
Reursive ConditioningAny{spae onditioning method with treewidth{bounded omplexityAdnan DarwiheComputer Siene DepartmentUniversity of CaliforniaLos Angeles, CA 90095darwihe�s.ula.eduOtober 3, 2000AbstratWe introdue an any{spae algorithm for exat inferene in Bayesian networks, alled reursive ondi-tioning. On one extreme, reursive onditioning takes O(n) spae and O(n exp(w log n)) time|where nis the size of a Bayesian network and w is the width of a given elimination order|therefore, establishinga new omplexity result for linear{spae inferene in Bayesian networks. On the other extreme, reur-sive onditioning takes O(n exp(w)) spae and O(n exp(w)) time, therefore, mathing the omplexityof state{of{the{art algorithms based on lustering and elimination. In between linear and exponentialspae, reursive onditioning an utilize memory at inrements of X-bytes, where X is the number ofbytes needed to store a oating point number in a ahe. Moreover, the algorithm is equipped with aformula for omputing its average running time under any amount of spae, hene, providing a valuabletool for time{spae tradeo�s in demanding appliations. Reursive onditioning is therefore the �rstalgorithm for exat inferene in Bayesian networks to o�er a smooth tradeo� between time and spae,and to expliate a smooth, quantitative relationship between these two important resoures.1 IntrodutionConditioning algorithms have been of major interest to the Bayesian network ommunity sine the introdu-tion of utset onditioning as one of the �rst methods for inferene in multiply{onneted networks [25, 26℄.Most of the interest in onditioning methods stems from their intuitive appeal as they are based on the prin-iple of reasoning by ases|a very ommon form of human reasoning. Reasoning by ases is amenable toparallelization, failitates time{spae tradeo� [12℄, and appears to be best positioned for exploiting ontext{spei� independene [2℄.The best known onditioning method is utset onditioning, whih is also known as the loop{utset method[25, 26, 28℄. The best known fat about this method is its linear spae omplexity, whih is very attrativewhen ompared to the exponential spae omplexity (in treewidth) of state{of{the{art algorithms based onlustering [19, 30, 18, 17℄ and elimination [29, 20, 11, 32℄. The worst known fat about utset onditioningis its time omplexity, whih is exponential in the size of loop{utset. The loop{utset an be quite large,even for networks whih an be solved in linear time and spae using other methods.There have been improvements and variations on utset onditioning whih redue its running time underertain onditions [16, 5, 13℄. For example, dynami onditioning [5℄ and loal onditioning [13℄ are knownto take linear time on some networks for whih utset onditioning is known to be exponential. But bothmethods lose the linear spae omplexity of utset onditioning. Moreover, neither the time nor the spaeomplexity of these methods are bounded formally. Bounded onditioning [16℄ will also redue the runningtime of utset onditioning, but at the expense of returning approximate answers.In this paper, we introdue a method for onditioning, reursive onditioning, whih is haraterized byits any{spae behavior as it an use as muh spae as is made available to it.1



