
Morphing the Hugin and Shenoy–Shafer
Architectures

James D. Park and Adnan Darwiche

UCLA, Los Angeles CA 90095, USA,
{jd,darwiche}@cs.ucla.edu

Abstract. The Hugin and Shenoy–Shafer architectures are two varia-
tions on the jointree algorithm, which exhibit different tradeoffs with
respect to efficiency and query answering power. The Hugin architecture
is more time–efficient on arbitrary jointrees, avoiding some redundant
computations performed by the Shenoy–Shafer architecture. This effi-
ciency, however, comes at the price of limiting the number of queries the
Hugin architecture is capable of answering. In this paper, we present a
simple algorithm which retains the efficiency of the Hugin architecture
and enjoys the query answering power of the Shenoy–Shafer architecture.

1 Introduction

There are a number of algorithms for answering queries with respect to Bayesian
networks. Among the most popular of these are the algorithms based on jointrees,
of which the Shenoy–Shafer [10] and Hugin [4, 3] architectures represent two
prominent variations. While superficially similar, these architectures differ in
both efficiency and query answering power. Specifically, the Hugin architecture is
faster on arbitrary jointrees, but the Shenoy–Shafer architecture results in more
information and can answer more queries. This paper presents an architecture
that combines the best of both algorithms. In particular, we show that a simple
modification to the Hugin architecture which does not alter its time and space
efficiency, allows it to attain the same query answering power exhibited by the
Shenoy–Shafer.

This paper is structured as follows. Section 2 reviews the definition of join-
trees, and details the Shenoy–Shafer and Hugin architectures. Section 3 intro-
duces the main idea of the paper, and provides a corresponding algorithm which
can be thought of as either a more efficient Shenoy–Shafer architecture or a more
expressive Hugin architecture. It also details the semantics of messages and data
maintained by the new algorithm. Section 4 closes the paper with some conclud-
ing remarks. Proofs of all theorems are delegated to the appendix.

2 Jointree Algorithms

We review the basics of jointrees and jointree algorithms in this section. Let B
be a belief network. A jointree for B is a pair (T ,C), where T is a tree and C is a

function that assigns a label Ci to each node i in tree T . A jointree must satisfy
three properties: (1) each label Ci is a set of variables in the belief network; (2)
each network variable X and its parents U (a family) must appear together in
some label Ci; (3) if a variable appears in the labels of nodes i and j in the
jointree, it must also appear in the label of each node k on the path connecting
them. The label of edge ij in tree T is defined as Sij = Ci ∩Cj . The nodes of
a jointree and their labels are called clusters. Moreover, the edges of a jointree
and their labels are called separators. The width of a jointree is defined as the
number of variables in its largest cluster minus 1.

Jointree algorithms start by constructing a jointree for a given belief network
[10, 4, 3]. They associate tables (also called potentials) with clusters and separa-
tors.1 The conditional probability table (CPT) of each variable X with parents
U, denoted θX|U, is assigned to a cluster that contains X and U. In addition, a
table over each variable X, denoted λX and called an evidence table, is assigned
to a cluster that contains X. Evidence e is entered into a jointree by initializing
evidence tables as follows: we set λX(x) to 1 if x is consistent with evidence e,
and we set λX(x) to 0 otherwise.

Given some evidence e, a jointree algorithm propagates messages between
clusters. After passing two message per edge in the jointree, one can compute
the marginals Pr(C, e) for every cluster C. There are two main methods for prop-
agating messages in a jointree, known as the Shenoy–Shafer [10] and the Hugin
[4] architectures, which we review next (see [5, 6] for a thorough introduction to
each architecture).

2.1 The Shenoy–Shafer Architecture

Shenoy–Shafer propagation proceeds as follows. First, evidence e is entered into
the jointree through evidence indicators. A cluster is then selected as the root and
message propagation proceeds in two phases, inward and outward. In the inward
phase, messages are passed toward the root. In the outward phase, messages are
passed away from the root. Cluster i sends a message to cluster j only when it
has received messages from all its other neighbors k. A message from cluster i
to cluster j is a table Mij defined as follows:

Mij =
∑

Ci\Sij

Φi

∏
k 6=j

Mki, (1)

where Φi is the product of CPTs and evidence tables assigned to cluster i.
Once message propagation is finished in the Shenoy–Shafer architecture, we

have the following for each cluster i in the jointree:

Pr(Ci, e) = Φi

∏
k

Mki. (2)

1 A table is an array which is indexed by variable instantiations. Specifically, a table
φ over variables X is indexed by the instantiations x of X. Its entries φ(x) are in
[0, 1]. We assume familiarity with table operations, such as multiplication, division
and marginalization [3].

