
Optimal Time–Space Tradeoff in Probabilistic Inference

David Allen and Adnan Darwiche
University of California
Los Angeles, CA 90095

{dlallen,darwiche}@cs.ucla.edu

Abstract

Recursive Conditioning,RC, is an any–space al-
gorithm for exact inference in Bayesian networks,
which can trade space for time in increments of the
size of a floating point number. This smooth trade-
off is possible by varying the algorithm’s cache
size. WhenRC is run with a constrained cache
size, an important problem arises: Which specific
results should be cached in order to minimize the
running time of the algorithm?RC is driven by a
structure known as a dtree, and many such dtrees
exist for a given Bayesian network. In this paper,
we examine the problem of searching for an opti-
mal caching scheme for a given dtree, and present
some optimal time–space tradeoff curves for given
dtrees of several published Bayesian networks. We
also compare these curves to the memory require-
ments of state–of–the–art algorithms based on join-
trees. Our results show that the memory require-
ments of these networks can be significantly re-
duced with only a minimal cost in time, allowing
for exact inference in situations previously imprac-
tical. They also show that probabilistic reasoning
systems can be efficiently designed to run under
varying amounts of memory.

1 Introduction

Recursive Conditioning,RC, was recently proposed as an
any–space algorithm for exact inference in Bayesian net-
works[Darwiche, 2001]. The algorithm works by using con-
ditioning to decompose a network into smaller subnetworks
that are then solved independently and recursively usingRC.
It turns out that many of the subnetworks generated by this
decomposition process need to be solved multiple times re-
dundantly, allowing the results to be stored in a cache after
the first computation and then subsequently fetched during
further computations. This gives the algorithm its any–space
behavior since any number of results may be cached. This
also leads to an important question, which is the subject of
this paper: “Given a limited amount of memory, which re-
sults should be cached in order to minimize the running time
of the recursive conditioning algorithm?”

.40.60

a’a

a’

a

b’b

.80.20

.10.90

c’

c

d’d

.60.40

.50.50

.10.90b’d

.95.05b’d’

bd’

bd

e’e

.75.25

.75.25

b’

b

c’c

.85.15

.30.70

A C

B

D

A B C D

E

A B C D

E

Figure 1: An example dtree.

We approach this problem by formulating it as a system-
atic search problem. We then use the developed method
to construct time–space tradeoff curves for some real–world
Bayesian networks, and put these curves in perspective by
comparing them to the memory requirements of state–of–
the–art methods based on jointrees[Jensenet al., 1990;
Shafer and Shenoy, 1990]. The curves produced illustrate that
a significant amount of memory can be reduced with only a
minimal cost in time. In fact, for much of their domains, the
time–space curves we produce appear close to linear, with ex-
ponential behavior appearing only near the extreme case of no
caching. This dramatic space reduction, without a significant
time penalty, allows one to practically reason with Bayesian
networks that would otherwise be impractical to handle.

This paper is structured as follows. We start in Section 2
by providing some background on recursive conditioning and
the cache allocation problem. We then formulate this prob-
lem in Section 3 as a systematic search problem. Time–space
tradeoff curves for several published Bayesian networks are
then presented in Section 4. Finally, in Section 5, we provide
some concluding remarks and discuss some future work.

2 Any–Space Inference
The RC algorithm for exact inference in Bayesian networks
works by using conditioning and case analysis to decompose
a network into smaller subnetworks that are solved indepen-
dently and recursively. The algorithm is driven by a structure

known as a decomposition tree (dtree), which controls the de-
composition process at each level of the recursion. We will
first review the dtree structure and then discussRC.

2.1 Dtrees
Definition 1 [Darwiche, 2001] A dtreefor a Bayesian net-
work is a full binary tree, the leaves of which correspond to
the network conditional probability tables (CPTs). If a leaf
nodet corresponds to a CPTφ, thenvars(t) is defined as the
variables appearing in CPTφ.

Figure 1 depicts a simple dtree. The root nodet of the dtree
represents the entire network. To decompose this network,
the dtree instructs us to condition on variableB, called the
cutset of root nodet. Conditioning on a set of variables leads
to removing edges outgoing from these variables, which for a
cutset is guaranteed to disconnect the network into two sub-
networks, one corresponding to the left child of nodet and
another corresponding to the right child of nodet; see Fig-
ure 1. This decomposition process continues until a boundary
condition is reached, which is a subnetwork that has a single
variable.

We will now present some notation needed to define ad-
ditional concepts with regard to a dtree. The notationtl and
tr will be used for the left child and right child of nodet,
and the functionvars will be extended to internal nodest:
vars(t)

def
= vars(tl)∪vars(tr). Each node in a dtree has three

more sets of variables associated with it. The first two of these
sets are used by theRC algorithm, while the third set is used
to analyze the complexity of the algorithm.