- On one extreme, reursive onditioning uses linear spae, leading to a time omplexity ofO(n exp(w logn)),where n is the number of network nodes and w is the width of a given elimination order.- On the other extreme, reursive onditioning uses O(n exp(w)) spae, leading to a time omplexity ofO(n exp(w)).Therefore, if given enough spae, reursive onditioning will math the spae and time omplexity of lus-tering and elimination methods. However, if less spae is given to reursive onditioning, its running timewill inrease until it hits O(n exp(w logn)) with linear spae, whih is a new omplexity result for inferenein Bayesian networks. Interestingly enough, this running time is inomparable to the running time of utsetonditioning, O(n exp()), where  is the loop{utset size.To introdue the key intuition underlying reursive onditioning, we note that the main power of on-ditioning is its ability to redue network onnetivity. In utset onditioning, this power is exploited forreduing a multiply{onneted network into a singly{onneted network that an be solved using the (linear)polytree algorithm. In reursive onditioning, however, this power is exploited to deompose a network intosmaller subnetworks that an be solved independently. Eah of these subnetworks is then solved reursivelyusing the same method, until we reah boundary onditions where we try to solve single{node networks.The deomposition of a problem into smaller problems is a lassial example of the divide{and{onqueromputational paradigm. Alan George is redited for having used this tehnique in 1973 to solve systemsof linear equations [15℄. His algorithm, termed nested dissetion, was later generalized [21℄ and appliedto other problems, suh as network reliability [27℄. The appliation of nested dissetion to inferene inBayesian networks was also investigated independently by Gregory Cooper in [3℄, under the name reursivedeomposition. We will have more to say about the relationship between reursive onditioning and previousworks in Setion 6.4.A key onept in utset onditioning is that of a loop{utset, whih is a set of nodes that when instantiatedwill render the network singly{onneted. In reursive onditioning, the onditioning proess is driven bya new graphial struture, whih we all a dtree. This tree spei�es many utsets, eah to be used at adi�erent level of the reursive onditioning proess. As we shall see later, a dtree is a simple onept and itis extremely easy to onstrut one. There are typially many dtrees for a Bayesian network, any of whihan be used to drive reursive onditioning. Some of these dtrees, however, will lead to more work thanothers. The quality of a dtree is measured by its width, whih we also introdue in this paper, and thedi�erent omplexities of reursive onditioning will be expressed in terms of the width of used dtree. Weshall show that given an elimination order of width w for a Bayesian network, we an onstrut in lineartime a orresponding dtree of width � w.One of the more interesting things about reursive onditioning is how it utilizes spae. Reursiveonditioning solves a network by deomposing it into smaller, independent subnetworks. A lose examinationof the algorithm reveals that it an solve some subnetworks many times, therefore, leading to many redundantomputations. By ahing the solutions of subnetworks, reursive onditioning will avoid suh redundany.This will redue its running time, but will also inrease its spae requirements. When all redundaniesare avoided, reursive onditioning will run in O(n exp(w)) time, but it will also take that muh spae tostore the solutions of subnetworks. What is important, however, is that we an ahe as many results asour available memory would allow, leading to any{spae behavior. Moreover, we shall provide a formulawhih an be used to ompute (in linear time) the average running time of reursive onditioning under anyamount of available spae. This equips the algorithm with a very important tool for time{spae tradeo�,whih appears to be neessary for ertain appliations:- One lass of suh appliations involves omputationally demanding networks, whose memory require-ments (using lassial algorithms) exeed existing resoures. Not only an one use reursive ondition-ing on these networks, but one an also ompute the extra time entailed by running under the limitedmemory. This extra time an then be used to make a deision on whether to aquire more memory.- Another lass of appliations involves embedded systems, where only a �xed amount of memory (typ-ially modest) is available for the Bayesian network appliation. Here, one an subtrat the memoryneeded to store the reursive onditioning ode and assoiated network, and then run the algorithmunder the remaining amount of memory. Reall that reursive onditioning allows one to tradeo� spae2
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.10Figure 1: A Bayesian network.at inrements of X{bytes, where X is the number of bytes needed to store a oating point number ina ahe.- Finally, appliations in whih Bayesian network inferene runs as a bakground proess in an operatingsystem are beoming more popular. In these appliations, memory usage should be as invisible aspossible to ensure transpareny with respet to end{users. A theory of any{spae reasoning appearsessential in reduing the used memory in these appliations.This paper is strutured as follows. In Setion 2, we disuss the basi intuition behind onditioningand illustrate its omputational power. We also ontrast utset onditioning with reursive onditioning,therefore, introduing the key priniple behind our presented method. In Setion 3, we disuss the linear{spae version of reursive onditioning and introdue the onept of a dtree. In Setion 4, we introduethe exponential{spae version of reursive onditioning and provide a number of its properties. We thenintrodue the any{spae version of reursive onditioning in Setion 5 and show that the �rst two versionsare only extremes. In Setion 6, we study the relationship between dtrees, elimination orders and jointrees,showing polynomial time transformations from one to the other. We �nally lose in Setion 7 with someonluding remarks.2 The Computational Power of Making AssumptionsA very ommon form of human reasoning|whih is dominant in mathematial proofs|is that of reasoningby ases or assumptions. To solve a ompliated problem, we try to simplify it by onsidering a number ofases whih orrespond to a set of mutually exlusive and exhaustive assumptions. We then solve eah ofthe ases under its orresponding assumption, and ombine the results to obtain a solution to the originalproblem. In probabilisti reasoning, this is best illustrated by the identity:Pr(x) =X Pr(x; ); (1)where x and  are instantiations of variablesX and C, respetively.1 Here, we try to ompute the probabilityof instantiation x by onsidering a number of ases, eah orresponding to an assumption  (an instantiationof variables C). We then ompute the probability of x under eah assumption , and add up the results toget the probability of x.In general, solving a problem beomes easier when we make assumptions and probabilisti reasoning isno exeption. Consider, for example, the multiply{onneted network N of Figure 1. Suppose further thatour goal is to ompute the probability of some event, say e, with respet to this network, denoted PrN (e). Ifwe perform this omputation under the assumption b, therefore omputing PrN (e; b), we an use the singly{onneted network <N ; b> of Figure 2 instead. That is, we are guaranteed to obtain the same probabilityfor e; b with respet to either network.1We are using the standard notation: variables are denoted by upper{ase letters and their values by lower{ase letters. Setsof variables are denoted by bold{fae upper{ase letters and their instantiations are denoted by bold{fae lower{ase letters.For variable A and value a, we often write a instead of A=a. We will use the same onvention for variables A and theirinstantiation a. For a variable A with values true and false, we use a to denote A=true and a to denote A=false.3
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Figure 2: Instantiating variables to render the network singly{onneted.Note that network <N ; b> of Figure 2 was obtained using a loal transformation to network N ofFigure 1:1. we deleted the edge B!E;22. we redued the onditional probability table (CPT) of node E frome ebd :25 :75bd :25 :75bd :90 :10bd :05 :95 to e ed :25 :75d :25 :75in order to reet the assumption that B is instantiated to b.3. we reorded the observation b (shown pitorially by a box around the value b in the CPT for B).Note that the result of the above instantiation operation is not simply a Bayesian network, but a Bayesiannetwork together with some assoiated evidene.In general, we will use the term instantiated network to refer to the pair <N ; e>, whih results frominstantiating e in network N as indiated above. Moreover, we will write Pr<N ;e>(x) to refer to the proba-bility of instantiation e;x with respet to the instantiated network <N ; e>. For example, in Figure 2, wewill write Pr<N ;b>(e) to mean the probability of b; e with respet to the instantiated network <N ; b>. Thismeans that when we instantiate evidene e in network N , we will only be omputing probabilities of eventsof the form e;x with respet to the instantiated network.An instantiated network <N ; e> will always be- equivalent to network N as far as omputing the probability of any instantiation e;x.3- less onneted than network N (unless every variable in e is a leaf node in network N ).2We an also delete the edge B!C from network <N ; b>, simplifying it even further.3A ommon onfusion is that if Pr is the probability distribution spei�ed by the original network N , then Pr(: j e) is theprobability distribution spei�ed by the instantiated network <N ;e>. This is not true! The only relation between the twodistributions is that they agree on the probability of any instantiation e;x [5℄. We believe that part of the onfusion stems fromthe term onditioned network, whih we and others have used in the past to refer to <N ;e>. This is why we avoid the termin this paper, and use instantiated network instead. 4
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Figure 3: A Bayesian network with a large loop{utset.This very important result, whih formalizes the omputational power of making assumptions, is the keyresult on whih onditioning methods are based. To state this result more formally, we have:Pr<N ;e>(x) = PrN (e;x); (Conditioning) (2)for any instantiation x.Cutset onditioning was the �rst method to identify this omputational power and it exploited it byidentifying a set of variables C, known as a loop{utset, whih when instantiated will render the networksingly{onneted. It then performed a ase analysis on the instantiations of C, reduing eah ase to that ofsolving a singly{onneted network (using the polytree algorithm). Spei�ally, to ompute the probabilityof any evidene e, utset onditioning uses Equation 2 as follows:PrN (e) =X PrN (e; ) =X Pr<N ;>(e): (Cutset Conditioning) (3)This leads to O(exp(j C j)) alls to the polytree algorithm, one all for eah singly{onneted network<N ; > (j C j is the number of variables in the loop{utset C).The main problem with utset onditioning is that a large loop{utset will lead to a blow up in thenumber of ases that it has to onsider. In Figure 3, for example, the loop{utset ontains n variables,leading utset onditioning to onsider 2n ases (when all variables are binary). It is worth mentioning,however, that lustering and elimination methods an solve this network in linear time. Again, although anumber of improvements have been suggested to redue the number of ases onsidered by utset onditioning[16, 5, 13, 2℄, the best bound we urrently have on the worst{ase omplexity of any linear{spae onditioningmethod is the one stating that omplexity is exponential in the size of loop{utset.In this paper, we propose another onditioning method whih exploits assumptions di�erently than theyare exploited by utset onditioning. Spei�ally, instead of using assumptions to singly{onnet a Bayesiannetwork, we will use suh assumptions to deompose a Bayesian network. By deomposition, we mean theproess of splitting the network into smaller, disonneted piees that an be solved independently. Consideragain the network N in Figure 1. Figure 4 shows how we an deompose network N into two subnetworks,N l and N r, by instantiating variable B. Moreover, Figure 5 shows how we an further deompose networkN r into two subnetworks, N rl and N rr, by instantiating variable C. Note that subnetwork N rl ontains asingle{node and annot be deomposed further.We an always use this reursive deomposition proess to redue the omputation of PrN (e) into theomputation of probabilities with respet to single{node networks. Spei�ally, let C be a set of variablessuh that the instantiated network <N ; > is deomposed into two disonneted subnetworks, <N ; >land <N ; >r. We then have:PrN (e) =X Pr<N ;>(e) =X Pr<N ;>l(el)Pr<N ;>r (er); (Reursive Conditioning) (4)where el and er are the subsets of instantiation e pertaining to subnetworks <N ; >l and <N ; >r,respetively. This is the harateristi equation of reursive onditioning, whih parallels Equation 3 ofutset onditioning. Note that eah of the queries Pr<N ;>l(el) and Pr<N ;>r (er) an be deomposed usingthe same method reursively, until we reah queries with respet to single{node networks.This is a very simple, universal proess whih an be used to ompute the probability of any instantiation.It is a nondeterministi proess though sine there are many ways in whih we an deompose a Bayesian5
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Figure 5: Deomposing a Bayesian network by instantiating variables B and C.network into disonneted subnetworks. The question then is: whih deomposition should we use? As itturns out, any deomposition will be valid, but some deompositions will lead to less work than others. Thekey is therefore to hoose deompositions that will minimize the amount of work done, and to bound it insome meaningful way. We will address this issue later but we �rst provide a formal tool for apturing aertain deomposition poliy, whih is the subjet of the following setion.Before we onlude this setion, we highlight three key di�erenes between utset onditioning and reur-sive onditioning. First, the role of a utset is di�erent: in utset onditioning, it is used to singly{onneta network; in reursive onditioning, it is used to deompose a network into disonneted subnetworks. InFigure 1, for example, variable C onstitutes a valid loop{utset sine it would render the network singly{onneted when instantiated. However, instantiating variable C will not deompose the network into smallersubnetworks; hene, C is not a valid utset in reursive onditioning. Next, there is a single utset in utsetonditioning, whih is used at the very top level to generate a number of singly{onneted networks. Butthere are many utsets in reursive onditioning, eah of whih is used at a di�erent level of the reursion.Finally, the boundary ondition in utset onditioning is that of reahing a singly{onneted network, butthe boundary ondition in reursive onditioning is that of reahing a single{node network.3 Inferene by Reursive ConditioningThe method of reursive onditioning is quite simple in onept: we ondition on a utset to deompose theBayesian network into smaller, disonneted subnetworks and then solve eah of the subnetworks reursivelyusing the same method. This method is an example of the lassial divide{and{onquer paradigm, whih isquite prevalent in omputer algorithms. The e�etiveness of this method, however, is very muh dependenton our hoie of utsets at eah level of the reursive proess. Reall that the number of ases we have toonsider at eah level is exponential in the size of used utset. Therefore, we want to hoose our utsets inorder to minimize the total number of onsidered ases.Before we an address this issue, however, we need to introdue a formal tool for apturing the olletion6
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Figure 6: A dtree for the Bayesian network in Figure 1.
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Figure 7: Instantiating variable B to b in a dtree. Note how the CPTs of variables C and E (hildren ofvariable B) have been redued.of utsets employed by reursive onditioning. We all this tool a dtree:De�nition 1 A dtree for a Bayesian network is a full binary tree, the leaves of whih orrespond to thenetwork CPTs.Reall that a full binary tree is a binary tree where eah node has 2 or 0 hildren. Figure 6 depits a dtreefor the Bayesian network in Figure 1.It is important to note that a dtree T for a Bayesian networkN is simply a more strutured representationof the network N . That is, it ontains all the information available in N , and imposes in addition a treestruture on the CPTs of N . Following standard onventions on binary trees, we will often not distinguishbetween a node and the dtree rooted at that node. Therefore, T will refer both to a dtree and the root ofthat dtree.A dtree T suggests that we deompose its assoiated Bayesian network by instantiating variables that areshared by its left and right subtrees, T l and T r, whih are denoted by vars(T l) \ vars(T r). In Figure 6, Bis the only variable shared by the left and right subtrees. Figure 7 shows the result of instantiating B=bin the dtree. As a result of this instantiation, the instantiated network <N ; b> was deomposed into twodisonneted subnetworks, <N ; b>l and <N ; b>r, eah of whih an be solved independently. What is most7



