, we propose another
onditioning method whi
h exploits assumptions di�erently than theyare exploited by
utset
onditioning. Spe
i�
ally, instead of using assumptions to singly{
onne
t a Bayesiannetwork, we will use su
h assumptions to de
ompose a Bayesian network. By de
omposition, we mean thepro
ess of splitting the network into smaller, dis
onne
ted pie
es that
an be solved independently. Consideragain the network N in Figure 1. Figure 4 shows how we
an de
ompose network N into two subnetworks,N l and N r, by instantiating variable B. Moreover, Figure 5 shows how we
an further de
ompose networkN r into two subnetworks, N rl and N rr, by instantiating variable C. Note that subnetwork N rl
ontains asingle{node and
annot be de
omposed further.We
an always use this re
ursive de
omposition pro
ess to redu
e the
omputation of PrN (e) into the
omputation of probabilities with respe
t to single{node networks. Spe
i�
ally, let C be a set of variablessu
h that the instantiated network <N ;
> is de
omposed into two dis
onne
ted subnetworks, <N ;
>land <N ;
>r. We then have:PrN (e) =X
 Pr<N ;
>(e) =X
 Pr<N ;
>l(el)Pr<N ;
>r (er); (Re
ursive Conditioning) (4)where el and er are the subsets of instantiation e pertaining to subnetworks <N ;
>l and <N ;
>r,respe
tively. This is the
hara
teristi
 equation of re
ursive
onditioning, whi
h parallels Equation 3 of
utset
onditioning. Note that ea
h of the queries Pr<N ;
>l(el) and Pr<N ;
>r (er)
an be de
omposed usingthe same method re
ursively, until we rea
h queries with respe
t to single{node networks.This is a very simple, universal pro
ess whi
h
an be used to
ompute the probability of any instantiation.It is a nondeterministi
 pro
ess though sin
e there are many ways in whi
h we
an de
ompose a Bayesian5

A B C D

E

A B C D

E

B

N

N
Nl

r

Figure 4: De
omposing a Bayesian network by instantiating variable B.
A B

C D

E

A B C D

E

C D

EB

C

N

N N
rr

r

rl

Figure 5: De
omposing a Bayesian network by instantiating variables B and C.network into dis
onne
ted subnetworks. The question then is: whi
h de
omposition should we use? As itturns out, any de
omposition will be valid, but some de
ompositions will lead to less work than others. Thekey is therefore to
hoose de
ompositions that will minimize the amount of work done, and to bound it insome meaningful way. We will address this issue later but we �rst provide a formal tool for
apturing a
ertain de
omposition poli
y, whi
h is the subje
t of the following se
tion.Before we
on
lude this se
tion, we highlight three key di�eren
es between
utset
onditioning and re
ur-sive
onditioning. First, the role of a
utset is di�erent: in
utset
onditioning, it is used to singly{
onne
ta network; in re
ursive
onditioning, it is used to de
ompose a network into dis
onne
ted subnetworks. InFigure 1, for example, variable C
onstitutes a valid loop{
utset sin
e it would render the network singly{
onne
ted when instantiated. However, instantiating variable C will not de
ompose the network into smallersubnetworks; hen
e, C is not a valid
utset in re
ursive
onditioning. Next, there is a single
utset in
utset
onditioning, whi
h is used at the very top level to generate a number of singly{
onne
ted networks. Butthere are many
utsets in re
ursive
onditioning, ea
h of whi
h is used at a di�erent level of the re
ursion.Finally, the boundary
ondition in
utset
onditioning is that of rea
hing a singly{
onne
ted network, butthe boundary
ondition in re
ursive
onditioning is that of rea
hing a single{node network.3 Inferen
e by Re
ursive ConditioningThe method of re
ursive
onditioning is quite simple in
on
ept: we
ondition on a
utset to de
ompose theBayesian network into smaller, dis
onne
ted subnetworks and then solve ea
h of the subnetworks re
ursivelyusing the same method. This method is an example of the
lassi
al divide{and{
onquer paradigm, whi
h isquite prevalent in
omputer algorithms. The e�e
tiveness of this method, however, is very mu
h dependenton our
hoi
e of
utsets at ea
h level of the re
ursive pro
ess. Re
all that the number of
ases we have to
onsider at ea
h level is exponential in the size of used
utset. Therefore, we want to
hoose our
utsets inorder to minimize the total number of
onsidered
ases.Before we
an address this issue, however, we need to introdu
e a formal tool for
apturing the
olle
tion6

A B C D

E

aa

.60 .40

d

c

c
d

.50 .50

.40 .60

b

c

b

d

d

b

b

a

c

.30

.15 .85

.70b

b

d

b

d

e e

.25 .75

.75.25

.90

.05 .95

.10

a
b

.90 .10

.20 .80

Figure 6: A dtree for the Bayesian network in Figure 1.
aa

.60 .40

b

a

a
b

.90 .10

.20 .80 d

c

c
d

.50 .50

.40 .60

c

d

l
<N,b>
A B C D

E
b

c

.30.70

d

e e

.25 .75

.75.25

<N,b>

A B

E

C D

T

T T

<N,b>r

rl

Figure 7: Instantiating variable B to b in a dtree. Note how the CPTs of variables C and E (
hildren ofvariable B) have been redu
ed.of
utsets employed by re
ursive
onditioning. We
all this tool a dtree:De�nition 1 A dtree for a Bayesian network is a full binary tree, the leaves of whi
h
orrespond to thenetwork CPTs.Re
all that a full binary tree is a binary tree where ea
h node has 2 or 0
hildren. Figure 6 depi
ts a dtreefor the Bayesian network in Figure 1.It is important to note that a dtree T for a Bayesian networkN is simply a more stru
tured representationof the network N . That is, it
ontains all the information available in N , and imposes in addition a treestru
ture on the CPTs of N . Following standard
onventions on binary trees, we will often not distinguishbetween a node and the dtree rooted at that node. Therefore, T will refer both to a dtree and the root ofthat dtree.A dtree T suggests that we de
ompose its asso
iated Bayesian network by instantiating variables that areshared by its left and right subtrees, T l and T r, whi
h are denoted by vars(T l) \ vars(T r). In Figure 6, Bis the only variable shared by the left and right subtrees. Figure 7 shows the result of instantiating B=bin the dtree. As a result of this instantiation, the instantiated network <N ; b> was de
omposed into twodis
onne
ted subnetworks, <N ; b>l and <N ; b>r, ea
h of whi
h
an be solved independently. What is most7

Algorithm r
1r
1(T)01. if T is a leaf node,02. then return lookup(T)03. else p 004. for ea
h instantiation
 of uninstantiated variables in
utset(T) do05. re
ord instantiation
06. p p+ r
1(T l)r
1(T r)07. un-re
ord instantiation
08. return plookup(T)01. � CPT of variable X asso
iated with leaf T02. if X is instantiated,03. then x re
orded instantiation of X04. p re
orded instantiation of X 's parents05. return �(x j p) // �(x j p) = Pr(x j p)06. else return 1Figure 8: Pseudo
ode for re
ursive
onditioning.important though, is that subtrees T l and T r are guaranteed to be dtrees for the subnetworks <N ; b>l and<N ; b>r, respe
tively. Therefore, ea
h of these subnetworks
an be de
omposed re
ursively using thesesubtrees. The pro
ess
ontinues until we rea
h single{node networks, whi
h
annot be de
omposed further.Figure 8 provides the pseudo
ode for algorithm r
1, whi
h is an implementation of Equation 4 that usesdtree T to dire
t the de
omposition pro
ess. There are two key observations about this algorithm. First, itdoes not
ompute
utsets dynami
ally, but it assumes that they have been pre
omputed as follows.De�nition 2 The
utset of internal node T in a dtree is de�ned as follows:
utset(T) def= vars(T l) \ vars(T r)� a
utset(T);where a
utset(T),
alled the a-
utset of T , is the union of
utsets asso
iated with an
estors of node T in thedtree.4For the root T of a dtree,
utset(T) is simply vars(T l) \ vars(T r). But for a non-root node T , the
utsetsasso
iated with an
estors of T are ex
luded from vars(T l) \ vars(T r) sin
e these
utsets are guaranteed tobe instantiated when r
1 is
alled on node T .The se
ond observation about algorithm r
1 is that it does not really redu
e CPTs when variables areinstantiated. It simply \re
ords" that variables have been instantiated, and \un-re
ords" that when variablesare de-instantiated. Given the implementation of lookup, su
h re
ording/un-re
ording is all we need.Theorem 1 (Soundness) Suppose that T is a dtree for Bayesian network N . Then r
1(T) = PrN (e),where e is the instantiation re
orded before r
1 is
alled.Therefore, to
ompute the probability of instantiation e with respe
t to network N , all we have to do is
onstru
t a dtree T of network N ,
ompute the
utset for ea
h node in T as given in De�nition 2, re
ordthe instantiation e, and �nally
all r
1(T).Note that the more variables we instantiate before
alling r
1, the less work it will do sin
e that wouldredu
e the number of instantiations it has to
onsider on line 04. Therefore, the worst
ase
omplexity for4a
utset(T) = ; when T is a root node. 8