Let us now look at the time and space requirements of the Shenoy–Shafer
architecture. The space requirements are simply those needed to store the mes-
sages computed by Equation 1. That is, we need two tables for each separator
Sij , one table stores the message from cluster i to cluster j, and the other stores
the message from j to i. We will assume in our time analysis below the availabil-
ity of the table Φi, which represents the product of all CPT and evidence tables
assigned to cluster i. This is meant to simplify our time analysis, but we stress
that one of the attractive aspects of the Shenoy–Shafer architecture is that one
can afford to keep this table in factored form, therefore, avoiding the need to
allocate space for this table which may be significant.

As for time requirements, suppose that we have a jointree with n clusters
and width w. Suppose further that the table Φi is already available for each
cluster i, and let us bound the amount of work performed by the inward and
outward passes of the Shenoy–Shafer architecture, i.e., the work needed to eval-
uate Equations 1 and 2. We first note that for each cluster i, Equation 1 has
to be evaluated ni times and Equation 2 has to be evaluated once, where ni

is the number of neighbors for cluster i. Each evaluation of Equation 1 leads
to multiplying ni tables, whose variables are all in cluster Ci. Moreover, each
evaluation of Equation 2 leads to multiplying ni + 1 tables, whose variables are
also all in cluster Ci. The total complexity is then:∑

i

O(ni(ni − 1) exp(|Ci|) + ni exp(|Ci|)),

(since multiplying n elements requires n − 1 multiplications) which reduces
to

∑
iO(n2

i exp(w)) where w is the jointree width. This further reduces to
O(α exp(w)), where α =

∑
i n

2
i is a term that ranges from O(n) to O(n2) de-

pending on the jointree struture. For example, we may have what is known as
a binary jointree in which each cluster has at most three neighbors, leading to
α ≤ 6(n− 1). Or we may have a jointree with one cluster having the other n− 1
clusters as its neighbors, leading to α = n2 − n.

Given a Bayesian network with n variables, and an elimination order of width
w, we can construct a binary jointree for the network with the following prop-
erties: the jointree has width ≤ w, and no more than 2n− 1 clusters. Hence, we
can avoid the quadratic complexity suggested above by a careful construction of
the jointree, although this can dramatically increase the space requirements.

2.2 The Hugin Architecture

We now discuss the Hugin architecture, which tends to take less time but uses
more space. We first consider Figure 1 which provides an abstraction of the
difference between the Hugin and Shenoy–Shafer architectures. Here, node r has
neighbors 1, . . . , n, where each edge between r and its neighbor i is labeled with
a number xi. Node r is also labeled with a number xr. Suppose now that node r
wants to send a message mi to each of its neighbors i, where the content of this
message is: mi = xr

∏
j 6=i xj . One way to do this is to compute the above product

1

2
3

r

n
. .

.

x1

x2 x3

xn

Fig. 1. A simplified jointree message example

for each neighbor i. This is the approach taken by the Shenoy–Shafer architecture
and leads to a quadratic complexity in the number of neighbors n. Alternatively,
we can compute the product p = xr

∏n
j=1 xj only once, and then use it to

compute the message to each neighbor i as mi = p/xi. This is the approach
taken by the Hugin architecture. It is clearly more efficient as it only requires
one division for each message, while the first method requires n multiplications
per message. However, it requires that xi 6= 0, otherwise, p/xi is not defined. But
if the message is going to be later multiplied by an expression of the form xiα,
then we can define p/0 to be 0, or any other number for that matter, and our
computations will be correct since (xr

∏
j 6=i xj)xiα = 0 regardless of the message

value. This is exactly what happens in the Hugin architecture when computing
joint marginals and, hence, the division by zero does not pose a problem. Yet,
for some other queries which we discuss later, the quantity

∏n
i=1 xi is needed

when xr = 0, in which case it cannot be recovered by dividing p by xr. Moreover,
as we see next, since the Hugin architecture does not save the numbers xi, it
cannot compute the product

∏n
i=1 xi through an explicit multiplication of the

terms appearing in this product. This is basically the main difference between
the Hugin and Shenoy–Shafer architectures except that the above analysis is
applied to tables instead of numbers.