Algorithm r1r1(T )01. if T is a leaf node,02. then return lookup(T )03. else p 004. for eah instantiation  of uninstantiated variables in utset(T ) do05. reord instantiation 06. p p+ r1(T l)r1(T r)07. un-reord instantiation 08. return plookup(T )01. � CPT of variable X assoiated with leaf T02. if X is instantiated,03. then x reorded instantiation of X04. p reorded instantiation of X 's parents05. return �(x j p) // �(x j p) = Pr(x j p)06. else return 1Figure 8: Pseudoode for reursive onditioning.important though, is that subtrees T l and T r are guaranteed to be dtrees for the subnetworks <N ; b>l and<N ; b>r, respetively. Therefore, eah of these subnetworks an be deomposed reursively using thesesubtrees. The proess ontinues until we reah single{node networks, whih annot be deomposed further.Figure 8 provides the pseudoode for algorithm r1, whih is an implementation of Equation 4 that usesdtree T to diret the deomposition proess. There are two key observations about this algorithm. First, itdoes not ompute utsets dynamially, but it assumes that they have been preomputed as follows.De�nition 2 The utset of internal node T in a dtree is de�ned as follows:utset(T ) def= vars(T l) \ vars(T r)� autset(T );where autset(T ), alled the a-utset of T , is the union of utsets assoiated with anestors of node T in thedtree.4For the root T of a dtree, utset(T ) is simply vars(T l) \ vars(T r). But for a non-root node T , the utsetsassoiated with anestors of T are exluded from vars(T l) \ vars(T r) sine these utsets are guaranteed tobe instantiated when r1 is alled on node T .The seond observation about algorithm r1 is that it does not really redue CPTs when variables areinstantiated. It simply \reords" that variables have been instantiated, and \un-reords" that when variablesare de-instantiated. Given the implementation of lookup, suh reording/un-reording is all we need.Theorem 1 (Soundness) Suppose that T is a dtree for Bayesian network N . Then r1(T ) = PrN (e),where e is the instantiation reorded before r1 is alled.Therefore, to ompute the probability of instantiation e with respet to network N , all we have to do isonstrut a dtree T of network N , ompute the utset for eah node in T as given in De�nition 2, reordthe instantiation e, and �nally all r1(T ).Note that the more variables we instantiate before alling r1, the less work it will do sine that wouldredue the number of instantiations it has to onsider on line 04. Therefore, the worst ase omplexity for4autset(T ) = ; when T is a root node. 8
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Figure 9: Two dtrees for a hain network, with their utsets expliated. We are only showing the variablesof CPTs as their probabilities do not matter for omputing utsets.r1 is when e = true. In fat, in all of the following omplexity analyses, we do assume that e = true forwhih r1(T ) will simply return 1 = PrN (true).Clearly, the only spae used by algorithm r1 is that needed to store the dtree, whih is linear in thenetwork size. So what about the time omplexity of r1? We an measure this by ounting the number ofreursive alls made by r1 as this number is proportional to its running time. Note that eah all r1(T ),where T is an internal node, will generate two reursive alls for eah instantiation of utset(T ). We antherefore ount the number of reursive alls made by r1 as follows.De�nition 3 The utset width of a dtree is the size of its largest utset. The a{utset width of a dtree isthe size of its largest a{utset.From now on, we will use X# to denote the number of instantiations of variables X.Theorem 2 The total number of reursive alls made by r1 to node T is autset(T )#. Moreover, autset(T )# =O(exp(dw)), where w is the utset width, and d is the depth of node T .In Figure 9, the utset width of eah dtree is 1. However, the a-utset width is 7 for the �rst dtree andis 3 for the seond. In general, for a hain of n variables, both dtrees will have a utset width of 1, but theunbalaned dtree will have an a{utset width of O(n), while the balaned dtree will have an a{utset widthof O(logn). Therefore, r1 will make 
(exp(n)) reursive alls to some nodes in the �rst dtree, but willmake O(n) reursive alls to eah node in the seond dtree.5This example illustrates the signi�ane of used dtree on the omplexity of reursive onditioning. Inpartiular, we want to use a dtree whih a{utset width is minimal. We will provide in Setion 6 twoalgorithms:1. el2dt: onverts an elimination order of width w into a dtree with utset width no greater than w.2. bal-dt: balanes a dtree while keeping its utset width � w + 1.These two algorithms, and Theorem 2, lead to the following omplexity of reursive onditioning:Theorem 3 Given an elimination order of width w and length n, and given a balaned dtree based on theorder (using el2dt and bal-dt), the total number of reursive alls made by r1 is O(n exp(w logn)) andthe spae it onsumes is O(n).This is basially the running time of reursive onditioning under linear spae. We have a numberof observations about this omplexity. First, Appendix A disusses two experiments, eah involving 10005This is worse than any of the known algorithms, whih an solve this network in linear time under linear spae. We shallsee later, however, that r2, the seond version of reursive onditioning, will solve this network in linear time using a linearamount of ahing (spae). 9



87654321

7867

56

45

34

23

12

1

7867

56

45

34

23

12

1

123

12

1

1234

12345

123456

7867

56

45

34

23

12

1

1

2

3

5

6

1

2

3

4

5

6

7

4

a) Cutsets b) A-Cutsets c) ContextsFigure 10: Cutsets, a{utsets and ontexts of a dtree.random networks. For the �rst set of networks, Set-A, whih ontain 100-node networks with elimination-order width � 20, the a-utset width divided by elimination-order width was 3:5 on average. For the seondset of networks, Set-B, whih ontain 150-node networks with elimination-order width � 50, this averagewas 2:4. This gives an idea of what the onstant fators in exp(w logn) are for this lass of networks. Seond,the O(n exp(w logn)) time omplexity is not omparable to that of utset onditioning. However:� When treewidth is bounded, n exp(w logn) beomes bounded by a polynomial. Therefore, reursiveonditioning takes polynomial time on any network with bounded treewidth. On the other hand, itis well known that many networks with bounded treewidth an have unbounded loop{utsets. Thenetwork in Figure 3 is an example.� The onstant fators in reursive onditioning are expeted to be muh lower than those of utsetonditioning. Reall that with a loop{utset of size , utset onditioning must solve O(exp()) singly{onneted networks, eah taking O(n) time. Therefore, the onstant fator here is that assoiatedwith eah run of the polytree algorithm. In reursive onditioning, however, the onstant fator is thatassoiated with making a reursive all.4 Remembering Previous ComputationsThe time omplexity of r1 is learly not optimal. This is best seen by observing r1 run on the dtree inFigure 10. Consider the subtree T rooted at the bullet �, whih orresponds to subnetwork 4! : : :!8. r1will be alled on this subtree sixteen di�erent times, one for eah instantiation of autset(T ) = 1234. Note,however, that only variable 4 appears in the subtree T and its orresponding subnetwork 4! : : :!8. Hene,the sixteen alls to T orrespond to only two di�erent instanes of this subnetwork and r1 is solving eahone of these instanes eight di�erent times!In general, eah node T in a dtree orresponds to a number of subnetwork instanes. Eah of theseinstanes share the same struture, whih is determined by T . But eah instane has a di�erent quanti�a-tion/evidene, whih is determined by the instantiation of vars(T )\ autset(T ); that is, variables in T whihare guaranteed to be instantiated when T is alled. The set vars(T ) \ autset(T ) is so important that wegive it a speial name:De�nition 4 The ontext of node T in a dtree is de�ned as follow:ontext(T ) def= vars(T ) \ autset(T ):Moreover, the ontext width of a dtree is the size of its maximal ontext.Figure 10() depits the ontext of eah node in the given dtree.10



Algorithm r2r2(T )01. if T is a leaf node,02. then return lookup(T )03. else y reorded instantiation of ontext(T )04. if aheT [y℄ 6= nil, return aheT [y℄05. else p 006. for eah instantiation  of uninstantiated variables in utset(T ) do07. reord instantiation 08. p p+ r2(T l)r2(T r)09. un{reord instantiation 10. aheT [y℄ p11. return pFigure 11: Pseudoode for reursive onditioning. All ahe entries must be initialized to nil.r1 will solve eah subnetwork instane represented by node T a number of times whih equals to(autset(T )� vars(T ))#, although it an a�ord to solve suh an instane only one. To avoid the redundantomputations, however, r1 needs to remember the solutions of di�erent instanes. Sine eah instane isharaterized by an instantiation of ontext(T ), all r1 needs to do is save the result of solving eah instane,indexed by the haraterizing instantiation of ontext(T ). Any time a subnetwork instane is to be solved,r1 will hek its memory �rst to see if it has solved this instane before. If it did, it will simply return theremembered answer. If it did not, it will reurse on T , saving its omputed solution at the end.6This simple remembering mehanism will atually drop the number of reursive alls made by reursiveonditioning from O(n exp(w logn)) to only O(n exp(w)). But as should be lear, this improvement inrunning time omes at the expense of memory used to remember previous omputations. In fat, as we shallnow present, avoiding all redundanies will require that we remember O(n exp(w)) solutions.Figure 11 presents the seond version of reursive onditioning whih remembers its previous omputa-tions. All we had to do is inlude a ahe with eah node T in the dtree. This ahe is used to store theanswers returned by alls to T . r2 will not reurse on a node T before it heks the ahe at T �rst.It should be lear that the size of aheT in r2 is bounded by ontext(T )#. In Figure 10, the ahestored at eah node in the dtree will have at most two entries. Therefore, r2 will onsume only a linearamount of spae in addition to what is onsumed by r1. Interestingly enough, this additional, linear spaewill drop the omplexity of reursive onditioning from exponential to linear on this network.Theorem 4 The number of reursive alls made to a non-root node T by r2 is utset(T p)#ontext(T p)#,where T p is the parent of node T .In Figure 10, eah utset has one variable and eah ontext has no more than one variable. Therefore, r2will make no more than 4 reursive alls to eah node in the dtree.Algorithm el2dt, whih we present in Setion 6, has the following property: When el2dt onstrutsa dtree based on an elimination order of width w, utset(T )#ontext(T )# = O(exp(w)) will hold for everynode T in the dtree. Hene, the following result.Theorem 5 Given an elimination order of width w and length n, and given a dtree based on the order (usingel2dt), the number of reursive alls made by r2 is O(n exp(w)) and the spae it onsumes is O(n exp(w)).This is basially the best omplexity result we urrently have for exat inferene in Bayesian networks.It is also the omplexity of state{of{the{art algorithms based on lustering and elimination.6This tehnique is known as memoization in the dynami programming literature and has also been employed in [3℄.11