7867
56

45

34
23

12

1

786756453423121

87654321

1

2
3

4
5

6

7

4

1 3

6

5 7

2

Figure 9: Two dtrees for a
hain network, with their
utsets expli
ated. We are only showing the variablesof CPTs as their probabilities do not matter for
omputing
utsets.r
1 is when e = true. In fa
t, in all of the following
omplexity analyses, we do assume that e = true forwhi
h r
1(T) will simply return 1 = PrN (true).Clearly, the only spa
e used by algorithm r
1 is that needed to store the dtree, whi
h is linear in thenetwork size. So what about the time
omplexity of r
1? We
an measure this by
ounting the number ofre
ursive
alls made by r
1 as this number is proportional to its running time. Note that ea
h
all r
1(T),where T is an internal node, will generate two re
ursive
alls for ea
h instantiation of
utset(T). We
antherefore
ount the number of re
ursive
alls made by r
1 as follows.De�nition 3 The
utset width of a dtree is the size of its largest
utset. The a{
utset width of a dtree isthe size of its largest a{
utset.From now on, we will use X# to denote the number of instantiations of variables X.Theorem 2 The total number of re
ursive
alls made by r
1 to node T is a
utset(T)#. Moreover, a
utset(T)# =O(exp(dw
)), where w
 is the
utset width, and d is the depth of node T .In Figure 9, the
utset width of ea
h dtree is 1. However, the a-
utset width is 7 for the �rst dtree andis 3 for the se
ond. In general, for a
hain of n variables, both dtrees will have a
utset width of 1, but theunbalan
ed dtree will have an a{
utset width of O(n), while the balan
ed dtree will have an a{
utset widthof O(logn). Therefore, r
1 will make
(exp(n)) re
ursive
alls to some nodes in the �rst dtree, but willmake O(n) re
ursive
alls to ea
h node in the se
ond dtree.5This example illustrates the signi�
an
e of used dtree on the
omplexity of re
ursive
onditioning. Inparti
ular, we want to use a dtree whi
h a{
utset width is minimal. We will provide in Se
tion 6 twoalgorithms:1. el2dt:
onverts an elimination order of width w into a dtree with
utset width no greater than w.2. bal-dt: balan
es a dtree while keeping its
utset width � w + 1.These two algorithms, and Theorem 2, lead to the following
omplexity of re
ursive
onditioning:Theorem 3 Given an elimination order of width w and length n, and given a balan
ed dtree based on theorder (using el2dt and bal-dt), the total number of re
ursive
alls made by r
1 is O(n exp(w logn)) andthe spa
e it
onsumes is O(n).This is basi
ally the running time of re
ursive
onditioning under linear spa
e. We have a numberof observations about this
omplexity. First, Appendix A dis
usses two experiments, ea
h involving 10005This is worse than any of the known algorithms, whi
h
an solve this network in linear time under linear spa
e. We shallsee later, however, that r
2, the se
ond version of re
ursive
onditioning, will solve this network in linear time using a linearamount of
a
hing (spa
e). 9

87654321

7867

56

45

34

23

12

1

7867

56

45

34

23

12

1

123

12

1

1234

12345

123456

7867

56

45

34

23

12

1

1

2

3

5

6

1

2

3

4

5

6

7

4

a) Cutsets b) A-Cutsets c) ContextsFigure 10: Cutsets, a{
utsets and
ontexts of a dtree.random networks. For the �rst set of networks, Set-A, whi
h
ontain 100-node networks with elimination-order width � 20, the a-
utset width divided by elimination-order width was 3:5 on average. For the se
ondset of networks, Set-B, whi
h
ontain 150-node networks with elimination-order width � 50, this averagewas 2:4. This gives an idea of what the
onstant fa
tors in exp(w logn) are for this
lass of networks. Se
ond,the O(n exp(w logn)) time
omplexity is not
omparable to that of
utset
onditioning. However:� When treewidth is bounded, n exp(w logn) be
omes bounded by a polynomial. Therefore, re
ursive
onditioning takes polynomial time on any network with bounded treewidth. On the other hand, itis well known that many networks with bounded treewidth
an have unbounded loop{
utsets. Thenetwork in Figure 3 is an example.� The
onstant fa
tors in re
ursive
onditioning are expe
ted to be mu
h lower than those of
utset
onditioning. Re
all that with a loop{
utset of size
,
utset
onditioning must solve O(exp(
)) singly{
onne
ted networks, ea
h taking O(n) time. Therefore, the
onstant fa
tor here is that asso
iatedwith ea
h run of the polytree algorithm. In re
ursive
onditioning, however, the
onstant fa
tor is thatasso
iated with making a re
ursive
all.4 Remembering Previous ComputationsThe time
omplexity of r
1 is
learly not optimal. This is best seen by observing r
1 run on the dtree inFigure 10. Consider the subtree T rooted at the bullet �, whi
h
orresponds to subnetwork 4! : : :!8. r
1will be
alled on this subtree sixteen di�erent times, on
e for ea
h instantiation of a
utset(T) = 1234. Note,however, that only variable 4 appears in the subtree T and its
orresponding subnetwork 4! : : :!8. Hen
e,the sixteen
alls to T
orrespond to only two di�erent instan
es of this subnetwork and r
1 is solving ea
hone of these instan
es eight di�erent times!In general, ea
h node T in a dtree
orresponds to a number of subnetwork instan
es. Ea
h of theseinstan
es share the same stru
ture, whi
h is determined by T . But ea
h instan
e has a di�erent quanti�
a-tion/eviden
e, whi
h is determined by the instantiation of vars(T)\ a
utset(T); that is, variables in T whi
hare guaranteed to be instantiated when T is
alled. The set vars(T) \ a
utset(T) is so important that wegive it a spe
ial name:De�nition 4 The
ontext of node T in a dtree is de�ned as follow:
ontext(T) def= vars(T) \ a
utset(T):Moreover, the
ontext width of a dtree is the size of its maximal
ontext.Figure 10(
) depi
ts the
ontext of ea
h node in the given dtree.10

Algorithm r
2r
2(T)01. if T is a leaf node,02. then return lookup(T)03. else y re
orded instantiation of
ontext(T)04. if
a
heT [y℄ 6= nil, return
a
heT [y℄05. else p 006. for ea
h instantiation
 of uninstantiated variables in
utset(T) do07. re
ord instantiation
08. p p+ r
2(T l)r
2(T r)09. un{re
ord instantiation
10.
a
heT [y℄ p11. return pFigure 11: Pseudo
ode for re
ursive
onditioning. All
a
he entries must be initialized to nil.r
1 will solve ea
h subnetwork instan
e represented by node T a number of times whi
h equals to(a
utset(T)� vars(T))#, although it
an a�ord to solve su
h an instan
e only on
e. To avoid the redundant
omputations, however, r
1 needs to remember the solutions of di�erent instan
es. Sin
e ea
h instan
e is
hara
terized by an instantiation of
ontext(T), all r
1 needs to do is save the result of solving ea
h instan
e,indexed by the
hara
terizing instantiation of
ontext(T). Any time a subnetwork instan
e is to be solved,r
1 will
he
k its memory �rst to see if it has solved this instan
e before. If it did, it will simply return theremembered answer. If it did not, it will re
urse on T , saving its
omputed solution at the end.6This simple remembering me
hanism will a
tually drop the number of re
ursive
alls made by re
ursive
onditioning from O(n exp(w logn)) to only O(n exp(w)). But as should be
lear, this improvement inrunning time
omes at the expense of memory used to remember previous
omputations. In fa
t, as we shallnow present, avoiding all redundan
ies will require that we remember O(n exp(w)) solutions.Figure 11 presents the se
ond version of re
ursive
onditioning whi
h remembers its previous
omputa-tions. All we had to do is in
lude a
a
he with ea
h node T in the dtree. This
a
he is used to store theanswers returned by
alls to T . r
2 will not re
urse on a node T before it
he
ks the
a
he at T �rst.It should be
lear that the size of
a
heT in r
2 is bounded by
ontext(T)#. In Figure 10, the
a
hestored at ea
h node in the dtree will have at most two entries. Therefore, r
2 will
onsume only a linearamount of spa
e in addition to what is
onsumed by r
1. Interestingly enough, this additional, linear spa
ewill drop the
omplexity of re
ursive
onditioning from exponential to linear on this network.Theorem 4 The number of re
ursive
alls made to a non-root node T by r
2 is
utset(T p)#
ontext(T p)#,where T p is the parent of node T .In Figure 10, ea
h
utset has one variable and ea
h
ontext has no more than one variable. Therefore, r
2will make no more than 4 re
ursive
alls to ea
h node in the dtree.Algorithm el2dt, whi
h we present in Se
tion 6, has the following property: When el2dt
onstru
tsa dtree based on an elimination order of width w,
utset(T)#
ontext(T)# = O(exp(w)) will hold for everynode T in the dtree. Hen
e, the following result.Theorem 5 Given an elimination order of width w and length n, and given a dtree based on the order (usingel2dt), the number of re
ursive
alls made by r
2 is O(n exp(w)) and the spa
e it
onsumes is O(n exp(w)).This is basi
ally the best
omplexity result we
urrently have for exa
t inferen
e in Bayesian networks.It is also the
omplexity of state{of{the{art algorithms based on
lustering and elimination.6This te
hnique is known as memoization in the dynami
 programming literature and has also been employed in [3℄.11