Hugin propagation proceeds similarly to Shenoy–Shafer by entering evidence
e using evidence tables; selecting a cluster as root; and propagating messages in
two phases, inward and outward. The Hugin method, however, differs in some
major ways. First, it maintains a table Φij with each separator, whose entries
are initialized to 1s. It also maintains a table Φi with each cluster i, initialized to
the product of all CPTs and evidence tables assigned to cluster i; see Figure 2.

Cluster i passes a message to neighboring cluster j only when i has received
messages from all its other neighbors k. When cluster i is ready to send a message
to cluster j, it does the following:

– it saves the separator table Φij into Φold
ij

– it computes a new separator table Φij =
∑

Ci\Sij
Φi

– it computes a message to cluster j: Mij = Φij/Φ
old
ij

– it multiplies the computed message into the table of cluster j: Φj = ΦjMij

Initialization:

After inward
pass:

After outward
pass:

0ab
.7ab
0ab
.2ab

AC AB
λλB θθB|A

1a
1a

λλA θθA λλC θθC|A.2ac
.2ac
0ac
.6ac

0ab
.7ab
0ab
.2ab

AC AB
λλB θθB|A

.7a

.2a

λλA θθA λλC θθC|A.14ac
.14ac
0ac
.12ac

0ab
.28ab
0ab
.12ab

AC AB
λλB θθB|A

.28a

.12a

λλA θθA λλC θθC|A.14ac
.14ac
0ac
.12ac

Fig. 2. Hugin propagation on a jointree under evidence b. The jointree is for network
A→ B, where θa = .6, θb|a = .2, θb|ā = .7, θc|a = 1, and θc|ā = .5.

After the inward and outward–passes of Hugin propagation are completed, we
have the following for each cluster i in the jointree: Pr(Ci, e) = Φi. The space
requirements for the Hugin architecture are those needed to store cluster and
separator tables: one table for each cluster and one table for each separator.
Note that the Hugin architecture does not save the message Mij = Φij/Φ

old
ij sent

from cluster i to cluster j.
As for time requirements, suppose that we have a jointree with n clusters

and width w. Suppose further that the initial tables Φi and Φij are already
available for each cluster i and separator ij. Let us now bound the amount of
work performed by the inward and outward passes of the Hugin architecture, i.e.,
the work needed to pass a message from each cluster i to each of its neighbors
j. Saving the old separator table takes O(exp(|Sij |)); computing the message
takes O(exp(|Ci|) + exp(|Sij |)), and multiplying the message into the table of
cluster j takes O(exp(|Cj |)). Hence, if each cluster i has ni neighbors, the total
complexity is: ∑

i

∑
j

O(exp(|Ci|) + 2 exp(|Sij |) + exp(|Cj |)),

which reduces to O(n exp(w)), where w is the jointree width. Note that this
result holds regardless of the jointree structure. Hence, the linear complexity in
n is obtained for any jointree, without a need to use a special jointree as in the
Shenoy–Shafer architecture.

2.3 Beyond Joint Marginals

The Hugin architecture gains efficiency over the Shenoy–Shafer architecture on
arbitrary jointrees by employing division. Moreover, although the use of division
does not prevent the architecture from producing joint marginals, it does prevent

it from producing answers to some other queries which are useful for a variety
of applications including sensitivity analysis [1], local optimization problems like
parameter learning [9], and MAP approximation [7].

To explain these additional queries, suppose that we just finished jointree
propagation using evidence e. This gives us the probability of evidence e, since
for any cluster C, we have Pr(e) =

∑
c Pr(c, e). Suppose now that we need the

probability of some new evidence which results from erasing the value of variable
X from e, denoted e−X. More generally, suppose that we need the probability
of evidence e − X,x, where x is a value of variable X which is different from
the one appearing in evidence e. Both of these probabilities can be obtained
locally using the Shenoy–Shafer architecture without further propagation, but
cannot in general be computed locally using the Hugin architecture (see [2] for
some special cases). The other type of query which falls in this category is that
of computing the derivative ∂Pr(e)/∂θx|u of the likelihood Pr(e) with respect
to a network parameter θx|u = 0. We will now show how these queries can be
answered locally using the Shenoy–Shafer architecture. We later show how they
can be computed using the modification we suggest to the Hugin architecture.