Algorithm rr(T )01. if T is a leaf node,02. then return lookup(T )03. else y reorded instantiation of ontext(T )04. if aheT [y℄ 6= nil, return aheT [y℄05. else p 006. for eah instantiation  of uninstantiated variables in utset(T ) do07. reord instantiation 08. p p+ r(T l)r(T r)09. un{reord instantiation 10. when ahe?(T;y), aheT [y℄ p11. return pFigure 12: Pseudoode for an any{spae version of reursive onditioning.5 Any{Spae InfereneWe have presented two extremes of reursive onditioning thus far. On one extreme, no omputations areremembered, leading to a spae omplexity of O(n) and a time omplexity of O(n exp(w logn)). On theother extreme, all previous omputations are remembered, dropping the time omplexity to O(n exp(w))and inreasing the spae omplexity to O(n exp(w)).These behaviors of reursive onditioning are only two extremes of an any{spae version, whih anuse as muh spae as is made available to it. Spei�ally, reursive onditioning an remember as manyomputations as available spae would allow and nothing more. By hanging one line in r2, we obtain anany{spae version, whih is given in Figure 12. In this version, we inluded an extra test on line 10, whihis used to deide whether to remember a ertain omputation. One of the simplest implementations of thistest is based on the availability of global memory. That is, ahe?(T;y) will sueed preisely when globalmemory has not been exhausted and will fail otherwise.A more re�ned sheme will alloate a ertain amount of memory to be used by eah ahe. We anontrol this amount using the notion of a ahe fator.De�nition 5 A ahe fator for a dtree is a funtion f that maps eah internal node T in the dtree into anumber 0 � f(T ) � 1.The intention here is for f(T ) to be the fration of aheT whih will be �lled by algorithm r. That is,if f(T ) = :2, then we will only use 20% of the total storage required by aheT . Note that algorithm r1orresponds to the ase where f(T ) = 0 for every node T . Moreover, algorithm r2 orresponds to thease where f(T ) = 1. For eah of these ases, we provided a ount of the reursive alls made by reursiveonditioning. The question now is: What an we say about the number of reursive alls made by r undera partiular ahe fator f?As it turns out, the number of reursive alls made by r under the memory ommitted by f willdependent on the partiular instantiations of ontext(T ) that will be ahed on line 10. However, if weassume that any given instantiation y of ontext(T ) is equally likely to be ahed, then we an omputethe average number of reursive alls made by r and, hene, its average running time. Note that we anenfore the assumption that any given instantiation y of ontext(T ) is equally likely to be ahed by randomlyhoosing the instantiations to be ahed.Theorem 6 If the size of aheT is limited to f(T ) of its full size, and if eah instantiation of ontext(T )is equally likely to be ahed on line 10 of r, the average number of alls made to a non{root node T inalgorithm r is ave(T ) = utset(T p)# �f(T p)ontext(T p)# + (1� f(T p))ave(T p)� :12
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Figure 13: The average ratio of measured over estimated number of alls is 1:02 and the standard deviationis 0:06. The orrelation oeÆient between measured and estimated alls is 0:99. The networks in Set-Awere used in this experiments|see Appendix A.This theorem is quite important pratially as it allows one to estimate the running time of r under anygiven memory on�guration. All we have to do is add up ave(T ) for every node T in the dtree. Note thatone ave(T p) is omputed, we an ompute ave(T ) in onstant time. Therefore, we an ompute and sumave(T ) for every node T in the dtree in time linear in the dtree size.Before we further disuss the pratial utility of Theorem 6, we mention two important points. First,when the ahe fator is disrete (f(T ) = 0 or f(T ) = 1), Theorem 6 provides an exat ount of the numberof reursive alls made by r. In fat, the running time of r1 and r2 follow as orollaries of Theorem 6:� When f(T ) = 0 for all T : ave(T ) = utset(T p)#ave(T p);and the solution to this reurrene is ave(T ) = autset(T )#. This is basially the result of Theorem 2.� When f(T ) = 1 for all T : ave(T ) = utset(T p)#ontext(T p)#;whih is the result of Theorem 4.When the ahe fator is not disrete, Theorem 6 allows us to ompute the average number of reursivealls made by r. Figure 13 depits the result of an experiment for omputing suh averages using Theorem 6.We generated 1000 random networks, eah of whih ontaining a 100 variables (Set-A in Appendix A), andthen generated a random ahe fator for eah network. We then used Theorem 6 to estimate the number ofreursive alls whih will be made by r under that fator. We also ran r and measured the atual numberof reursive alls. Figure 13 reports the ratio of measured to estimated alls for eah network. As is learfrom the �gure, the orrelation fator is :99 between estimated and measured. This is very good sine weonly ran eah network one with respet to a given ahe fator.One of the most pratial aspets of Theorem 6 is that it allows us to produe a time{spae tradeo�urve, whih an be used to make deisions on how to alloate resoures when using reursive onditioning onomputationally demanding networks. We have applied the theorem to some realisti networks from the UCBerkeley Repository (http://www-nt.s.berkeley.edu/home/nir/publi-html/repository/index.htm), whih arealso provided with elimination orders that we utilized in our experiments. We depit three of these networks13



in Figures 14. Eah of the given plots orresponds to one network using both a balaned and an unbalaneddtree. To produe eah plot, we simply varied the ahe fator and omputed the orresponding number ofreursive alls. Spae is reorded as log2 of the maximum ahe size (ahe width) and time is reorded aslog2 of the maximum number of reursive alls that any node reeives (reursive alls width).7A number of observations are in order about these �gures:� When we are lose to linear spae, it is betters to use a balaned dtree for the time{spae tradeo�.When we are lose to exponential spae, it is better to use the original, unbalaned dtree.� The di�erene between the balaned and unbalaned dtrees is quite signi�ant for the Diabetes network.This is not surprising if one examines the struture of this network, as it looks very similar to thestruture of the ladder network in Figure 3.8� In many parts of the time{spae urve, utting the spae by half leads to approximately doubling thetime.One of the key questions relating to reursive onditioning is that of identifying the ahe fator whihwould minimize the running time aording to Theorem 6. Spei�ally, let us de�ne the e�et of a ahefator f as the number of ahe entries that it will utilize:e�et(f) def= XT f(T )ontext(T )#:Given that available memory will only aomodate m ahe entries, a key question relating to reursiveonditioning is the identi�ation of a ahe fator with e�et m that would minimize the running timeaording to Theorem 6. This ruial question, however, is outside the sope of this paper and is the subjetof urrent researh.The issue of time{spae tradeo� has been reeiving inreased interest in the ontext of Bayesian networkinferene, due mostly to the observation that state{of{the{art algorithms tend to give on spae �rst. The keyexisting proposal for suh tradeo� is based on realizing that the spae omplexity of lustering algorithms isexponential only in the size of separators, whih are typially smaller than lusters [12℄. Therefore, one analways trade time for spae by using a jointree with smaller separators, at the expense of introduing largerlusters [12℄. This method, however, an generate very large lusters whih an render the time omplexityvery high. To address this problem, a hybrid algorithm is proposed whih uses utset onditioning to solveeah enlarged luster, where the omplexity of this hybrid method an sometimes be less than exponentialin the size of enlarged lusters [12℄.There are two key di�erenes between this proposal and ours. First, the proposal is orthogonal to ournotion of a ahe fator, as it an be realized during the onstrution phase of a dtree. That is, we may deideto onstrut a dtree with smaller ahes, yet larger utsets. But one we have ommitted to a partiulardtree, the ahe fator an be used to ontrol the time{spae tradeo� at a �ner level as suggested above.The seond key di�erene between the proposal of [12℄ and ours is that when the hybrid algorithm of [12℄is run in linear spae, it will redue to utset onditioning sine the whole jointree will be ombined into asingle luster. In our proposal, linear spae leads to algorithm r1 whih has a di�erent time omplexitythan utset onditioning.6 Relation to Elimination and ClusteringThe main purpose of this setion is to show how to onstrut good dtrees, those with small width. Aseondary objetive is to relate the omplexity of reursive onditioning to the omplexity of elimination andlustering algorithms. Both objetives will be ahieved by studying the relationship between dtrees, whihdrive reursive onditioning, and7This is how the ahe fator was varied in this experiment. Let s be the size of the largest ahe in the dtree; that is,s = maxT sT , where sT is the size of ahe at node T . For a given x ranging from 0 to s, the fator f(T ) for eah node T washosen as large as possible suh that f(T )sT � x.8A postsript �gure depiting the struture of this network is available in the UC Berkeley site.14
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- jointrees, whih drive lustering methods; and- elimination orders, whih drive elimination methods.The quality of both elimination orders and jointrees is measured by their width. The ore of this setion istherefore two linear time transformations that ahieve the following:- Given a dtree of width w for a Bayesian network, onstrut a jointree of width w for the same network.- Given an elimination order of width w for a Bayesian network, onstrut a dtree of width � w for thesame network.Given existing transformations between elimination orders of width w and jointrees of the same width[10, 18, 11℄, the results of this setion allow for linear, width{preserving transformations between any pairof graphial strutures.9 There are several impliations of these transformations:� Any good method for onstruting elimination orders or jointrees is immediately a good method foronstruting dtrees. This means that reursive onditioning an apitalize on the good heuristisalready established in the literature, suh as the mindegree heuristi.� Sine the treewidth of a Bayesian network is de�ned as the width of its best elimination order (orjointree), treewidth an also be de�ned as the width of the network's best dtree.� If a Bayesian network has a small treewidth, then an optimal elimination order (jointree) an beonstruted in linear time [1, 9℄. This means that an optimal dtree an also be onstruted in suh aase.6.1 From Dtrees to JointreesA jointree for Bayesian network N is a labeled tree (T;C), where T is a tree and C is a labeling funtionthat maps eah node i in T into a set of variables C(i) in N , suh that:1. every family (a node and its parents) in N belongs to some label C(i);2. if a variable belongs to two labels C(i) and C(j), its must belong to every label C(k), where k is onthe path onneting i and j in T .The label C(i) is typially alled a luster or lique of the jointree. Moreover, the set C(i) \ C(j), where(i; j) is an edge in T , is alled the separator of lusters C(i) and C(j). The width of a jointree is de�nedas the size of its maximal luster minus one. The separator width of a jointree is de�ned as the size of itsmaximal separator. The time omplexity of a lustering method is exponential only in the jointree width,and its spae omplexity is exponential only in its separator width.De�nition 6 Let T be a node in a dtree. The luster of T is de�ned as follows:luster(T ) = � vars(T ); if T is leaf;utset(T ) [ ontext(T ); otherwise.The width of a dtree is de�ned as the size of its maximal luster minus one.As it turns out, the lusters of a dtree already form a jointree.Theorem 7 Let N be a Bayesian network and let T be a orresponding dtree of width w. Then (T; luster)is a jointree of width w for network N . Moreover, for any node T and its parent T p, we have luster(T ) \luster(T p) = ontext(T ).9There are diret transformations from dtrees to elimination orders, and from jointrees to dtrees, but we omit them here tosimplify the disussion [7℄. 16