Algorithm r
r
(T)01. if T is a leaf node,02. then return lookup(T)03. else y re
orded instantiation of
ontext(T)04. if
a
heT [y℄ 6= nil, return
a
heT [y℄05. else p 006. for ea
h instantiation
 of uninstantiated variables in
utset(T) do07. re
ord instantiation
08. p p+ r
(T l)r
(T r)09. un{re
ord instantiation
10. when
a
he?(T;y),
a
heT [y℄ p11. return pFigure 12: Pseudo
ode for an any{spa
e version of re
ursive
onditioning.5 Any{Spa
e Inferen
eWe have presented two extremes of re
ursive
onditioning thus far. On one extreme, no
omputations areremembered, leading to a spa
e
omplexity of O(n) and a time
omplexity of O(n exp(w logn)). On theother extreme, all previous
omputations are remembered, dropping the time
omplexity to O(n exp(w))and in
reasing the spa
e
omplexity to O(n exp(w)).These behaviors of re
ursive
onditioning are only two extremes of an any{spa
e version, whi
h
anuse as mu
h spa
e as is made available to it. Spe
i�
ally, re
ursive
onditioning
an remember as many
omputations as available spa
e would allow and nothing more. By
hanging one line in r
2, we obtain anany{spa
e version, whi
h is given in Figure 12. In this version, we in
luded an extra test on line 10, whi
his used to de
ide whether to remember a
ertain
omputation. One of the simplest implementations of thistest is based on the availability of global memory. That is,
a
he?(T;y) will su

eed pre
isely when globalmemory has not been exhausted and will fail otherwise.A more re�ned s
heme will allo
ate a
ertain amount of memory to be used by ea
h
a
he. We
an
ontrol this amount using the notion of a
a
he fa
tor.De�nition 5 A
a
he fa
tor for a dtree is a fun
tion
f that maps ea
h internal node T in the dtree into anumber 0 �
f(T) � 1.The intention here is for
f(T) to be the fra
tion of
a
heT whi
h will be �lled by algorithm r
. That is,if
f(T) = :2, then we will only use 20% of the total storage required by
a
heT . Note that algorithm r
1
orresponds to the
ase where
f(T) = 0 for every node T . Moreover, algorithm r
2
orresponds to the
ase where
f(T) = 1. For ea
h of these
ases, we provided a
ount of the re
ursive
alls made by re
ursive
onditioning. The question now is: What
an we say about the number of re
ursive
alls made by r
 undera parti
ular
a
he fa
tor
f?As it turns out, the number of re
ursive
alls made by r
 under the memory
ommitted by
f willdependent on the parti
ular instantiations of
ontext(T) that will be
a
hed on line 10. However, if weassume that any given instantiation y of
ontext(T) is equally likely to be
a
hed, then we
an
omputethe average number of re
ursive
alls made by r
 and, hen
e, its average running time. Note that we
anenfor
e the assumption that any given instantiation y of
ontext(T) is equally likely to be
a
hed by randomly
hoosing the instantiations to be
a
hed.Theorem 6 If the size of
a
heT is limited to
f(T) of its full size, and if ea
h instantiation of
ontext(T)is equally likely to be
a
hed on line 10 of r
, the average number of
alls made to a non{root node T inalgorithm r
 is ave(T) =
utset(T p)# �
f(T p)
ontext(T p)# + (1�
f(T p))ave(T p)� :12

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700 800 900 1000

M
e
a
s
u
r
e
d

N
o
.

C
a
l
l
s

/

E
s
t
i
m
a
t
e
d

N
o
.

C
a
l
l
s

Samples

Estimating the Running Time of RC under Variable Space

Figure 13: The average ratio of measured over estimated number of
alls is 1:02 and the standard deviationis 0:06. The
orrelation
oeÆ
ient between measured and estimated
alls is 0:99. The networks in Set-Awere used in this experiments|see Appendix A.This theorem is quite important pra
ti
ally as it allows one to estimate the running time of r
 under anygiven memory
on�guration. All we have to do is add up ave(T) for every node T in the dtree. Note thaton
e ave(T p) is
omputed, we
an
ompute ave(T) in
onstant time. Therefore, we
an
ompute and sumave(T) for every node T in the dtree in time linear in the dtree size.Before we further dis
uss the pra
ti
al utility of Theorem 6, we mention two important points. First,when the
a
he fa
tor is dis
rete (
f(T) = 0 or
f(T) = 1), Theorem 6 provides an exa
t
ount of the numberof re
ursive
alls made by r
. In fa
t, the running time of r
1 and r
2 follow as
orollaries of Theorem 6:� When
f(T) = 0 for all T : ave(T) =
utset(T p)#ave(T p);and the solution to this re
urren
e is ave(T) = a
utset(T)#. This is basi
ally the result of Theorem 2.� When
f(T) = 1 for all T : ave(T) =
utset(T p)#
ontext(T p)#;whi
h is the result of Theorem 4.When the
a
he fa
tor is not dis
rete, Theorem 6 allows us to
ompute the average number of re
ursive
alls made by r
. Figure 13 depi
ts the result of an experiment for
omputing su
h averages using Theorem 6.We generated 1000 random networks, ea
h of whi
h
ontaining a 100 variables (Set-A in Appendix A), andthen generated a random
a
he fa
tor for ea
h network. We then used Theorem 6 to estimate the number ofre
ursive
alls whi
h will be made by r
 under that fa
tor. We also ran r
 and measured the a
tual numberof re
ursive
alls. Figure 13 reports the ratio of measured to estimated
alls for ea
h network. As is
learfrom the �gure, the
orrelation fa
tor is :99 between estimated and measured. This is very good sin
e weonly ran ea
h network on
e with respe
t to a given
a
he fa
tor.One of the most pra
ti
al aspe
ts of Theorem 6 is that it allows us to produ
e a time{spa
e tradeo�
urve, whi
h
an be used to make de
isions on how to allo
ate resour
es when using re
ursive
onditioning on
omputationally demanding networks. We have applied the theorem to some realisti
 networks from the UCBerkeley Repository (http://www-nt.
s.berkeley.edu/home/nir/publi
-html/repository/index.htm), whi
h arealso provided with elimination orders that we utilized in our experiments. We depi
t three of these networks13

in Figures 14. Ea
h of the given plots
orresponds to one network using both a balan
ed and an unbalan
eddtree. To produ
e ea
h plot, we simply varied the
a
he fa
tor and
omputed the
orresponding number ofre
ursive
alls. Spa
e is re
orded as log2 of the maximum
a
he size (
a
he width) and time is re
orded aslog2 of the maximum number of re
ursive
alls that any node re
eives (re
ursive
alls width).7A number of observations are in order about these �gures:� When we are
lose to linear spa
e, it is betters to use a balan
ed dtree for the time{spa
e tradeo�.When we are
lose to exponential spa
e, it is better to use the original, unbalan
ed dtree.� The di�eren
e between the balan
ed and unbalan
ed dtrees is quite signi�
ant for the Diabetes network.This is not surprising if one examines the stru
ture of this network, as it looks very similar to thestru
ture of the ladder network in Figure 3.8� In many parts of the time{spa
e
urve,
utting the spa
e by half leads to approximately doubling thetime.One of the key questions relating to re
ursive
onditioning is that of identifying the
a
he fa
tor whi
hwould minimize the running time a

ording to Theorem 6. Spe
i�
ally, let us de�ne the e�e
t of a
a
hefa
tor
f as the number of
a
he entries that it will utilize:e�e
t(
f) def= XT
f(T)
ontext(T)#:Given that available memory will only a

omodate m
a
he entries, a key question relating to re
ursive
onditioning is the identi�
ation of a
a
he fa
tor with e�e
t m that would minimize the running timea

ording to Theorem 6. This
ru
ial question, however, is outside the s
ope of this paper and is the subje
tof
urrent resear
h.The issue of time{spa
e tradeo� has been re
eiving in
reased interest in the
ontext of Bayesian networkinferen
e, due mostly to the observation that state{of{the{art algorithms tend to give on spa
e �rst. The keyexisting proposal for su
h tradeo� is based on realizing that the spa
e
omplexity of
lustering algorithms isexponential only in the size of separators, whi
h are typi
ally smaller than
lusters [12℄. Therefore, one
analways trade time for spa
e by using a jointree with smaller separators, at the expense of introdu
ing larger
lusters [12℄. This method, however,
an generate very large
lusters whi
h
an render the time
omplexityvery high. To address this problem, a hybrid algorithm is proposed whi
h uses
utset
onditioning to solveea
h enlarged
luster, where the
omplexity of this hybrid method
an sometimes be less than exponentialin the size of enlarged
lusters [12℄.There are two key di�eren
es between this proposal and ours. First, the proposal is orthogonal to ournotion of a
a
he fa
tor, as it
an be realized during the
onstru
tion phase of a dtree. That is, we may de
ideto
onstru
t a dtree with smaller
a
hes, yet larger
utsets. But on
e we have
ommitted to a parti
ulardtree, the
a
he fa
tor
an be used to
ontrol the time{spa
e tradeo� at a �ner level as suggested above.The se
ond key di�eren
e between the proposal of [12℄ and ours is that when the hybrid algorithm of [12℄is run in linear spa
e, it will redu
e to
utset
onditioning sin
e the whole jointree will be
ombined into asingle
luster. In our proposal, linear spa
e leads to algorithm r
1 whi
h has a di�erent time
omplexitythan
utset
onditioning.6 Relation to Elimination and ClusteringThe main purpose of this se
tion is to show how to
onstru
t good dtrees, those with small width. Ase
ondary obje
tive is to relate the
omplexity of re
ursive
onditioning to the
omplexity of elimination and
lustering algorithms. Both obje
tives will be a
hieved by studying the relationship between dtrees, whi
hdrive re
ursive
onditioning, and7This is how the
a
he fa
tor was varied in this experiment. Let s be the size of the largest
a
he in the dtree; that is,s = maxT sT , where sT is the size of
a
he at node T . For a given x ranging from 0 to s, the fa
tor
f(T) for ea
h node T was
hosen as large as possible su
h that
f(T)sT � x.8A posts
ript �gure depi
ting the stru
ture of this network is available in the UC Berkeley site.14