To compute the probabilities Pr(e−X,x) for a variable X using the Shenoy–
Shafer architecture, we first need to identify the cluster i which contains the
evidence table λX . The probabilities Pr(e − X,x), for each value x, are then
available in the following table which is defined over variable X:∑

Ci\X

∏
k

φk

∏
j

Mji.

Here, φk ranges over all CPTs and evidence tables assigned to cluster i, excluding
the evidence table λX [2, 8].

Similarly, to compute the derivatives ∂Pr(e)/∂θx|u, we need to identify the
cluster i which is assigned the CPT of variable X. The derivatives for all instan-
tiations xu of variable X and its parents U are then available in the following
table, which is defined over family XU:∑

Ci\X∪U

∏
k

φk

∏
j

Mji.

Here, φk ranges over all CPTs and evidence tables assigned to cluster i, excluding
the CPT θX|U [8].

Hugin is not able to handle these queries in general because it does not save
messages that are exchanged between clusters, and because table division may
lead to a division by zero (see [2] for a special case where Hugin can handle some
of these queries).

3 Getting the Best of Both Worlds

We now present a jointree propagation algorithm that combines the query an-
swering power of Shenoy–Shafer propagation with the efficiency of Hugin prop-
agation. The messages sent between clusters are the same as Shenoy–Shafer

messages, but the tables stored at each cluster represent the product of assigned
tables and incoming messages in a manner similar to the Hugin approach.

As discussed earlier, division is a key to Hugin efficiency, but it also produces
a loss of information. The problem is that multiplication by zero is noninvertible.
In Section 3.1 we discuss the problem in detail and introduce a simple and effi-
cient technique to circumvent it. In Section 3.2 we describe the new propagation
algorithm. Section 3.3 details the semantics of messages in the new architecture,
as well as the content of cluster and separator tables.

3.1 Handling Zeros

This section introduces the notion of a zero conscious number: a pair (z, b), where
z is a scalar and b is a bit. It also defines various operations on these numbers.
We then show in the following section that by employing such numbers in a
variation on the Hugin architecture, we can attain the same query answering
power exhibited by the Shenoy–Shafer architecture.

To motivate zero conscious numbers, consider a set of numbers x1, . . . , xn

and suppose that for each i = 1, . . . , n, our goal is to compute the product
mi =

∏
j 6=i xj . We distinguish between three cases:

Case 1: x1, . . . , xn contain no zeros. Then mi = p/xi, where p =
∏

j xj .
Case 2: x1, . . . , xn contain a single zero xk. Then mk =

∏
j 6=k xj and mi = 0

for all i 6= k.
Case 3: x1, . . . , xn contain more than one zero. Then mi = 0 for all i.

Note that in Case 3, we have mi = 0 =
∏

j 6=k xj for any k since we have
more than one zero. Hence, Case 2 and Case 3 can be merged together. Using
these cases, the messages mi can be computed efficiently by first computing a
pair (z, b) such that:

– b is a bit which indicates whether any of the elements xi is a zero (Cases 2,3).
– z is the product of all elements xi, excluding the single zero if one exists.

For example, if the elements xi are 1, 2, 3, 4, 5, we would compute (1 ∗ 2 ∗ 3 ∗ 4 ∗
5, f) = (120, f) since no zero was withheld. For elements 1, 2, 0, 4, 5, we would
compute (40, t). Finally, for elements 1, 2, 0, 4, 0, we would compute (0, t).

Then each message mi can be computed from the pair (z, b) as follows:

mi =

 z/xi if b = f
0 if b = t and xi 6= 0
z if b = t and xi = 0

This can be thought of as dividing the pair (z, b) by xi. In fact, we will call the
pair (z, b) a zero conscious number and define division by a scalar as given above.
Two more operations on zero conscious numbers will be needed. In particular,
multiplying a zero conscious number (z, b) by a scalar c is defined as:

(z, b) ∗ c =
{

(z, t) if b = f and c = 0
(c ∗ z, b) otherwise.