Algorithm el2dtel2dt(N ; �)� fleaf(�) : � is a CPT in Ngfor i 1 to length of order � dolet T1; : : : ; Tn be trees in � whih ontain variable �(i)remove T1; : : : ; Tn from �add ompose(T1; : : : ; Tn) to �ompose and return the trees in �.Figure 15: Pseudoode for transforming an elimination order into a dtree. leaf(�) reates a leaf node andassoiates CPT � with it.That is, the lusters of a dtree T form a jointree, where the ontexts represent the jointree separators. Thejointree indued by a dtree is speial in two ways: (1) the CPTs are assigned to leaf lusters only and (2)eah luster has at most three neighbors. Therefore, this theorem shows a very lose onnetion betweenr2 and lustering methods. It also shows that if a network has treewidth w, then the width of any of itsdtrees will be � w. In the next setion, we will show that if a network has treewidth w, then it must have adtree of width � w. The two results lead to a new, alternative de�nition of treewidth: it is the width of thebest dtree for the Bayesian network.6.2 From Elimination Orders to DtreesStritly speaking, elimination orders are de�ned for undireted graphs in the graph{theoreti literature.Therefore, when we say an elimination order for a Bayesian network, we mean an elimination order for themoral graph of that network.10An elimination order for an undireted graph G is simply a total order �(1); �(2); : : : ; �(n) of the nvariables (nodes) in G. One of the simplest ways for de�ning the width w of order � is onstrutively.Simply eliminate variable �(1); �(2); : : : ; �(n) from G in that order, onneting all neighbors of a variablebefore eliminating it. The maximum number of neighbors that any eliminated variable has is then the widthof order �. Moreover, the treewidth of a graph is the width of its best elimination order (the one with thesmallest width).Given a Bayesian network N and a orresponding elimination order � of width w, we want to onstruta dtree for N of width � w. This an be easily ahieved using the ompose operator, whih takes a setof binary trees T1; : : : ; Tn and onnets them (arbitrarily) into a single binary tree ompose(T1; : : : ; Tn).We start initially by onstruting a set of dtrees, eah ontaining a single node and orresponding to oneof the CPTs in network N . We then onsider variables �(1); �(2); : : : ; �(n) in that order. Eah time weonsider a variable �(i), we ompose all binary trees whih mention �(i). We �nally return the ompositionof all remaining binary trees. This proedure is given in Figure 15, and two examples of its appliations aredepited in Figure 16. In the �rst example, we use the order � =< D;F;E;C;B;A >, whih has width 3, togenerate a dtree of width 2. In the seond example, we use the elimination order � =< F;E;A;B;C;D >of width 2 and generate a dtree of the same width. Note that algorithm el2dt is not deterministi sinethe ompose proedure is not deterministi. Therefore, di�erent dtrees ould have been generated usingthe above orders, but all of them are guaranteed to have width whih is no greater than the width of usedelimination order.Algorithm el2dt an be implemented in time whih is linear in the size of given Bayesian network.11 Its10The moral graph of a Bayesian network is an undireted graph. It is obtained by onneting every pair of parents in thenetwork and then dropping out the diretionality of edges.11This an be done using bukets [11℄. That is, we onstrut a buket i for eah variable �(i). A tree T belongs to buket iif variable �(i) appears in T and omes �rst in the order among all other variables in T . We start initially by plaing eah leaftree leaf(�) in its orresponding buket. As we proess variable �(i), we ompose all trees in buket i and plae the resultingtree in its orresponding buket. 17
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Figure 17: Demonstrating the ontrat operation of [24℄.Algorithm bal-dtbal-dt(T )for eah internal node N in T , label(N) empty dtreefor eah leaf node N in T , label(N) dtree Nop omposeR �nal node resulting from suessive appliations of ontrat to Treturn label(R)Figure 18: Pseudoode for balaning a dtree.soundness is established below:Theorem 8 Let N be a Bayesian network and let � be a orresponding elimination order of width w. Theall el2dt(N ; �) will return a dtree of width � w for network N .6.3 Balaning DtreesWe now present an algorithm for balaning a dtree while inreasing its width by no more than a onstantfator. The algorithm is similar to el2dt exept that the omposition proess is not driven by an eliminationorder. Instead, it is driven by applying the ontrat operation of [24℄ to the given dtree. We need toexplain this operation �rst.ontrat is an operation whih is applied to a tree. It simply absorbs some of the tree nodes into theirneighbors, therefore, produing a smaller tree. To absorb node N1 into node N2 is to make the neighborsof N1 into neighbors of N2 and to remove node N1 from the tree. ontrat works by applying a rakeoperation to the tree, followed by a ompress operation. The rake operation is simple: it absorbs eah leafnode into its parent. The ompress operation is more involved: it identi�es maximal hains N1; N2; : : : ; Nkand then absorbs Ni into Ni+1 for odd i. The sequene N1; N2; : : : ; Nk is a hain if Ni+1 is the only hild ofNi for 1 � i < k, and if Nk has exatly one hild and that hild is not a leaf. Typially, eah tree node Nwill have an appliation{spei� label, label(N). When node N1 is absorbed into its neighbor N2, the labelof N2 is updated as follows: label(N2) label(N1) op label(N2) where op is an appliation{spei�operation. One of the key appliations of ontrat is in evaluating arithmeti{expression trees. In thisappliation, the label of a node is a number and the operation op is either addition or multipliation.Figure 17 depits an example where ontrat is applied to a tree, where the labels of nodes are stringsand op is string onatenation. The main property of ontrat is that any tree an be redued to a singlenode by only applying ontrat O(logn) times, where n the size of given tree [24℄.We will use ontrat to balane a dtree T as follows. First, we label eah internal node in T withthe empty dtree. Seond, we label eah leaf node of T with itself. We then hoose the operation op to beompose, de�ned in Setion 6.2. Finally, we apply ontrat suessively to T until it is redued to asingle node and return the label of the �nal node. This algorithm is given in Figure 18. Its properties follow:19