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e
c
u
r
s
i
v
e

C
a
l
l
s

W
i
d
t
h

Cache Width

PIGS Network

balanced dtree
unbalanced dtree

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
e
c
u
r
s
i
v
e

C
a
l
l
s

W
i
d
t
h

Cache Width

MUNIN-2 Network

balanced dtree
unbalanced dtree

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
e
c
u
r
s
i
v
e

C
a
l
l
s

W
i
d
t
h

Cache Width

DIABETES Network

balanced dtree
unbalanced dtree

Figure 14: Time{spa
e tradeo� in realisti
 networks.
15

- jointrees, whi
h drive
lustering methods; and- elimination orders, whi
h drive elimination methods.The quality of both elimination orders and jointrees is measured by their width. The
ore of this se
tion istherefore two linear time transformations that a
hieve the following:- Given a dtree of width w for a Bayesian network,
onstru
t a jointree of width w for the same network.- Given an elimination order of width w for a Bayesian network,
onstru
t a dtree of width � w for thesame network.Given existing transformations between elimination orders of width w and jointrees of the same width[10, 18, 11℄, the results of this se
tion allow for linear, width{preserving transformations between any pairof graphi
al stru
tures.9 There are several impli
ations of these transformations:� Any good method for
onstru
ting elimination orders or jointrees is immediately a good method for
onstru
ting dtrees. This means that re
ursive
onditioning
an
apitalize on the good heuristi
salready established in the literature, su
h as the mindegree heuristi
.� Sin
e the treewidth of a Bayesian network is de�ned as the width of its best elimination order (orjointree), treewidth
an also be de�ned as the width of the network's best dtree.� If a Bayesian network has a small treewidth, then an optimal elimination order (jointree)
an be
onstru
ted in linear time [1, 9℄. This means that an optimal dtree
an also be
onstru
ted in su
h a
ase.6.1 From Dtrees to JointreesA jointree for Bayesian network N is a labeled tree (T;C), where T is a tree and C is a labeling fun
tionthat maps ea
h node i in T into a set of variables C(i) in N , su
h that:1. every family (a node and its parents) in N belongs to some label C(i);2. if a variable belongs to two labels C(i) and C(j), its must belong to every label C(k), where k is onthe path
onne
ting i and j in T .The label C(i) is typi
ally
alled a
luster or
lique of the jointree. Moreover, the set C(i) \ C(j), where(i; j) is an edge in T , is
alled the separator of
lusters C(i) and C(j). The width of a jointree is de�nedas the size of its maximal
luster minus one. The separator width of a jointree is de�ned as the size of itsmaximal separator. The time
omplexity of a
lustering method is exponential only in the jointree width,and its spa
e
omplexity is exponential only in its separator width.De�nition 6 Let T be a node in a dtree. The
luster of T is de�ned as follows:
luster(T) = � vars(T); if T is leaf;
utset(T) [
ontext(T); otherwise.The width of a dtree is de�ned as the size of its maximal
luster minus one.As it turns out, the
lusters of a dtree already form a jointree.Theorem 7 Let N be a Bayesian network and let T be a
orresponding dtree of width w. Then (T;
luster)is a jointree of width w for network N . Moreover, for any node T and its parent T p, we have
luster(T) \
luster(T p) =
ontext(T).9There are dire
t transformations from dtrees to elimination orders, and from jointrees to dtrees, but we omit them here tosimplify the dis
ussion [7℄. 16

Algorithm el2dtel2dt(N ; �)� fleaf(�) : � is a CPT in Ngfor i 1 to length of order � dolet T1; : : : ; Tn be trees in � whi
h
ontain variable �(i)remove T1; : : : ; Tn from �add
ompose(T1; : : : ; Tn) to �
ompose and return the trees in �.Figure 15: Pseudo
ode for transforming an elimination order into a dtree. leaf(�)
reates a leaf node andasso
iates CPT � with it.That is, the
lusters of a dtree T form a jointree, where the
ontexts represent the jointree separators. Thejointree indu
ed by a dtree is spe
ial in two ways: (1) the CPTs are assigned to leaf
lusters only and (2)ea
h
luster has at most three neighbors. Therefore, this theorem shows a very
lose
onne
tion betweenr
2 and
lustering methods. It also shows that if a network has treewidth w, then the width of any of itsdtrees will be � w. In the next se
tion, we will show that if a network has treewidth w, then it must have adtree of width � w. The two results lead to a new, alternative de�nition of treewidth: it is the width of thebest dtree for the Bayesian network.6.2 From Elimination Orders to DtreesStri
tly speaking, elimination orders are de�ned for undire
ted graphs in the graph{theoreti
 literature.Therefore, when we say an elimination order for a Bayesian network, we mean an elimination order for themoral graph of that network.10An elimination order for an undire
ted graph G is simply a total order �(1); �(2); : : : ; �(n) of the nvariables (nodes) in G. One of the simplest ways for de�ning the width w of order � is
onstru
tively.Simply eliminate variable �(1); �(2); : : : ; �(n) from G in that order,
onne
ting all neighbors of a variablebefore eliminating it. The maximum number of neighbors that any eliminated variable has is then the widthof order �. Moreover, the treewidth of a graph is the width of its best elimination order (the one with thesmallest width).Given a Bayesian network N and a
orresponding elimination order � of width w, we want to
onstru
ta dtree for N of width � w. This
an be easily a
hieved using the
ompose operator, whi
h takes a setof binary trees T1; : : : ; Tn and
onne
ts them (arbitrarily) into a single binary tree
ompose(T1; : : : ; Tn).We start initially by
onstru
ting a set of dtrees, ea
h
ontaining a single node and
orresponding to oneof the CPTs in network N . We then
onsider variables �(1); �(2); : : : ; �(n) in that order. Ea
h time we
onsider a variable �(i), we
ompose all binary trees whi
h mention �(i). We �nally return the
ompositionof all remaining binary trees. This pro
edure is given in Figure 15, and two examples of its appli
ations aredepi
ted in Figure 16. In the �rst example, we use the order � =< D;F;E;C;B;A >, whi
h has width 3, togenerate a dtree of width 2. In the se
ond example, we use the elimination order � =< F;E;A;B;C;D >of width 2 and generate a dtree of the same width. Note that algorithm el2dt is not deterministi
 sin
ethe
ompose pro
edure is not deterministi
. Therefore, di�erent dtrees
ould have been generated usingthe above orders, but all of them are guaranteed to have width whi
h is no greater than the width of usedelimination order.Algorithm el2dt
an be implemented in time whi
h is linear in the size of given Bayesian network.11 Its10The moral graph of a Bayesian network is an undire
ted graph. It is obtained by
onne
ting every pair of parents in thenetwork and then dropping out the dire
tionality of edges.11This
an be done using bu
kets [11℄. That is, we
onstru
t a bu
ket i for ea
h variable �(i). A tree T belongs to bu
ket iif variable �(i) appears in T and
omes �rst in the order among all other variables in T . We start initially by pla
ing ea
h leaftree leaf(�) in its
orresponding bu
ket. As we pro
ess variable �(i), we
ompose all trees in bu
ket i and pla
e the resultingtree in its
orresponding bu
ket. 17

A

B C

F

E

D

A AB ABE AC BCD DF

A AB ABE AC BCD DF

A AB ABE AC BCD DF

A AB ABE AC BCD DF

A AB ABE AC BCD DF

A AB ABE AC BCD DF

A AB ABE AC BCD DF

<D,F,E,C,B,A>π=

3

4

5

6

1

2

Σ

Σ

Σ

Σ

Σ

Σ

Σ

π=<F,E,A,B,C,D>

3Σ

6Σ

5Σ

4Σ

2Σ

1Σ

Σ

A AB BCD DFAC ABE

A AB BCD DFAC ABE

A AB BCD DFAC ABE

A AB BCD DFAC ABE

A AB BCD DFAC ABE

A AB BCD DFAC ABE

A AB BCD DFAC ABE

Figure 16: A step{by{step
onstru
tion of dtrees for the above Bayesian network, using algorithm el2dt,with respe
t to two di�erent elimination orders. Ea
h step i depi
ts the trees present in � of algorithmel2dt after having pro
essed variable �(i). 18

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

A

B C

D E

F G

H I

J K

L M

N O

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�������� ��������

I

K

MN

L

J

O

A

C
E

G

I

K

M

B

H

N

L

D

J

F

O

ABCD

EFGH
COMPRESSRAKE

Figure 17: Demonstrating the
ontra
t operation of [24℄.Algorithm bal-dtbal-dt(T)for ea
h internal node N in T , label(N) empty dtreefor ea
h leaf node N in T , label(N) dtree Nop
omposeR �nal node resulting from su

essive appli
ations of
ontra
t to Treturn label(R)Figure 18: Pseudo
ode for balan
ing a dtree.soundness is established below:Theorem 8 Let N be a Bayesian network and let � be a
orresponding elimination order of width w. The
all el2dt(N ; �) will return a dtree of width � w for network N .6.3 Balan
ing DtreesWe now present an algorithm for balan
ing a dtree while in
reasing its width by no more than a
onstantfa
tor. The algorithm is similar to el2dt ex
ept that the
omposition pro
ess is not driven by an eliminationorder. Instead, it is driven by applying the
ontra
t operation of [24℄ to the given dtree. We need toexplain this operation �rst.
ontra
t is an operation whi
h is applied to a tree. It simply absorbs some of the tree nodes into theirneighbors, therefore, produ
ing a smaller tree. To absorb node N1 into node N2 is to make the neighborsof N1 into neighbors of N2 and to remove node N1 from the tree.
ontra
t works by applying a rakeoperation to the tree, followed by a
ompress operation. The rake operation is simple: it absorbs ea
h leafnode into its parent. The
ompress operation is more involved: it identi�es maximal
hains N1; N2; : : : ; Nkand then absorbs Ni into Ni+1 for odd i. The sequen
e N1; N2; : : : ; Nk is a
hain if Ni+1 is the only
hild ofNi for 1 � i < k, and if Nk has exa
tly one
hild and that
hild is not a leaf. Typi
ally, ea
h tree node Nwill have an appli
ation{spe
i�
 label, label(N). When node N1 is absorbed into its neighbor N2, the labelof N2 is updated as follows: label(N2) label(N1) op label(N2) where op is an appli
ation{spe
i�
operation. One of the key appli
ations of
ontra
t is in evaluating arithmeti
{expression trees. In thisappli
ation, the label of a node is a number and the operation op is either addition or multipli
ation.Figure 17 depi
ts an example where
ontra
t is applied to a tree, where the labels of nodes are stringsand op is string
on
atenation. The main property of
ontra
t is that any tree
an be redu
ed to a singlenode by only applying
ontra
t O(logn) times, where n the size of given tree [24℄.We will use
ontra
t to balan
e a dtree T as follows. First, we label ea
h internal node in T withthe empty dtree. Se
ond, we label ea
h leaf node of T with itself. We then
hoose the operation op to be
ompose, de�ned in Se
tion 6.2. Finally, we apply
ontra
t su

essively to T until it is redu
ed to asingle node and return the label of the �nal node. This algorithm is given in Figure 18. Its properties follow:19