Moreover, the addition of two zero conscious numbers is defined as:

(z1, b1) + (z2, b2) =

 (z1, b1) if b1 = f and b2 = t
(z2, b2) if b1 = t and b2 = f
(z1 + z2, b1) otherwise.

Finally, we define

real(z, b) =
{
z if b = f
0 otherwise.

Note that if the zero conscious number (z, b) was computed for elements x1, . . . , xn,
then real(z, b) recovers the product

∏
j xj of these elements.

We can also defined zero conscious tables which map variable instantiations
to zero conscious numbers. Now let Ψ be a zero conscious table and Φ be a
standard table. The marginal

∑
X Ψ , product ΨΦ, and division Ψ/Φ can then

be defined in the obvious way. Moreover, real(Ψ) is defined as a standard table
which results from applying the real operation to each entry of Ψ .

3.2 Algorithmic Description

The algorithm we propose is very similar to Hugin propagation. Like the Hugin
architecture, it maintains a table Φij for each separator ij. A table is also main-
tained for each cluster. Unlike for Hugin, the table Ψi associated with cluster i
is a zero conscious table. From here on, we will use Ψ to denote a zero conscious
table and Φ to denote a standard table.

Initialization The separator table entries are initialized to 1, and the cluster
table entries are initialized to (1, f). The CPTs and evidence tables assigned to
a cluster are multiplied into the corresponding cluster table.

Message Propagation This algorithm requires the same obedience to message
ordering that the other jointree algorithms do. That is, messages are sent from
the leaves, toward some root, then back from the root to the leaves. A message
from cluster i to cluster j is computed as follows:

– Ψtemp ←
∑

Ci\Sij
Ψi

– Ψj ← Ψj(Ψtemp/Φij)
– Φij ← real(Ψtemp)

Figure 3 illustrates an example of this propagation scheme. This algorithm
basically mirrors Hugin propagation, but with zero conscious tables for clusters.
It has some minor time and space overhead over what the Hugin algorithm
requires. The time overhead consists of an additional logical test per operation.
The storage requirement is also fairly insignificant. Single precision floating point
numbers require 32 bits and double precision numbers require 64 bits, so an extra
bit (or even byte, if the processor can’t efficiently manipulate bits) per number
will increase the space requirements only slightly.

Initialization:

After inward
pass:

After
outward
pass:

ac

ac
AC AB

λλB θθB|A

1a
1a

T.3ab
F.7ab
T.8ab
F.2ab

F.2
F.2ac
T.6
F.6ac

λλA θθA λλC θθC|A

ac

ac
AC AB

λλB θθB|A

.7a

.2a

T.3ab
F.7ab
T.8ab
F.2ab

F.14
F.14ac
T.12
F.12ac

λλA θθA λλC θθC|A

AC AB
λλB θθB|A

.28a

.12a

T.12ab
F.28ab
T.48ab
F.12ab

ac

ac

F.14
F.14ac
T.12
F.12ac

λλA θθA λλC θθC|A

Fig. 3. Zero conscious propagation illustrated on a simple jointree under evidence b,
where the left cluster is root. The jointree is for network C ← A→ B, where θa = .6,
θb|a = .2, θb|ā = .7, θc|a = 1, and θc|ā = .5.

3.3 The Semantics

The message passing semantics is the same as for Shenoy–Shafer.

Theorem 1. The message passed from cluster i to cluster j is the same as the
message passed using Shenoy–Shafer propagation. That is, if Φij is the product of
all tables assigned to clusters on the i–side of edge ij, and if X are the variables
appearing in these tables, then the message Mij =

∑
X\Sij

Φij.

The cluster and separator table semantics closely resemble the corresponding
Hugin semantics.

Theorem 2. After all the messages have been passed, real(Ψi) = Pr(Ci, e) and
Φij = Pr(Sij , e) for all neighboring clusters i and j.

Although very similar to the Hugin semantics, the difference in the cluster
table makes these semantics significantly more powerful.

Theorem 3. Let φi1...φin be the CPTs and evidence tables assigned to cluster
i, and let Xm be the set of variables of φim. Then after message passing is
complete, ∑

Ci\Xk

∏
m6=k

φim

∏
j

Mji =

 ∑
Ci\Xk

Ψi

 /φik.