Theorem 9 Let T be a dtree of ontext width w for a Bayesian network N with n nodes. bal-dt(T ) willtake O(n logn) time and will return a dtree for N of height O(logn), utset width � w, ontext width � 2wand width � 3w � 1.The experimental results in Appendix A provide a sense of the onstant fators involved in this theorem. Forexample, the width is inreased by 2:1 for Set-A networks and by 1:6 for Set-B networks after balaningusing algorithm bal-dt.The important aspet of Theorem 9 is that balaning a dtree will inrease eah of its widths by no morethan a onstant fator. In fat, the utset width will never exeed the ontext width of unbalaned dtreeafter applying bal-dt.6.4 Deomposition by Graph SeparatorsOne of the key di�erenes between reursive onditioning and previous work on nested dissetion (inludingthe work of Cooper on reursive deomposition [3℄) is the manner in whih a problem is deomposed intosmaller problems, and the formal guarantees provided on the quality of suh a deomposition. Previous workshave appealed to the notion of graph separators to reursively deompose a graph into smaller subgraphs[14℄. A graph separator is a set of nodes C that partitions the graph into three sets A;B;C, suh that nonode in A is adjaent to a node in B. In �nding separators, one tries to minimize the size of separator C,while keeping the sizes of A and B as lose as possible. That is, the emphasis is on minimizing separators,while keeping the deomposition balaned. In our framework, this orresponds to generating balaned dtreesthat have a minimal utset width. But this does not neessarily lead to minimizing dtree width, whih isthe parameter that governs the omplexity of reursive onditioning. In fat, balaned deompositions tendto have larger widths than unbalaned ones.Central to the work on graph separation is the notion of an f(n){separator theorem. A lass of graphs issaid to have an f(n){separator theorem i� there exists onstants � < 1 and � > 0; suh that if G is a graphin the lass with n nodes, then G an be partitioned into sets A;B;C suh that no node in A is adjaent toa node in B, neither A nor B ontains more than �n nodes, and C ontains no more than �f(n) nodes.An f(n){separator theorem for a lass of graph allows one to guarantee the quality of reursive deom-positions obtained for that lass of graphs. For example, planar graphs have pn{separator theorem [22℄,and at least half a dozen other lasses of graphs are known to have similar separator theorems [14℄.One of the main di�erenes between deomposing a graph using a separator theorem, versus deom-posing it using a dtree, is that the deompositions generated by separator theorems are balaned, whiledeompositions indued by dtrees an be either balaned or unbalaned. As we have seen earlier, balaneddeompositions are preferred if reursive onditioning is to run under linear spae (or lose to linear spae).However, balaned deompositions have a bigger width than unbalaned ones, and are not preferred if oneis running under O(n exp(w)) spae (or in that region).The term deomposition tree have been used in many plaes in the literature to denote di�erent notionsof reursive deomposition. It is used in [31℄ to denote a reursive deomposition of a graph into atoms; itis used in [23℄ to denote a reursive deomposition of a database shema; it is also used in [3℄ to denote areursive deomposition of a Bayesian network. We have hosen the term dtree in this paper to distinguishour deomposition trees from previous ones.The reursive{deomposition algorithm of [3℄ is similar to r2, exept that the deomposition tree em-ployed is quite di�erent from our dtree. With eah node in a deomposition tree of [3℄, four sets of variablesare assoiated: a summation set, an instantiation set, an evaluation set and a variable set. Summation setsrepresent graph separators and play the role of utsets in our framework. Instantiation sets are used to aheresults and, hene, play the role of ontexts in our frameworks. No guarantees, however, are provided onthe sizes of these sets in terms of network width. Moreover, evaluation and variable sets are spei� to thegiven onstrut proposed in [3℄ and seem to play no role in our framework.Therefore, aside from a new omplexity result for Bayesian network inferene under linear spae (thatis, O(n exp(w logn))); and a re�ned, formal theory of any{spae reasoning; one of our key ontributionshere is the introdution of dtrees as a new devie for induing reursive deompositions on direted ayligraphs.12 Beyond their simpliity, and admitting balaned/unbalaned deompositions, the signi�ane of12We also show in [7℄ how to deompose undireted graphs using dtrees.20



dtrees stems from the expliation of their four parameters (a-utset width, utset width, ontext width, andwidth) and the bounding of these parameters by treewidth.Dtrees and their various properties are not spei� to probabilisti reasoning, but are appliable to otherforms of deompositional reasoning. Preliminary versions of reursive onditioning using dtrees have alreadybeen applied to model{based diagnosis [8℄ and to propositional{logi ompilation [6, 4℄. In both ases, dtreeswere used to reursively deompose a problem into subproblems that an be solved independently. Theany{spae behavior of reursive onditioning, however, and its time omplexity under linear spae have yetto be investigated in non{probabilisti reasoning.7 ConlusionReursive onditioning is an any{spae algorithm for exat inferene in Bayesian networks. On one extreme,reursive onditioning takes O(n) spae and O(n exp(w logn)) time|where n is the size of Bayesian networkand w is the width of a given elimination order|therefore, establishing a new omplexity result for linear{spae inferene in Bayesian networks. On the other extreme, reursive onditioning takes O(n exp(w))spae and O(n exp(w)) time, therefore, mathing the omplexity of state{of{the{art algorithms based onlustering and elimination. In between linear and exponential spae, reursive onditioning an utilizememory at inrements of X-bytes, where X is the number of bytes needed to store a oating point numberin a ahe. Moreover, the algorithm is equipped with a formula for omputing its average running time underany amount of spae, hene, providing a valuable tool for time{spae tradeo�s in demanding appliations.Reursive onditioning is therefore the �rst algorithm for exat inferene in Bayesian networks to o�er asmooth tradeo� between time and spae, and to expliate a smooth, quantitative relationship between thesetwo important resoures.AknowledgementI wish to thank Rina Dehter for inspiring the analysis of reursive onditioning under linear spae andfor various helpful disussions; Gregory Cooper for making his unpublished work available; James Park forommenting on an earlier draft of this paper; Judea Pearl for many valuable disussions; and Stuart Russellfor suggesting the relevane of graph separators to reursive onditioning.A Further Experimental ResultsWe used two sets of networks in our experiments:� Set-A: Eah network in this set ontains a 100 nodes and the width of its orresponding dtrees is� 20. The set is depited in Figure 19, together with some further statistis relating to di�erent widthparameters.� Set-B: Eah network in this set ontains a 150 nodes and the width of its orresponding dtrees is� 50. The set is depited in Figure 20, together with some further statistis relating to di�erent widthparameters.For eah network, we omputed an elimination order based on the following heuristi: always eliminate avariable whih leads to adding the smallest number of edges to the moral graph. We then omputed a dtreebased on this order using algorithm el2dt of Figure 15. The width reported in Figures 19 and 20 refers tothe width of omputed elimination order. This is at least equal to the treewidth of given network, but anbe larger. Note that omputing treewidth is an NP{hard problem.The networks were generated randomly as follows. On average, 20% of the nodes are root, 10% havea single parent, 20% have two parents, 25% have three parents, 20% have four parents and 5% have �veparents. We assumed that nodes are numbered from 0 to n. The parents of eah node i have been hosenrandomly from the set 0; : : : ; i� 1. Moreover any parent of node i was not to be less than i�w for a ertainonstant w. This onstant allows us to ontrol the onnetivity of generated network; the bigger w is, the21