Theorem 9 Let T be a dtree of
ontext width w for a Bayesian network N with n nodes. bal-dt(T) willtake O(n logn) time and will return a dtree for N of height O(logn),
utset width � w,
ontext width � 2wand width � 3w � 1.The experimental results in Appendix A provide a sense of the
onstant fa
tors involved in this theorem. Forexample, the width is in
reased by 2:1 for Set-A networks and by 1:6 for Set-B networks after balan
ingusing algorithm bal-dt.The important aspe
t of Theorem 9 is that balan
ing a dtree will in
rease ea
h of its widths by no morethan a
onstant fa
tor. In fa
t, the
utset width will never ex
eed the
ontext width of unbalan
ed dtreeafter applying bal-dt.6.4 De
omposition by Graph SeparatorsOne of the key di�eren
es between re
ursive
onditioning and previous work on nested disse
tion (in
ludingthe work of Cooper on re
ursive de
omposition [3℄) is the manner in whi
h a problem is de
omposed intosmaller problems, and the formal guarantees provided on the quality of su
h a de
omposition. Previous workshave appealed to the notion of graph separators to re
ursively de
ompose a graph into smaller subgraphs[14℄. A graph separator is a set of nodes C that partitions the graph into three sets A;B;C, su
h that nonode in A is adja
ent to a node in B. In �nding separators, one tries to minimize the size of separator C,while keeping the sizes of A and B as
lose as possible. That is, the emphasis is on minimizing separators,while keeping the de
omposition balan
ed. In our framework, this
orresponds to generating balan
ed dtreesthat have a minimal
utset width. But this does not ne
essarily lead to minimizing dtree width, whi
h isthe parameter that governs the
omplexity of re
ursive
onditioning. In fa
t, balan
ed de
ompositions tendto have larger widths than unbalan
ed ones.Central to the work on graph separation is the notion of an f(n){separator theorem. A
lass of graphs issaid to have an f(n){separator theorem i� there exists
onstants � < 1 and � > 0; su
h that if G is a graphin the
lass with n nodes, then G
an be partitioned into sets A;B;C su
h that no node in A is adja
ent toa node in B, neither A nor B
ontains more than �n nodes, and C
ontains no more than �f(n) nodes.An f(n){separator theorem for a
lass of graph allows one to guarantee the quality of re
ursive de
om-positions obtained for that
lass of graphs. For example, planar graphs have pn{separator theorem [22℄,and at least half a dozen other
lasses of graphs are known to have similar separator theorems [14℄.One of the main di�eren
es between de
omposing a graph using a separator theorem, versus de
om-posing it using a dtree, is that the de
ompositions generated by separator theorems are balan
ed, whilede
ompositions indu
ed by dtrees
an be either balan
ed or unbalan
ed. As we have seen earlier, balan
edde
ompositions are preferred if re
ursive
onditioning is to run under linear spa
e (or
lose to linear spa
e).However, balan
ed de
ompositions have a bigger width than unbalan
ed ones, and are not preferred if oneis running under O(n exp(w)) spa
e (or in that region).The term de
omposition tree have been used in many pla
es in the literature to denote di�erent notionsof re
ursive de
omposition. It is used in [31℄ to denote a re
ursive de
omposition of a graph into atoms; itis used in [23℄ to denote a re
ursive de
omposition of a database s
hema; it is also used in [3℄ to denote are
ursive de
omposition of a Bayesian network. We have
hosen the term dtree in this paper to distinguishour de
omposition trees from previous ones.The re
ursive{de
omposition algorithm of [3℄ is similar to r
2, ex
ept that the de
omposition tree em-ployed is quite di�erent from our dtree. With ea
h node in a de
omposition tree of [3℄, four sets of variablesare asso
iated: a summation set, an instantiation set, an evaluation set and a variable set. Summation setsrepresent graph separators and play the role of
utsets in our framework. Instantiation sets are used to
a
heresults and, hen
e, play the role of
ontexts in our frameworks. No guarantees, however, are provided onthe sizes of these sets in terms of network width. Moreover, evaluation and variable sets are spe
i�
 to thegiven
onstru
t proposed in [3℄ and seem to play no role in our framework.Therefore, aside from a new
omplexity result for Bayesian network inferen
e under linear spa
e (thatis, O(n exp(w logn))); and a re�ned, formal theory of any{spa
e reasoning; one of our key
ontributionshere is the introdu
tion of dtrees as a new devi
e for indu
ing re
ursive de
ompositions on dire
ted a
y
li
graphs.12 Beyond their simpli
ity, and admitting balan
ed/unbalan
ed de
ompositions, the signi�
an
e of12We also show in [7℄ how to de
ompose undire
ted graphs using dtrees.20

dtrees stems from the expli
ation of their four parameters (a-
utset width,
utset width,
ontext width, andwidth) and the bounding of these parameters by treewidth.Dtrees and their various properties are not spe
i�
 to probabilisti
 reasoning, but are appli
able to otherforms of de
ompositional reasoning. Preliminary versions of re
ursive
onditioning using dtrees have alreadybeen applied to model{based diagnosis [8℄ and to propositional{logi

ompilation [6, 4℄. In both
ases, dtreeswere used to re
ursively de
ompose a problem into subproblems that
an be solved independently. Theany{spa
e behavior of re
ursive
onditioning, however, and its time
omplexity under linear spa
e have yetto be investigated in non{probabilisti
 reasoning.7 Con
lusionRe
ursive
onditioning is an any{spa
e algorithm for exa
t inferen
e in Bayesian networks. On one extreme,re
ursive
onditioning takes O(n) spa
e and O(n exp(w logn)) time|where n is the size of Bayesian networkand w is the width of a given elimination order|therefore, establishing a new
omplexity result for linear{spa
e inferen
e in Bayesian networks. On the other extreme, re
ursive
onditioning takes O(n exp(w))spa
e and O(n exp(w)) time, therefore, mat
hing the
omplexity of state{of{the{art algorithms based on
lustering and elimination. In between linear and exponential spa
e, re
ursive
onditioning
an utilizememory at in
rements of X-bytes, where X is the number of bytes needed to store a
oating point numberin a
a
he. Moreover, the algorithm is equipped with a formula for
omputing its average running time underany amount of spa
e, hen
e, providing a valuable tool for time{spa
e tradeo�s in demanding appli
ations.Re
ursive
onditioning is therefore the �rst algorithm for exa
t inferen
e in Bayesian networks to o�er asmooth tradeo� between time and spa
e, and to expli
ate a smooth, quantitative relationship between thesetwo important resour
es.A
knowledgementI wish to thank Rina De
hter for inspiring the analysis of re
ursive
onditioning under linear spa
e andfor various helpful dis
ussions; Gregory Cooper for making his unpublished work available; James Park for
ommenting on an earlier draft of this paper; Judea Pearl for many valuable dis
ussions; and Stuart Russellfor suggesting the relevan
e of graph separators to re
ursive
onditioning.A Further Experimental ResultsWe used two sets of networks in our experiments:� Set-A: Ea
h network in this set
ontains a 100 nodes and the width of its
orresponding dtrees is� 20. The set is depi
ted in Figure 19, together with some further statisti
s relating to di�erent widthparameters.� Set-B: Ea
h network in this set
ontains a 150 nodes and the width of its
orresponding dtrees is� 50. The set is depi
ted in Figure 20, together with some further statisti
s relating to di�erent widthparameters.For ea
h network, we
omputed an elimination order based on the following heuristi
: always eliminate avariable whi
h leads to adding the smallest number of edges to the moral graph. We then
omputed a dtreebased on this order using algorithm el2dt of Figure 15. The width reported in Figures 19 and 20 refers tothe width of
omputed elimination order. This is at least equal to the treewidth of given network, but
anbe larger. Note that
omputing treewidth is an NP{hard problem.The networks were generated randomly as follows. On average, 20% of the nodes are root, 10% havea single parent, 20% have two parents, 25% have three parents, 20% have four parents and 5% have �veparents. We assumed that nodes are numbered from 0 to n. The parents of ea
h node i have been
hosenrandomly from the set 0; : : : ; i� 1. Moreover any parent of node i was not to be less than i�w for a
ertain
onstant w. This
onstant allows us to
ontrol the
onne
tivity of generated network; the bigger w is, the21