Definition 2 The cutsetof internal node t in a dtree

is: cutset(t)
def
= vars(tl) ∩ vars(tr) − acutset(t), where

acutset(t) is the union of cutsets associated with ancestors
of node t in the dtree. The contextof nodet in a dtree is:

context(t)
def
= vars(t) ∩ acutset(t). The clusterof nodet in

a dtree is: cutset(t) ∪ context(t) if t is a non-leaf, and as
vars(t) if t is a leaf.

Thewidthof a dtree is the size of its maximal cluster−1.
The cutset of a dtree nodet is used to decompose the net-

work associated with nodet into the smaller networks asso-
ciated with the children oft. That is, by conditioning on vari-
ables incutset(t), one is guaranteed to disconnect the net-
work associated with nodet. The context of dtree nodet
is used to cache results: Any two computations on the net-
work associated with nodet will yield the same result if these
computations occur under the same instantiation of variables
in context(t). Hence, a cache is associated with each dtree
nodet, which stores the results of such computations (proba-
bilities) indexed by instantiations ofcontext(t). This means
that the size of a cache associated with dtree nodet can grow
as large as the number of instantiations ofcontext(t).

For a given Bayesian network, many different dtrees exist
and the quality of the dtree significantly affects the resource
requirements ofRC. The width is one important measure of
this, asRC’s time complexity is exponential in this value.
The construction of dtrees is beyond the scope of this paper,
but in [Darwiche, 2001; Darwiche and Hopkins, 2001] it was
shown how to create them from elimination orders, jointrees,

Algorithm 1 RC(t): Returns the probability of evidencee
recorded on the dtree rooted att.
1: if t is a leaf nodethen
2: return LOOKUP(t)
3: else
4: y ← recorded instantiation ofcontext(t)
5: if cache?(t) andcachet[y] 6= nil then
6: returncachet[y]
7: else
8: p ← 0
9: for instantiationsc of uninstantiated vars incutset(t) do

10: record instantiationc
11: p ← p + RC(tl)RC(tr)
12: un–record instantiationc
13: when cache?(t), cachet[y] ← p
14: returnp

Algorithm 2 LOOKUP(t).
φ ← CPT of variableX associated with leaft
if X is instantiatedthen

x ← recorded instantiation ofX
u ← recorded instantiation ofX ’s parents
returnφ(x|u) // φ(x|u) = Pr(x|u)

else
return1

or directly by using the hMeTiS[Karypis and Kumar, 1998]
hypergraph partitioning program.

2.2 Recursive Conditioning
Given a Bayesian network and a corresponding dtree with

root t, theRC algorithm given in Algorithms 1 and 2 can be
used to compute the probability of evidencee by first “record-
ing” the instantiatione and then callingRC(t), which returns
the probability ofe.

Our main concern here is with Line 5 and Line 13 of the
algorithm. On Line 5, the algorithm checks whether it has
performed and cached this computation with respect to the
subnetwork associated with nodet. A computation is charac-
terized by the instantiation oft’s context, which also serves
as an index into the cache attached to nodet. If the com-
putation has been performed and cached before, its result is
simply fetched. Otherwise, the computation is performed and
its result is possibly cached on Line 13.

When every computation is cached,RC usesO(n exp(w))
space andO(n exp(w)) time, wheren is the number of nodes
in the network andw is the width of the dtree. This cor-
responds to the complexity of jointree algorithm, assuming
that the dtree is generated from a jointree[Darwiche, 2001].
When no computations are cached, the memory requirement
of RCis reduced toO(n), in which case the time requirement
increases toO(n exp(w log n)). Any amount of memory be-
tween these two extremes can also be used in increments of
the size of a floating point number, a cache value.

Suppose now that the available memory is limited and we
can only cache a subset of the computations performed by
RC. The specific subset that we cache can have a dramatic ef-
fect on the algorithm’s running time. A key question is then to
choose that subset which minimizes the running time, which

)(Aφ)(ABφ)(ABCφ)(CDφ

Figure 2: An example dgraph.

is the main objective of this paper. We refer to this as the
secondary optimization problem,with the first optimization
problem being that of constructing an optimal dtree.

Most of our results in this paper are based on a version of
RC which not only computes the probability of evidencee,
but also posterior marginals over families and, hence, poste-
rior marginals over individual variables. This version ofRC
uses adecomposition graph(dgraph), which is basically a set
of dtrees that share structure.

An example dgraph for a network with four variables can
be seen in Figure 2. It should be noted that each of the four
root nodes corresponds to a valid dtree, so this dgraph ac-
tually contains four dtrees which share a significant portion
of their structure. Creation of dgraphs is discussed in[Dar-
wiche, 2002].

The code in Algorithms 1 and 2 is also used in this ver-
sion ofRC, whereRC(t) is called once on each roott of the
dgraph (the posterior marginal of each family is computed
as a side effect of each of these calls). This version ofRC
uses more memory as it maintains more caches. But it is
more meaningful when it comes to comparing our time–space
tradeoff curves with the memory requirements of jointree al-
gorithms, as this version ofRC is equally powerful to these
algorithms.