more onneted the network is. In the �rst set of networks, we hose w randomly for eah network so itranges between 2 and 35. In the seond set, it ranged between 2 and 75.B ProofsLemma 1 The following relationships hold:(a) utset(T ) \ ontext(T ) = ;.(b) ontext(T ) � utset(T p) [ ontext(T p) = luster(T p).() utset(T p) � ontext(T ).(d) utset(T1) \ utset(T2) = ; when T1 is an anestor of T2.(e) ontext(T ) = luster(T ) \ luster(T p).Proof of Lemma 1(a) If X 2 ontext(T ), then X 2 autset(T ) sine ontext(T ) = autset(T )\vars(T ). Then X annot belongto utset(T ), whih is equal to vars(T l) \ vars(T r)� autset(T ). The other diretion follows similarly.(b) Suppose X 2 ontext(T ). Then X 2 autset(T ) \ vars(T ) and, hene, X 2 vars(T p). We have twoases.� X 2 autset(T p): Then X 2 ontext(T p).� X 62 autset(T p): Then X 2 utset(T p) sine X 2 autset(T ).Therefore, X 2 ontext(T p) or X 2 utset(T p).() Let T s be the sibling of T and suppose X 2 utset(T p). Then X 2 vars(T ) \ vars(T s) by de�nition ofa utset. Therefore, X 2 vars(T ), X 2 autset(T ) and, hene, X 2 ontext(T ).(d) We have utset(T1) � autset(T2) by de�nition of autset. We also have utset(T2) \ autset(T2) = ;by de�nition of utset. Hene, utset(T1) \ utset(T2) = ;.(e) By de�nition of ontext, we have ontext(T ) � luster(T ). By (b), we have ontext(T ) � luster(T p).Hene, ontext(T ) � luster(T ) \ luster(T p). Suppose that X 2 luster(T ) \ luster(T p). Then X 2vars(T ) sine X 2 luster(T ). Sine X 2 luster(T p), we have two ases. Case 1: X 2 utset(T p). ThenX 2 ontext(T ) by (). Case 2: X 62 utset(T p). Then X 2 ontext(T p) by (a); hene, X 2 autset(T p)and X 2 vars(T p). Therefore, X 2 autset(T ) and X 2 ontext(T ).Lemma 2 Let vars"(T ) denote [T 0vars(T 0), where T 0 is a leaf onneted to node T through its parent. Thenutset(T ) = vars(T l) \ vars(T r)� vars"(T )ontext(T ) = vars(T ) \ vars"(T )luster(T ) = (vars(T l) \ vars(T r)) [ (vars(T l) \ vars"(T )) [ (vars(T r) \ vars"(T )):Proof of Lemma 2If X 2 vars(T ), then X 2 vars"(T ) i� X 2 autset(T ). This immediately leads to utset(T ) = vars(T l) \vars(T r)� vars"(T ) and ontext(T ) = vars(T ) \ vars"(T ).Suppose that X 2 (vars(T l) \ vars(T r)) [ (vars(T l) \ vars"(T )) [ (vars(T r) \ vars"(T )):If X 2 (vars(T l) \ vars"(T )) [ (vars(T r) \ vars"(T )), then X 2 vars(T ) \ vars"(T ) = ontext(T ) � luster(T ).If X 62 (vars(T l) \ vars(T r)) [ (vars(T r) \ vars"(T )) and X 2 vars(T l) \ vars(T r), then X 62 vars"(T ) and,hene, X 2 vars(T l) \ vars(T r)� vars"(T ) = utset(T ) � luster(T ).22
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Distribution of 1000 Random Networks --- Set A
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Suppose that X 2 luster(T ) = utset(T ) [ ontext(T ):If X 2 ontext(T ) = vars(T ) \ vars"(T ), then X 2 vars(T l) \ vars"(T ) or X 2 vars(T r) \ vars"(T ). IfX 2 utset(T ) = vars(T l) \ vars(T r) � vars"(T ), and X 62 ontext(T ), then X 62 vars"(T ) and, hene,X 2 vars(T l) \ vars(T r).Proof of Theorem 1First, we need to show that if variables in C = vars(T l)\ vars(T r) are instantiated, then the CPTs of T l andT r will not share any variables. Suppose that X 2 C. The CPT of X may belong to either T l or T r butnot both. Suppose it belongs to T l. One we instantiate x, variable X will disappear from all CPTs in T r.Therefore, X will not appear in vars(T r) and, hene, the CPTs of T l and T r will not share any variables.Seond, we need to pretend that eah time instantiation  is reorded on line 05, then CPTs are atuallyredued. And that this proess is reversed on line 07. In this ase, eah time we reah a leaf node T , thetable � assoiated with T is guaranteed to be redued to table �0 whih ontains only one variable X . Thisfollows beause (1) every variable Y 6= X whih appears in CPT � must also appear in autset(T ) and (2)when r1 is alled on T , autset(T ) is guaranteed to be instantiated. The base ase follows sine lookup(T )will return PrN (e), where N is the network onsisting of the single node X and its redued CPT �0, and eis the evidene available on X . The indutive step follows from Equation 4.Proof of Theorem 2The �rst part of this theorem follows as a orollary of Theorem 6|see disussion after the statement ofTheorem 6.To show autset(T )# = O(exp(dw)), we note the following:� The utsets assoiated with the anestors of T are pairwise disjoint by Lemma 1(d).� The size of any of these utsets is no greater than w.� autset(T ) is the union of utset(T 0), where T 0 is an anestor of T .Hene, the size of autset(T ) is bounded by dw.Proof of Theorem 3That r1 onsumes O(n) spae follows immediately from the statement of the algorithm.13Given an elimination order of width w, el2dt will onstrut a dtree of utset width � w (Theorem 8).bal-dt will balane the dtree, while ensuring that its utset width is � w (Theorem 9). Sine the height ofthe balaned dtree is O(logn), its a-utset width must be O(w logn) by Theorem 2. Therefore, the numberof reursive alls made by r1 to node T is O(exp(w logn)). The total number of reursive alls made byr1 is then O(n exp(w logn)).Proof of Theorem 4Follows as a orollary of Theorem 6|see disussion after the statement of Theorem 6.Proof of Theorem 5We have O(n) ahes and the size of eah aheT is � ontext(T )#. Sine the dtree is onstruted usingel2dt, ontext(T )# = O(exp(w)) (Theorem 8). Hene, the size of all ahes is O(n exp(w)).By Theorem 4, the number of reursive alls to eah node T is utset(T p)#ontext(T p)#. Sine the dtreeis onstruted using el2dt, utset(T p)#ontext(T p)# = O(exp(w)) (Theorem 8). Hene, the total numberof reursive alls is O(n exp(w)).13We are assuming that utset and ontext sizes are bounded by onstants.25



Proof of Theorem 6The entral onept in this proof is the notion of a T{type for a given node T in the dtree. This is basiallythe set of all alls to node T that agree on the instantiation of ontext(T ) at the time the alls are made.Calls in a partiular T{type are guaranteed to return the same probability. In fat, the whole purpose ofaheT is to save the result returned by one member of eah T{type so the result an be looked up when otheralls in the same T -type are made. Eah T{type is identi�ed by a partiular instantiation y of ontext(T ).Hene, there are ontext(T )# di�erent T{types, eah orresponding to one instantiation of ontext(T ). Wefurther establish the following de�nitions and observations:- A T{type y is either ahed or non{ahed depending on whether the test ahe?(T;y) sueeds online 10.- apt(T ) is the average number of alls in a T{type.- ave(T ) is the average number of alls to node T and equals ave(T ) = apt(T )ontext(T )#.- We have f(T )ontext(T )# ahed T{types and (1� f(T ))ontext(T )# non{ahed T{types.14- A T p{type x is onsistent with T{type y i� instantiations x and y agree on the values of their ommonvariables ontext(T p) \ ontext(T ). Calls in a partiular T{type y will be generated reursively onlyby alls in a onsistent T p{type x.- There are (ontext(T p)� ontext(T ))# T p{types whih are onsistent with a given T{type y. Onaverage,- f(T p)(ontext(T p)� ontext(T ))# of them are ahed, and- (1� f(T p))(ontext(T p)� ontext(T ))# are non{ahed.This follows beause eah T p{type is equally likely to be ahed. Moreover,- A ahed T p{type x will generate utset(T p)# alls to node T sine r(T p) will reurse ononly one all per ahed T p{type. Only one of these alls is onsistent with T{type y sineutset(T p) � ontext(T ) by Lemma 1().- A non{ahed T p{type x will generate apt(T p)utset(T p)# alls to node T sine r(T p) willreurse on every all in a non{ahed T p{type. Only apt(T p) of these alls are onsistent withT{type y.- apt(T ) equals the sum of alls in some T{type y whih are generated by eah T p{type onsistent withy. Therefore,apt(T ) = f(T p)(ontext(T p)� ontext(T ))#| {z }(no. ahed T p{types onsistent with y) 1|{z}(no. alls in T{type y eah generates)+(1� f(T p))(ontext(T p)� ontext(T ))#| {z }(no. non{ahed T p{types onsistent with y) apt(T p)| {z }(no. alls in T{type y eah generates)= (ontext(T p)� ontext(T ))# [f(T p) + (1� f(T p))apt(T p)℄ :Hene,ave(T ) = (ontext(T p)� ontext(T ))# [f(T p) + (1� f(T p))apt(T p)℄ ontext(T )#= (luster(T p)� ontext(T ))# [f(T p) + (1� f(T p))apt(T p)℄ ontext(T )#; by Lemma 1(b,)= luster(T p)# [f(T p) + (1� f(T p))apt(T p)℄ ; by Lemma 1(b)= utset(T p)#ontext(T p)# [f(T p) + (1� f(T p))apt(T p)℄ ; by Lemma 1(a,b)= utset(T p)# �f(T p)ontext(T p)# + (1� f(T p))apt(T p)ontext(T p)#�= utset(T p)# �f(T p)ontext(T p)# + (1� f(T p))ave(T p)� :14In algorithm r1, all T{types are non{ahed (f(T ) = 0). In r2, all T{types are ahed (f(T ) = 1).26



Proof of Theorem 7That luster(T ) \ luster(T p) = ontext(T ) follows from Lemma 1(e).It also follows from the de�nition of a dtree that the lusters of leaf nodes orrespond to the families ofBayesian network. Therefore, eah family is ontained in some dtree luster.To prove the jointree property, we will use Lemma 2. Suppose that L;M and N are three nodes in dtreeT . Suppose further that L is on the path onneting M and N . Let X be a node in luster(M)\ luster(N).We want to show that X belongs to luster(L). We onsider two ases.Case: M is an anestor of N . Then L is an anestor of N . Sine X 2 luster(N), then X 2 vars(N) and,hene, X 2 vars(L). Sine X 2 luster(M), then either X 2 utset(M) orX 2 ontext(M). If X 2 utset(M),then X 2 vars(M l) and X 2 vars(Mr). If X 2 ontext(M), then X 2 vars"(M). In either ase, we haveX 2 vars"(L), X 2 vars(L) \ vars"(L) = ontext(L) and, hene, X 2 luster(L).Case: M is not an anestor of N . Then we must have a ommon anestor O of both M and N .Moreover, either O = L or O is an anestor of L. Therefore, it suÆe to show that X 2 luster(O) (giventhe above ase). Without loss of generality, suppose that M is in the left subtree of O and N is in theright subtree. Sine X 2 vars(M), then X 2 vars(Ol). Sine X 2 vars(N), then X 2 vars(Or). Therefore,X 2 luster(O) by Lemma 2.Proof of Theorem 8We need a ouple of lemmas �rst.Lemma 3 When proessing variable �(i) in el2dt, the luster of any node N whih is added in the proess ofomposing trees T1; : : : ; Tn must be inluded in vars(T )\f�(i); : : : ; �(n)g, where T = ompose(T1; : : : ; Tn).15Suppose that a variable X belongs to luster(N). Then, by Lemma 2, X must either belong to two trees inT1; : : : ; Tn, or belong to a tree in T1; : : : ; Tn and another tree in �� fT1; : : : ; Tng. In either ase, X annotbelong to f�(1); : : : ; �(i� 1)g sine these variables have already been proessed, so eah an belong only toa single tree in �. Therefore, X must belong to �(i); : : : ; �(n). Moreover, X must belong to at least onetree in T1; : : : ; Tn. Hene, X must belong to T and X 2 vars(T ) \ f�(i); : : : ; �(n)g.Lemma 4 Let � be a olletion of sets S1; : : : ; Sn, where Si is the family of variable �(i) in network N . Toeliminate variable �(i) from � is to replae the sets Sk ontaining �(i) by the set (Sk Sk)� f�(i)g. Now, ifwe start eliminating variables aording to the order �, onurrently, from the moral graph G of N and fromthe olletion �, we �nd the following. As we are about to eliminate variable �(i), the set (Sk Sk)� f�(i)gwill ontain exatly the neighbors of �(i) in graph G.It suÆes to show that two nodes appear in the same set in � i� they are onneted by an edge in G. Thisfollows initially, before any variable is eliminated. Moreover, it is easy to show that it ontinues to hold aftera variable has been eliminated.Now algorithm el2dt(N ; �) an be viewed as performing variable elimination on a olletion of sets,whih initially ontains the families of N . We need to establish this orrespondene �rst in order to proveour theorem. After proessing variable �(i) in algorithm el2dt, the set of variables represented by tree Tin � is set(T ) def= vars(T ) \ f�(i+ 1); : : : ; �(n)g;that is, variables in T that have not been proessed yet.Initially, the trees in � represent the families in N . As we proess variable �(i), we ollet all treesT1; : : : ; Tn suh that �(i) 2 set(T1); : : : ; set(Tn) and replae them by the tree ompose(T1; : : : ; Tn). Itfollows that set(ompose(T1; : : : ; Tn)) = set(T1) [ : : : [ set(Tn)� f�(i)g;and hene the orrespondene we are seeking.15We are referring to the luster of N in the �nal dtree returned by el2dt.27