more
onne
ted the network is. In the �rst set of networks, we
hose w randomly for ea
h network so itranges between 2 and 35. In the se
ond set, it ranged between 2 and 75.B ProofsLemma 1 The following relationships hold:(a)
utset(T) \
ontext(T) = ;.(b)
ontext(T) �
utset(T p) [
ontext(T p) =
luster(T p).(
)
utset(T p) �
ontext(T).(d)
utset(T1) \
utset(T2) = ; when T1 is an an
estor of T2.(e)
ontext(T) =
luster(T) \
luster(T p).Proof of Lemma 1(a) If X 2
ontext(T), then X 2 a
utset(T) sin
e
ontext(T) = a
utset(T)\vars(T). Then X
annot belongto
utset(T), whi
h is equal to vars(T l) \ vars(T r)� a
utset(T). The other dire
tion follows similarly.(b) Suppose X 2
ontext(T). Then X 2 a
utset(T) \ vars(T) and, hen
e, X 2 vars(T p). We have two
ases.� X 2 a
utset(T p): Then X 2
ontext(T p).� X 62 a
utset(T p): Then X 2
utset(T p) sin
e X 2 a
utset(T).Therefore, X 2
ontext(T p) or X 2
utset(T p).(
) Let T s be the sibling of T and suppose X 2
utset(T p). Then X 2 vars(T) \ vars(T s) by de�nition ofa
utset. Therefore, X 2 vars(T), X 2 a
utset(T) and, hen
e, X 2
ontext(T).(d) We have
utset(T1) � a
utset(T2) by de�nition of a
utset. We also have
utset(T2) \ a
utset(T2) = ;by de�nition of
utset. Hen
e,
utset(T1) \
utset(T2) = ;.(e) By de�nition of
ontext, we have
ontext(T) �
luster(T). By (b), we have
ontext(T) �
luster(T p).Hen
e,
ontext(T) �
luster(T) \
luster(T p). Suppose that X 2
luster(T) \
luster(T p). Then X 2vars(T) sin
e X 2
luster(T). Sin
e X 2
luster(T p), we have two
ases. Case 1: X 2
utset(T p). ThenX 2
ontext(T) by (
). Case 2: X 62
utset(T p). Then X 2
ontext(T p) by (a); hen
e, X 2 a
utset(T p)and X 2 vars(T p). Therefore, X 2 a
utset(T) and X 2
ontext(T).Lemma 2 Let vars"(T) denote [T 0vars(T 0), where T 0 is a leaf
onne
ted to node T through its parent. Then
utset(T) = vars(T l) \ vars(T r)� vars"(T)
ontext(T) = vars(T) \ vars"(T)
luster(T) = (vars(T l) \ vars(T r)) [(vars(T l) \ vars"(T)) [(vars(T r) \ vars"(T)):Proof of Lemma 2If X 2 vars(T), then X 2 vars"(T) i� X 2 a
utset(T). This immediately leads to
utset(T) = vars(T l) \vars(T r)� vars"(T) and
ontext(T) = vars(T) \ vars"(T).Suppose that X 2 (vars(T l) \ vars(T r)) [(vars(T l) \ vars"(T)) [(vars(T r) \ vars"(T)):If X 2 (vars(T l) \ vars"(T)) [(vars(T r) \ vars"(T)), then X 2 vars(T) \ vars"(T) =
ontext(T) �
luster(T).If X 62 (vars(T l) \ vars(T r)) [(vars(T r) \ vars"(T)) and X 2 vars(T l) \ vars(T r), then X 62 vars"(T) and,hen
e, X 2 vars(T l) \ vars(T r)� vars"(T) =
utset(T) �
luster(T).22

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

W
i
d
t
h

Samples

Distribution of 1000 Random Networks --- Set A

Unbalan
ed DtreesParameter Ave Std Min MaxWidth 8.8 3.7 2.0 17.0Cutset Width 5.2 2.2 2.0 13.0Context Width 9.0 3.2 2.0 16.0A-Cutset Width 51.8 15.4 7.0 93.0Balan
ed DtreesParameter Ave Std Min MaxWidth 17.5 6.6 3.0 34.0Cutset Width 7.5 2.6 2.0 15.0Context Width 14.5 5.4 3.0 27.0A-Cutset Width 28.4 8.8 5.0 50.0Balan
ed / Unbalan
ed RatioRatio Ave Std Min MaxWidth / Width 2.1 0.3 1.1 3.0Cutset Width / Cutset Width 1.5 0.4 0.9 3.5Context Width / Context Width 1.6 0.2 1.0 2.0A-Cutset Width / A-Cutset Width 0.6 0.2 0.2 1.0Cutset Width / Width 0.6 0.2 0.5 1.5A-Cutset Width / Width 3.5 0.7 2.0 6.0Figure 19: Set-A networks.
23

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900 1000

W
i
d
t
h

Samples

Distribution of 1000 Random Networks --- Set B

Unbalan
ed DtreesParameter Ave Std Min MaxWidth 24.2 11.5 2.0 49.0Cutset Width 12.4 6.4 2.0 32.0Context Width 23.2 10.6 3.0 46.0A-Cutset Width 62.4 15.4 10.0 138.0Balan
ed DtreesParameter Ave Std Min MaxWidth 33.5 10.5 3.0 55.0Cutset Width 17.1 7.8 2.0 43.0Context Width 29.9 10.4 4.0 55.0A-Cutset Width 47.9 11.3 7.0 73.0Balan
ed / Unbalan
ed RatioRatio Ave Std Min MaxWidth / Width 1.6 0.5 1.0 3.0Cutset Width / Cutset Width 1.5 0.6 0.9 4.8Context Width / Context Width 1.4 0.3 0.9 2.0A-Cutset Width / A-Cutset Width 0.8 0.2 0.2 1.0Cutset Width / Width 0.7 .33 0.4 1.5A-Cutset Width / Width 2.4 1.0 1.2 5.8Figure 20: Set-B networks.
24

Suppose that X 2
luster(T) =
utset(T) [
ontext(T):If X 2
ontext(T) = vars(T) \ vars"(T), then X 2 vars(T l) \ vars"(T) or X 2 vars(T r) \ vars"(T). IfX 2
utset(T) = vars(T l) \ vars(T r) � vars"(T), and X 62
ontext(T), then X 62 vars"(T) and, hen
e,X 2 vars(T l) \ vars(T r).Proof of Theorem 1First, we need to show that if variables in C = vars(T l)\ vars(T r) are instantiated, then the CPTs of T l andT r will not share any variables. Suppose that X 2 C. The CPT of X may belong to either T l or T r butnot both. Suppose it belongs to T l. On
e we instantiate x, variable X will disappear from all CPTs in T r.Therefore, X will not appear in vars(T r) and, hen
e, the CPTs of T l and T r will not share any variables.Se
ond, we need to pretend that ea
h time instantiation
 is re
orded on line 05, then CPTs are a
tuallyredu
ed. And that this pro
ess is reversed on line 07. In this
ase, ea
h time we rea
h a leaf node T , thetable � asso
iated with T is guaranteed to be redu
ed to table �0 whi
h
ontains only one variable X . Thisfollows be
ause (1) every variable Y 6= X whi
h appears in CPT � must also appear in a
utset(T) and (2)when r
1 is
alled on T , a
utset(T) is guaranteed to be instantiated. The base
ase follows sin
e lookup(T)will return PrN (e), where N is the network
onsisting of the single node X and its redu
ed CPT �0, and eis the eviden
e available on X . The indu
tive step follows from Equation 4.Proof of Theorem 2The �rst part of this theorem follows as a
orollary of Theorem 6|see dis
ussion after the statement ofTheorem 6.To show a
utset(T)# = O(exp(dw
)), we note the following:� The
utsets asso
iated with the an
estors of T are pairwise disjoint by Lemma 1(d).� The size of any of these
utsets is no greater than w
.� a
utset(T) is the union of
utset(T 0), where T 0 is an an
estor of T .Hen
e, the size of a
utset(T) is bounded by dw
.Proof of Theorem 3That r
1
onsumes O(n) spa
e follows immediately from the statement of the algorithm.13Given an elimination order of width w, el2dt will
onstru
t a dtree of
utset width � w (Theorem 8).bal-dt will balan
e the dtree, while ensuring that its
utset width is � w (Theorem 9). Sin
e the height ofthe balan
ed dtree is O(logn), its a-
utset width must be O(w logn) by Theorem 2. Therefore, the numberof re
ursive
alls made by r
1 to node T is O(exp(w logn)). The total number of re
ursive
alls made byr
1 is then O(n exp(w logn)).Proof of Theorem 4Follows as a
orollary of Theorem 6|see dis
ussion after the statement of Theorem 6.Proof of Theorem 5We have O(n)
a
hes and the size of ea
h
a
heT is �
ontext(T)#. Sin
e the dtree is
onstru
ted usingel2dt,
ontext(T)# = O(exp(w)) (Theorem 8). Hen
e, the size of all
a
hes is O(n exp(w)).By Theorem 4, the number of re
ursive
alls to ea
h node T is
utset(T p)#
ontext(T p)#. Sin
e the dtreeis
onstru
ted using el2dt,
utset(T p)#
ontext(T p)# = O(exp(w)) (Theorem 8). Hen
e, the total numberof re
ursive
alls is O(n exp(w)).13We are assuming that
utset and
ontext sizes are bounded by
onstants.25