This theorem shows that we can use zero conscious division to perform the
same local computations permitted by the Shenoy–Shafer architecture. Consider
Figure 3 for an example, which depicts an example of zero conscious propagation
under evidence e = b. Given the table associated with the left cluster, we have
Pr(e) = .12+.14+.14 = .4. Suppose now that we want to compute the probability
of (e − B, b̄) = b̄. We can do this by identifying the cluster AB which contains

b T.6
F.4b

Retracted probabilites for B:

/ b 0
1b = b .6

.4b

Partial derivatives of θθAC:

/ =

F.28a
F.12a

.4a

.6a/ .7a
.2a

Partial derivatives of θθA:

=

ac

ac

F.14
F.14ac
T.12
F.12ac

.5ac

.5ac
0ac
1ac

.28ac

.28ac

.12ac

.12ac

Fig. 4. Evidence retraction and partial derivative operations for the jointree in Figure 3.

the evidence table λB and then computing: (
∑

A ΨAB)/λB . This leads to the
first division shown in Figure 4, showing that the probability of b̄ = .6.

Similarly, to compute the partial derivatives of Pr(e) with respect to param-
eters θC|A, we need ΨAC/θC|A which is also shown in Figure 4. According to
this computation, for example, we have ∂Pr(e)/∂θc|ā = .28. Finally, the partial
derivatives ∂Pr(e)/∂θa are obtained from (

∑
C ΨAC)/θA, which is also shown in

Figure 4. According to this computation, ∂Pr(e)/∂θā = .7.

4 Conclusion

We proposed a combination of the Shenoy–Shafer and Hugin architectures, in
which we use zero conscious tables/potentials. The use of these tables provide
a simple way to exploit the efficiency of the Hugin method, while extending the
set of queries that can be answered efficiently. For the price of a single bit per
cluster entry, and some minimal logic operations, all queries answerable using
Shenoy–Shafer propagation can now be answered using Hugin type operations.
For applications that require more than just marginal probabilities, such as local
search methods for MAP and sensitivity analysis, this can produce a significant
speed up over the use of Shenoy–Shafer architecture.

References

1. H. Chan and A. Darwiche. When do numbers really matter? In Proceedings of the
17th Conference on Uncertainty in Artificial Intelligence (UAI), pages 65–74, San
Francisco, California, 2001. Morgan Kaufmann Publishers, Inc.

2. R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic Networks
and Expert Systems. Springer, 1999.

3. C. Huang and A. Darwiche. Inference in belief networks: A procedural guide.
International Journal of Approximate Reasoning, 15(3):225–263, 1996.

4. F. V. Jensen, S. Lauritzen, and K. Olesen. Bayesian updating in recursive graphical
models by local computation. Computational Statistics Quarterly, 4:269–282, 1990.

5. S. L. Lauritzen and F. V. Jensen. Local computation with valuations from a com-
mutative semigroup. Annals of Mathematics and Artificial Intelligence, 21(1):51–
69, 1997.

6. V. Lepar and P. P. Shenoy. A comparison of Lauritzen-Spiegelhalter, Hugin and
Shenoy-Shafer architectures for computing marginals of probability distributions.
In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,
pages 328–337, 1998.

7. J. Park and A. Darwiche. Approximating map using local search. In Proceedings of
the 17th Conference on Uncertainty in Artificial Intelligence (UAI), pages 403–410,
San Francisco, California, 2001. Morgan Kaufmann Publishers, Inc.

8. J. Park and A. Darwiche. A differential semantics for jointree algorithms. In Neural
Information Processing Systems (NIPS) 15, 2003.

9. S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in probabilistic
networks with hidden variables. In Proceedings of the 11th Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 1146–1152, 1995.

10. P. P. Shenoy and G. Shafer. Propagating belief functions with local computations.
IEEE Expert, 1(3):43–52, 1986.

A Proof of Theorems

We first introduce a few lemmas about zero conscious potentials that we will
need to prove the theorems.

Lemma 1. Let Ψ be the zero conscious product of potentials Φ1, ..., Φn. Then
Ψ/Φi =

∏
j 6=i Φj.

Proof. Consider an entry ψ of Ψ , and the unique compatible entry φi in from
each table. Then, based on the division property of zero conscious numbers,
ψ/φi =

∏
j 6=i φj . This is true for all entries ψ, thus proving the result.