From this orrespondene, and Lemma 4, we onlude that when proessing variable �(i), the treeT = ompose(T1; : : : ; Tn), whih is added to �, is suh that set(T ) ontains exatly the neighbors of variable�(i) in the moral graph G of N after having eliminated �(1); : : : ; �(i� 1) from it. This means that the sizeof set(T ) = vars(T ) \ f�(i+ 1); : : : ; �(n)g is � width(�) and, hene, the size of vars(T ) \ f�(i); : : : ; �(n)g is� width(�) + 1.Given Lemma 3, this means that the luster of any node whih is added as a result of omposing T1; : : : ; Tnannot be bigger than width(�) + 1. This proves that the width of onstruted dtree is no more than thewidth of order �.Proof of Theorem 9That bal-dt(T ) takes O(n logn) time and returns a binary tree of height O(logn) follows immediatelyfrom the properties of the ontrat operation [24℄. That bal-dt(T ) is a dtree follows from the way weinitialized the labels of nodes in T .To prove the results on widths, we need to introdue some new notation. Sine the all bal-dt(T )modi�es dtree T using the ontrat operation, we will use T0; T1; T2; : : :, where T0 = T , to denote themodi�ed dtrees after eah rake or ompress operation. Moreover, we will use Ni to denote node N indtree Ti.We will use Lvars(N) to denote the variables appearing in dtree label(N); Lvars#(N) to denote variablesappearing in dtrees label(M), where M = N or M is a desendent of N ; Lvars"(N) to denote variablesappearing in dtrees label(M), where M is onneted to N through its parent.We �rst prove two lemmas.Lemma 5 We have j Lvars#(Ni) \ Lvars"(Ni) j� w.This holds in T0 sine Lvars#(N0) \ Lvars"(N0) = ontext(N0) by Lemma 2, whih size is � w. We need toprove that the rake and ompress operations preserve this invariant.� ompress: after absorbing Nip into Ni to yield Ni+1, we have Lvars#(Ni+1) = Lvars#(Nip) andLvars"(Ni+1) = Lvars"(Nip). Therefore, Lvars#(Ni+1) \ Lvars"(Ni+1) = Lvars#(Nip) \ Lvars"(Nip)and the invariant holds in Ti+1 given that it holds in Ti.� rake: after absorbing the hildren Nil and Nir into Ni to yield Ni+1, label(Ni+1) will be theomposition of label(Ni), label(Nil) and label(Nir). Therefore, Lvars#(Ni+1) = Lvars#(Ni) andLvars"(Ni+1) = Lvars"(Ni) and the invariant holds in Ti+1 given that it holds in Ti.Lemma 6 If Ni is a node with two hildren, then label(Ni) is the empty dtree.If Ni has two hildren, then N0; N1; : : : ; Ni�1 have two hildren eah sine ontrat annot add hildrento nodes. By onstrution, label(N0) must be the empty dtree. Suppose that label(Ni) is not the emptydtree. Then a node must have been absorbed into N in some dtree T0; : : : ; Ti. This is impossible thoughsine N annot be part of any hain in these dtrees, and N is not a leaf in any of these dtrees. Therefore,neither ompress nor rake ould have altered the label of N in dtrees T0; : : : ; Ti.We now proeed to prove the rest of this theorem. Initially, the dtrees in the labels of T0 represent leafnodes in the �nal dtree returned by bal-dt. Sine these nodes are leaves, they do not have utsets. Thatthe ontext and luster sizes of these nodes have the laimed sizes in the �nal dtree returned by bal-dtfollows immediately from the fat that they orrespond to the leaves in dtree T0.There are three ways in whih ompose an add a new dtree node d to ombine two dtrees together.We will show that the utset, ontext and luster of eah added node d will have the laimed size in the �naldtree returned by bal-dt. In what follows, utset(d), ontext(d) and luster(d) refer to the utset, ontextand luster of node d in the �nal dtree returned by bal-dt.Case 1. We have a hain Ni�Oi �Pi, where Ni is absorbed into hild Oi by ompress, reating dtreed = label(Oi+1) = ompose(label(Ni); label(Oi)). Thenutset(d) � Lvars(Ni) \ Lvars(Oi)� Lvars"(Oi) \ Lvars#(Oi);28



whih size is � w by Lemma 5. Moreover, by Lemma 2,ontext(d) = (Lvars(Ni) [ Lvars(Oi)) \ [Ki 6=Ni;Ki 6=Oi Lvars(Ki)� (Lvars"(Ni) \ Lvars#(Ni)) [ (Lvars"(Pi) \ Lvars#(Pi));whih size is � 2w by Lemma 5. Finally, sine luster(d) = utset(d)[ ontext(d), we have j luster(d) j� 3w.Case 2. Node Ni has a single hild Oi, where Oi is a leaf. Node Oi is absorbed into parent Ni by rake,reating dtree d = label(Ni+1) = ompose(label(Ni); label(Oi)). We haveutset(d) � Lvars(Ni) \ Lvars(Oi)� Lvars"(Oi) \ Lvars#(Oi);whih size is � w. Moreover,ontext(d) = (Lvars(Ni) [ Lvars(Oi)) \ [Ki 6=Ni;Ki 6=Oi Lvars(Ki)� Lvars"(Ni) \ Lvars#(Ni);whih size is � w. Finally, sine luster(d) = utset(d) [ ontext(d), we have j luster(d) j� 2w.Case 3. Node Ni has two hildren Oi and Pi, whih are leaves. Nodes Oi and Pi are absorbed intoparent Ni by rake, reating dtree d = label(Ni+1) = ompose(label(Oi); label(Pi)) sine label(Ni)is the empty dtree by Lemma 6. We haveutset(d) � Lvars(Oi) \ Lvars(Pi)� Lvars"(Oi) \ Lvars#(Oi);whih size is � w. Moreover,ontext(d) = (Lvars(Oi) [ Lvars(Pi)) \ [Ki 6=Oi;Ki 6=Pi Lvars(Ki)� Lvars"(Ni) \ Lvars#(Ni);whih size is � w. Finally, sine luster(d) = utset(d) [ ontext(d), we have j luster(d) j� 2w.Therefore, the size of every utset is � w, the size of every ontext is � 2w and the size of every lusteris � 3w. This means that utset width, ontext width, and width are � w; 2w; 3w � 1, respetively.Referenes[1℄ Hans. L. Bodlaender. A linear time algorithm for �nding tree-deompositions of small treewidth. SIAMJournal of Computing, 25(6):1305{1317, 1996.[2℄ Craig Boutilier, Nir Friedman, Mois�es Goldszmidt, and Daphne Koller. Context{spei� independenein bayesian networks. In Proeedings of the 12th Conferene on Unertainty in Arti�ial Intelligene(UAI), pages 115{123, 1996.[3℄ Gregory F. Cooper. Bayesian belief-network inferene using reursive deomposition. Tehnial ReportKSL-90-05, Knowledge Systems Laboratory, Stanford, CA 94305, 1990.[4℄ Adnan Darwihe. Deomposable negation normal form. Journal of the ACM. To appear.[5℄ Adnan Darwihe. Conditioning algorithms for exat and approximate inferene in ausal networks. InProeedings of the 11th Conferene on Unertainty in Arti�ial Intelligene (UAI), pages 99{107, 1995.[6℄ Adnan Darwihe. Compiling knowledge into deomposable negation normal form. In Proeedings ofInternational Joint Conferene on Arti�ial Intelligene (IJCAI), pages 284{289, 1999.29
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