Proof of Theorem 6The
entral
on
ept in this proof is the notion of a T{type for a given node T in the dtree. This is basi
allythe set of all
alls to node T that agree on the instantiation of
ontext(T) at the time the
alls are made.Calls in a parti
ular T{type are guaranteed to return the same probability. In fa
t, the whole purpose of
a
heT is to save the result returned by one member of ea
h T{type so the result
an be looked up when other
alls in the same T -type are made. Ea
h T{type is identi�ed by a parti
ular instantiation y of
ontext(T).Hen
e, there are
ontext(T)# di�erent T{types, ea
h
orresponding to one instantiation of
ontext(T). Wefurther establish the following de�nitions and observations:- A T{type y is either
a
hed or non{
a
hed depending on whether the test
a
he?(T;y) su

eeds online 10.- a
pt(T) is the average number of
alls in a T{type.- ave(T) is the average number of
alls to node T and equals ave(T) = a
pt(T)
ontext(T)#.- We have
f(T)
ontext(T)#
a
hed T{types and (1�
f(T))
ontext(T)# non{
a
hed T{types.14- A T p{type x is
onsistent with T{type y i� instantiations x and y agree on the values of their
ommonvariables
ontext(T p) \
ontext(T). Calls in a parti
ular T{type y will be generated re
ursively onlyby
alls in a
onsistent T p{type x.- There are (
ontext(T p)�
ontext(T))# T p{types whi
h are
onsistent with a given T{type y. Onaverage,-
f(T p)(
ontext(T p)�
ontext(T))# of them are
a
hed, and- (1�
f(T p))(
ontext(T p)�
ontext(T))# are non{
a
hed.This follows be
ause ea
h T p{type is equally likely to be
a
hed. Moreover,- A
a
hed T p{type x will generate
utset(T p)#
alls to node T sin
e r
(T p) will re
urse ononly one
all per
a
hed T p{type. Only one of these
alls is
onsistent with T{type y sin
e
utset(T p) �
ontext(T) by Lemma 1(
).- A non{
a
hed T p{type x will generate a
pt(T p)
utset(T p)#
alls to node T sin
e r
(T p) willre
urse on every
all in a non{
a
hed T p{type. Only a
pt(T p) of these
alls are
onsistent withT{type y.- a
pt(T) equals the sum of
alls in some T{type y whi
h are generated by ea
h T p{type
onsistent withy. Therefore,a
pt(T) =
f(T p)(
ontext(T p)�
ontext(T))#| {z }(no.
a
hed T p{types
onsistent with y) 1|{z}(no.
alls in T{type y ea
h generates)+(1�
f(T p))(
ontext(T p)�
ontext(T))#| {z }(no. non{
a
hed T p{types
onsistent with y) a
pt(T p)| {z }(no.
alls in T{type y ea
h generates)= (
ontext(T p)�
ontext(T))# [
f(T p) + (1�
f(T p))a
pt(T p)℄ :Hen
e,ave(T) = (
ontext(T p)�
ontext(T))# [
f(T p) + (1�
f(T p))a
pt(T p)℄
ontext(T)#= (
luster(T p)�
ontext(T))# [
f(T p) + (1�
f(T p))a
pt(T p)℄
ontext(T)#; by Lemma 1(b,
)=
luster(T p)# [
f(T p) + (1�
f(T p))a
pt(T p)℄ ; by Lemma 1(b)=
utset(T p)#
ontext(T p)# [
f(T p) + (1�
f(T p))a
pt(T p)℄ ; by Lemma 1(a,b)=
utset(T p)# �
f(T p)
ontext(T p)# + (1�
f(T p))a
pt(T p)
ontext(T p)#�=
utset(T p)# �
f(T p)
ontext(T p)# + (1�
f(T p))ave(T p)� :14In algorithm r
1, all T{types are non{
a
hed (
f(T) = 0). In r
2, all T{types are
a
hed (
f(T) = 1).26

Proof of Theorem 7That
luster(T) \
luster(T p) =
ontext(T) follows from Lemma 1(e).It also follows from the de�nition of a dtree that the
lusters of leaf nodes
orrespond to the families ofBayesian network. Therefore, ea
h family is
ontained in some dtree
luster.To prove the jointree property, we will use Lemma 2. Suppose that L;M and N are three nodes in dtreeT . Suppose further that L is on the path
onne
ting M and N . Let X be a node in
luster(M)\
luster(N).We want to show that X belongs to
luster(L). We
onsider two
ases.Case: M is an an
estor of N . Then L is an an
estor of N . Sin
e X 2
luster(N), then X 2 vars(N) and,hen
e, X 2 vars(L). Sin
e X 2
luster(M), then either X 2
utset(M) orX 2
ontext(M). If X 2
utset(M),then X 2 vars(M l) and X 2 vars(Mr). If X 2
ontext(M), then X 2 vars"(M). In either
ase, we haveX 2 vars"(L), X 2 vars(L) \ vars"(L) =
ontext(L) and, hen
e, X 2
luster(L).Case: M is not an an
estor of N . Then we must have a
ommon an
estor O of both M and N .Moreover, either O = L or O is an an
estor of L. Therefore, it suÆ
e to show that X 2
luster(O) (giventhe above
ase). Without loss of generality, suppose that M is in the left subtree of O and N is in theright subtree. Sin
e X 2 vars(M), then X 2 vars(Ol). Sin
e X 2 vars(N), then X 2 vars(Or). Therefore,X 2
luster(O) by Lemma 2.Proof of Theorem 8We need a
ouple of lemmas �rst.Lemma 3 When pro
essing variable �(i) in el2dt, the
luster of any node N whi
h is added in the pro
ess of
omposing trees T1; : : : ; Tn must be in
luded in vars(T)\f�(i); : : : ; �(n)g, where T =
ompose(T1; : : : ; Tn).15Suppose that a variable X belongs to
luster(N). Then, by Lemma 2, X must either belong to two trees inT1; : : : ; Tn, or belong to a tree in T1; : : : ; Tn and another tree in �� fT1; : : : ; Tng. In either
ase, X
annotbelong to f�(1); : : : ; �(i� 1)g sin
e these variables have already been pro
essed, so ea
h
an belong only toa single tree in �. Therefore, X must belong to �(i); : : : ; �(n). Moreover, X must belong to at least onetree in T1; : : : ; Tn. Hen
e, X must belong to T and X 2 vars(T) \ f�(i); : : : ; �(n)g.Lemma 4 Let � be a
olle
tion of sets S1; : : : ; Sn, where Si is the family of variable �(i) in network N . Toeliminate variable �(i) from � is to repla
e the sets Sk
ontaining �(i) by the set (Sk Sk)� f�(i)g. Now, ifwe start eliminating variables a

ording to the order �,
on
urrently, from the moral graph G of N and fromthe
olle
tion �, we �nd the following. As we are about to eliminate variable �(i), the set (Sk Sk)� f�(i)gwill
ontain exa
tly the neighbors of �(i) in graph G.It suÆ
es to show that two nodes appear in the same set in � i� they are
onne
ted by an edge in G. Thisfollows initially, before any variable is eliminated. Moreover, it is easy to show that it
ontinues to hold aftera variable has been eliminated.Now algorithm el2dt(N ; �)
an be viewed as performing variable elimination on a
olle
tion of sets,whi
h initially
ontains the families of N . We need to establish this
orresponden
e �rst in order to proveour theorem. After pro
essing variable �(i) in algorithm el2dt, the set of variables represented by tree Tin � is set(T) def= vars(T) \ f�(i+ 1); : : : ; �(n)g;that is, variables in T that have not been pro
essed yet.Initially, the trees in � represent the families in N . As we pro
ess variable �(i), we
olle
t all treesT1; : : : ; Tn su
h that �(i) 2 set(T1); : : : ; set(Tn) and repla
e them by the tree
ompose(T1; : : : ; Tn). Itfollows that set(
ompose(T1; : : : ; Tn)) = set(T1) [: : : [set(Tn)� f�(i)g;and hen
e the
orresponden
e we are seeking.15We are referring to the
luster of N in the �nal dtree returned by el2dt.27

From this
orresponden
e, and Lemma 4, we
on
lude that when pro
essing variable �(i), the treeT =
ompose(T1; : : : ; Tn), whi
h is added to �, is su
h that set(T)
ontains exa
tly the neighbors of variable�(i) in the moral graph G of N after having eliminated �(1); : : : ; �(i� 1) from it. This means that the sizeof set(T) = vars(T) \ f�(i+ 1); : : : ; �(n)g is � width(�) and, hen
e, the size of vars(T) \ f�(i); : : : ; �(n)g is� width(�) + 1.Given Lemma 3, this means that the
luster of any node whi
h is added as a result of
omposing T1; : : : ; Tn
annot be bigger than width(�) + 1. This proves that the width of
onstru
ted dtree is no more than thewidth of order �.Proof of Theorem 9That bal-dt(T) takes O(n logn) time and returns a binary tree of height O(logn) follows immediatelyfrom the properties of the
ontra
t operation [24℄. That bal-dt(T) is a dtree follows from the way weinitialized the labels of nodes in T .To prove the results on widths, we need to introdu
e some new notation. Sin
e the
all bal-dt(T)modi�es dtree T using the
ontra
t operation, we will use T0; T1; T2; : : :, where T0 = T , to denote themodi�ed dtrees after ea
h rake or
ompress operation. Moreover, we will use Ni to denote node N indtree Ti.We will use Lvars(N) to denote the variables appearing in dtree label(N); Lvars#(N) to denote variablesappearing in dtrees label(M), where M = N or M is a des
endent of N ; Lvars"(N) to denote variablesappearing in dtrees label(M), where M is
onne
ted to N through its parent.We �rst prove two lemmas.Lemma 5 We have j Lvars#(Ni) \ Lvars"(Ni) j� w.This holds in T0 sin
e Lvars#(N0) \ Lvars"(N0) =
ontext(N0) by Lemma 2, whi
h size is � w. We need toprove that the rake and
ompress operations preserve this invariant.�
ompress: after absorbing Nip into Ni to yield Ni+1, we have Lvars#(Ni+1) = Lvars#(Nip) andLvars"(Ni+1) = Lvars"(Nip). Therefore, Lvars#(Ni+1) \ Lvars"(Ni+1) = Lvars#(Nip) \ Lvars"(Nip)and the invariant holds in Ti+1 given that it holds in Ti.� rake: after absorbing the
hildren Nil and Nir into Ni to yield Ni+1, label(Ni+1) will be the
omposition of label(Ni), label(Nil) and label(Nir). Therefore, Lvars#(Ni+1) = Lvars#(Ni) andLvars"(Ni+1) = Lvars"(Ni) and the invariant holds in Ti+1 given that it holds in Ti.Lemma 6 If Ni is a node with two
hildren, then label(Ni) is the empty dtree.If Ni has two
hildren, then N0; N1; : : : ; Ni�1 have two
hildren ea
h sin
e
ontra
t
annot add
hildrento nodes. By
onstru
tion, label(N0) must be the empty dtree. Suppose that label(Ni) is not the emptydtree. Then a node must have been absorbed into N in some dtree T0; : : : ; Ti. This is impossible thoughsin
e N
annot be part of any
hain in these dtrees, and N is not a leaf in any of these dtrees. Therefore,neither
ompress nor rake
ould have altered the label of N in dtrees T0; : : : ; Ti.We now pro
eed to prove the rest of this theorem. Initially, the dtrees in the labels of T0 represent leafnodes in the �nal dtree returned by bal-dt. Sin
e these nodes are leaves, they do not have
utsets. Thatthe
ontext and
luster sizes of these nodes have the
laimed sizes in the �nal dtree returned by bal-dtfollows immediately from the fa
t that they
orrespond to the leaves in dtree T0.There are three ways in whi
h
ompose
an add a new dtree node d to
ombine two dtrees together.We will show that the
utset,
ontext and
luster of ea
h added node d will have the
laimed size in the �naldtree returned by bal-dt. In what follows,
utset(d),
ontext(d) and
luster(d) refer to the
utset,
ontextand
luster of node d in the �nal dtree returned by bal-dt.Case 1. We have a
hain Ni�Oi �Pi, where Ni is absorbed into
hild Oi by
ompress,
reating dtreed = label(Oi+1) =
ompose(label(Ni); label(Oi)). Then
utset(d) � Lvars(Ni) \ Lvars(Oi)� Lvars"(Oi) \ Lvars#(Oi);28