Lemma 2. Let c be a factor of zero conscious numbers a = (na, za) and b =
(nb, zb). Then (a+ b)/c = a/c+ b/c

Proof. We simply break it into cases and show that the definitions of the oper-
ations require that they agree.

Case 1 (c = 0) Then za = zb = t. Thus (a+ b)/c = (na + nb, t)/c = na + nb =
a/c+ b/c since a/c = na and b/c = nb.

Case 2 (c 6= 0, za = f, zb = f) Then (a+ b)/c = (na +nb, f)/c = (na +nb)/c =
na/c+ nb/c = a/c+ b/c.

Case 3 (c 6= 0, za = f, zb = t) Then (a+ b)/c = a/c = a/c+ b/c since b/c = 0.
Case 4 (c 6= 0, za = t, zb = f) Then (a+ b)/c = b/c = a/c+ b/c since a/c = 0.
Case 5 (c 6= 0, za = t, zb = t) Then (a+ b)/c = 0 = a/c+ b/c.

Lemma 3. Let Ψ be the zero conscious product of potentials Φ1, ..., Φn. Then
(
∑

C\S Ψ)/Φi =
∑

C\S(Ψ/Φi) where C are the variables of Ψ , and S are the
variables of Φi.

Proof. Consider the instances c of C compatible with instance s of S. Repeated
application of Lemma 2 implies that summing them, then dividing is the same
as dividing them summing. This is true for each element, and so for the table as
a whole.

Proof of Theorem 1

We will first prove the theorem for messages sent towards the root. We will then
prove it for messages away from the root.

Consider a leaf node i sending a message to its neighbor j. The cluster poten-
tial Ψi consists of the product of all tables φi1...φin assigned to it. The message
sent is (

∑
C\S Ψi)/1 =

∑
C\S

∏
k φik =

∑
C\S Φi which is the Shenoy–Shafer

message from a leaf node.
Now, assume by way of induction that all messages toward the root have been

received for cluster i. The cluster Ψi contains the product of the assigned tables
φi1, ..., φin and the incoming upward messages Mki from neighbors k. Then the
upward message is (

∑
C\S Ψi)/1 =

∑
C\S

∏
m φim

∏
k Mki =

∑
C\S Φi

∏
k Mki

which again is the Shenoy–Shafer message.
So, for the upward pass the messages sent equal the corresponding Shenoy–

Shafer messages.
Now, consider a message sent from the root r. The cluster potential Ψr con-

sists of the product of the assigned tables, and the incoming messages of all
neighbors. The message sent to neighbor j is (

∑
C\S Ψr)/Mjr which by applica-

tion of Lemma 3 followed by Lemma 1 yields
∑

C\S Φr

∏
i 6=j Mir which is again

the appropriate Shenoy–Shafer message.
Now, assume by way of induction that a cluster i has received messages which

equal the corresponding Shenoy–Shafer messages from each of its neighbors.
Then, the message sent to neighbor j away from the root is (

∑
C\S Ψi)/Mji

which again appealing to Lemmas 3 and 1 equals
∑

C\S Φi

∏
k 6=j Mki which is

the same as the Shenoy–Shafer message.

Proof of Theorem 2

After propagation completes, Ψi contains the product of the locally assigned
tables φi1...φin, and the incoming messages. Thus real(Ψi) =

∏
k φik

∏
j Mji =

Φi

∏
j Mji. Since the messages are the same as the Shenoy–Shafer messages, and

in the Shenoy–Shafer architecture Pr(Ci, e) = Φi

∏
j Mji, real(Ψi) = Pr(Ci, e).

For separator ij, where i is closer to the root, after propagation completes,
Φij = real(

∑
Ci\Sij

Ψi) =
∑

Ci\Sij
real(Ψi) =

∑
Ci\Sij

Pr(Ci, e) = Pr(Sij , e).

Proof of Theorem 3

After propagation completes, Ψi consists of the product of the tables φi1...φin

assigned to cluster i, and the incoming messages Mji. Then (
∑

Ci\Xk
Ψi)/φik =∑

Ci\Xk

∏
m6=k φim

∏
j Mji, which contains the partial derivatives of Pr(e) with

respect to the parameters of φik [8].