whi
h size is � w by Lemma 5. Moreover, by Lemma 2,
ontext(d) = (Lvars(Ni) [Lvars(Oi)) \ [Ki 6=Ni;Ki 6=Oi Lvars(Ki)� (Lvars"(Ni) \ Lvars#(Ni)) [(Lvars"(Pi) \ Lvars#(Pi));whi
h size is � 2w by Lemma 5. Finally, sin
e
luster(d) =
utset(d)[
ontext(d), we have j
luster(d) j� 3w.Case 2. Node Ni has a single
hild Oi, where Oi is a leaf. Node Oi is absorbed into parent Ni by rake,
reating dtree d = label(Ni+1) =
ompose(label(Ni); label(Oi)). We have
utset(d) � Lvars(Ni) \ Lvars(Oi)� Lvars"(Oi) \ Lvars#(Oi);whi
h size is � w. Moreover,
ontext(d) = (Lvars(Ni) [Lvars(Oi)) \ [Ki 6=Ni;Ki 6=Oi Lvars(Ki)� Lvars"(Ni) \ Lvars#(Ni);whi
h size is � w. Finally, sin
e
luster(d) =
utset(d) [
ontext(d), we have j
luster(d) j� 2w.Case 3. Node Ni has two
hildren Oi and Pi, whi
h are leaves. Nodes Oi and Pi are absorbed intoparent Ni by rake,
reating dtree d = label(Ni+1) =
ompose(label(Oi); label(Pi)) sin
e label(Ni)is the empty dtree by Lemma 6. We have
utset(d) � Lvars(Oi) \ Lvars(Pi)� Lvars"(Oi) \ Lvars#(Oi);whi
h size is � w. Moreover,
ontext(d) = (Lvars(Oi) [Lvars(Pi)) \ [Ki 6=Oi;Ki 6=Pi Lvars(Ki)� Lvars"(Ni) \ Lvars#(Ni);whi
h size is � w. Finally, sin
e
luster(d) =
utset(d) [
ontext(d), we have j
luster(d) j� 2w.Therefore, the size of every
utset is � w, the size of every
ontext is � 2w and the size of every
lusteris � 3w. This means that
utset width,
ontext width, and width are � w; 2w; 3w � 1, respe
tively.Referen
es[1℄ Hans. L. Bodlaender. A linear time algorithm for �nding tree-de
ompositions of small treewidth. SIAMJournal of Computing, 25(6):1305{1317, 1996.[2℄ Craig Boutilier, Nir Friedman, Mois�es Goldszmidt, and Daphne Koller. Context{spe
i�
 independen
ein bayesian networks. In Pro
eedings of the 12th Conferen
e on Un
ertainty in Arti�
ial Intelligen
e(UAI), pages 115{123, 1996.[3℄ Gregory F. Cooper. Bayesian belief-network inferen
e using re
ursive de
omposition. Te
hni
al ReportKSL-90-05, Knowledge Systems Laboratory, Stanford, CA 94305, 1990.[4℄ Adnan Darwi
he. De
omposable negation normal form. Journal of the ACM. To appear.[5℄ Adnan Darwi
he. Conditioning algorithms for exa
t and approximate inferen
e in
ausal networks. InPro
eedings of the 11th Conferen
e on Un
ertainty in Arti�
ial Intelligen
e (UAI), pages 99{107, 1995.[6℄ Adnan Darwi
he. Compiling knowledge into de
omposable negation normal form. In Pro
eedings ofInternational Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI), pages 284{289, 1999.29

[7℄ Adnan Darwi
he. Dtrees: A new graphi
al model for stru
ture{based reasoning. Te
hni
al ReportD{107, Computer S
ien
e Department, UCLA, Los Angeles, Ca 90095, 1999.[8℄ Adnan Darwi
he. Utilizing devi
e behavior in stru
ture{based diagnosis. In Pro
eedings of InternationalJoint Conferen
e on Arti�
ial Intelligen
e (IJCAI), pages 1096{1101, 1999.[9℄ R. De
hter. Constraint networks. En
y
lopedia of Arti�
ial Intelligen
e, pages 276{285, 1992.[10℄ R. De
hter and J. Pearl. Tree
lustering for
onstraint networks. Arti�
ial Intelligen
e, pages 353{366,1989.[11℄ Rina De
hter. Bu
ket elimination: A unifying framework for probabilisti
 inferen
e. In Pro
eedings ofthe 12th Conferen
e on Un
ertainty in Arti�
ial Intelligen
e (UAI), pages 211{219, 1996.[12℄ Rina De
hter. Topologi
al parameters for time-spa
e tradeo�. In Pro
eedings of the 12th Conferen
eon Un
ertainty in Arti�
ial Intelligen
e (UAI), pages 211{219, 1996.[13℄ F. J. D�iez. Lo
al
onditioning in bayesian networks. Arti�
ial Intelligen
e, 87(1):1{20, 1996.[14℄ H. N. Djidjev and J. R. Gilbert. Separators in graphs with negative and multiple vertex weights.Algorithmi
a, 23:57{71, 1999.[15℄ Alan George. Nested disse
tion of a regular �nite element mesh. SIAM Journal of Numeri
al Analysis,10(2):345{363, 1973.[16℄ E.J. Horvitz, H.J. Suermondt, and G.F. Cooper. Bounded
onditioning: Flexible inferen
e for de
isionsunder s
ar
e resour
es. In Pro
eedings of Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, Windsor,ON, pages 182{193. Asso
iation for Un
ertainty in Arti�
ial Intelligen
e, Mountain View, CA, August1989.[17℄ Ce
il Huang and Adnan Darwi
he. Inferen
e in belief networks: A pro
edural guide. InternationalJournal of Approximate Reasoning, 15(3):225{263, 1996.[18℄ F. V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in re
ursive graphi
al models bylo
al
omputation. Computational Statisti
s Quarterly, 4:269{282, 1990.[19℄ S. L. Lauritzen and D. J. Spiegelhalter. Lo
al
omputations with probabilities on graphi
al stru
turesand their appli
ation to expert systems. Journal of Royal Statisti
s So
iety, Series B, 50(2):157{224,1988.[20℄ Z. Li and B.D. D'Ambrosio. EÆ
ient Inferen
e in Bayes Networks as a Combinatorial OptimizationProblem. International Journal of Approximate Reasoning, 11:55{81, 1994.[21℄ Ri
hard Lipton, Donald Rose, and Robert Andre Tarjan. Generalized nested disse
tion. SIAM Journalof Numeri
al Analysis, 16(2):346{358, 1979.[22℄ Ri
hard Lipton and Robert Andre Tarjan. A separator theorem for planar graphs. SIAM Journal ofApplied Mathemati
s, 36(2):177{189, 1979.[23℄ D. Maier. The Theory of Relational Databases. Computer S
ien
e Press, Ro
kville, Maryland, 1983.[24℄ G. L. Miller and J. H. Reif. Parallel tree
ontra
tion and its appli
ation. In Pro
. 26th IEEE Symp. onFoundations of Computer S
ien
e, pages 478{489, Portland, OR, 1985.[25℄ Judea Pearl. Probabilisti
 Reasoning in Intelligent Systems: Networks of Plausible Inferen
e. MorganKaufmann Publishers, In
., San Mateo, California, 1988.[26℄ Mark A. Peot and Ross D. Sha
hter. Fusion and propagation with multiple observations in beliefnetworks. Arti�
ial Intelligen
e, 48(3):299{318, 1991.[27℄ Arnie Rosenthal. Computing the reliability of
omplex networks. SIAM Journal of Applied Mathemati
s,32(2):384{393, 1977. 30

[28℄ R. Sha
hter, S.K. Andersen, and P. Szolovits. Global Conditioning for Probabilisti
 Inferen
e in BeliefNetworks. In Pro
. Tenth Conferen
e on Un
ertainty in AI, pages 514{522, Seattle WA, 1994.[29℄ R. Sha
hter, B.D. D'Ambrosio, and B. del Favero. Symboli
 Probabilisti
 Inferen
e in Belief Networks.In Pro
. Conf. on Un
ertainty in AI, pages 126{131, 1990.[30℄ Prakash P. Shenoy. A valuation{based language for expert systems. International Journal of Approxi-mate Reasoning, 5(3):383{411, 1989.[31℄ Robert E. Tarjan. De
omposition by
lique separators. Dis
rete Mathemati
s, 55:221{232, 1985.[32℄ Nevin Lianwen Zhang and David Poole. Exploiting
ausal independen
e in bayesian network inferen
e.Journal of Arti�
ial Intelligen
e Resear
h, 5:301{328, 1996.

31