3 The Cache Allocation Problem
The total number of computations that a dgraph (or dtree)
nodet needs to cache equals the number of instantiations of
context(t). Given a memory constraint, however, one may
not be able to cache all these computations, and we need a
way to specify which results in particular to cache. Acache
factor cf for a dgraph is a function which maps each internal
nodet in the dgraph into a numbercf (t) between0 and1.
Hence, ifcf (t) = .75, then nodet can only cache75% of
these total computations. Adiscretecache factor is one which
maps every internal dgraph node into either1 or 0: all of the
node’s computations are cached, or none are cached. TheRC
code in Algorithms 1 and 2 assumes a discrete cache factor,
which is captured by the flagcache?(t), indicating whether
caching will take place at dgraph nodet.

0

0 0

1

11

0 1 0 1 0 1 0 1

G0 G1 G2 G3 G4 G5 G6 G7

1t

2t 2t

3t 3t 3t 3t

Figure 3: Search tree for a dgraph with3 internal nodes.

One can count the number of recursive calls made byRC
(and, hence, compute its running time) given any discrete
cache factor. Specifically, iftp denotes a parent of nodet
in a dgraph, andS# denotes the number of instantiations of
variablesS, the number of recursive calls made to nodet is
[Darwiche, 2001; 2002]:

calls(t) =
∑
tp

cutset(tp)#[cf(tp)context(tp)# +

(1− cf(tp))calls(tp)]. (1)

If the cache factor is not discrete, the above formula gives the
average number of recursive calls, since the actual number of
calls will depend on the specific computations cached. This
equation is significant as it can be used to predict the expected
time requirement ofRC under a given caching scheme.

We focus in this paper on searching for an optimal dis-
crete cache factor, given a limited amount of memory, where
optimality is with respect to minimizing the number of recur-
sive calls. To this end, we will first define a search problem
for finding an optimal discrete cache factor and then develop
a depth–first branch–and–bound search algorithm. We will
also use the developed algorithm to construct the time–space
tradeoff curves for some published Bayesian networks from
various domains, and compare these curves to the memory
demands and running times of jointree algorithms.

3.1 Cache Allocation as a Search Problem
The cache allocation problem can be phrased as a search
problem in whichstatesin the search space correspond to
partial cache factors that do not violate the given memory
constraint, and where anoperatorextends a partial cache fac-
tor by making a caching decision on one more dgraph node.
The initial state in this problem is the empty cache factor, in
which no caching decisions have been made for any nodes
in the dgraph. Thegoal statescorrespond to complete cache
factors, where a caching decision has been made for every
dgraph node, without violating the given memory constraint.
Suppose for example that we have a dgraph with three inter-
nal nodest1, t2, t3. This will then lead to the search tree in
Figure 3. In this figure, each noden in the search tree repre-
sents a partial cache factorcf . For example, the node in bold

corresponds to the partial cache factorcf (t1) = 0, cf (t2) = 1
andcf (t3) =?. Moreover, if noden is labeled with a dgraph
nodeti, then the children ofn represent two possible exten-
sions of the cache factorcf : one in which dgraph nodeti
will cache all computations (1–child), and another in which
dgraph nodeti will cache no computations (0–child).

According to the search tree in Figure 3, one always makes
a decision on dgraph nodet1, followed by a decision on
dgraph nodet2, and then nodet3. A fixed ordering of dgraph
nodes is not necessary, however, as long as the following con-
dition is met: A decision should be made on a dgraph nodeti
only after decisions have been made on all its ancestors in the
dgraph. We will explain the reason for this constraint later on
when we discuss cost functions.

In the search tree depicted in Figure 3, the leftmost leaf
represents no caching, while the rightmost leaf represents full
caching. The search trees for this problem have a maximum
depth ofd, whered is the number of internal nodes in the
dgraph. Given this property, depth–first branch–and–bound
search is a good choice given its optimality and linear space
complexity[Papadimitriou and Steiglitz, 1998]. It is also an
anytime algorithm, meaning that it can always return its best
result so far if interrupted, and if run to completion will return
the optimal solution. Hence, we will focus on developing a
depth–first branch–and–bound search algorithm.

3.2 Cost Functions
The depth–first branch–and–bound (DFBnB) algorithm re-
quires a cost functionf which assigns a costf(n) to every
noden in the search tree. The functionf(n) estimates the
cost of an optimal solution that passes throughn. The key
here is thatf(n) must not overestimate that cost; otherwise,
one loses the optimality guarantee offered by the search algo-
rithm. We will now develop such a cost functionf(n) based
on the following observations. Since each noden represents a
partial cache factorcf , functionf(n) must estimate the num-
ber of recursive calls made toRC based on an optimal com-
pletion of cache factorcf . Consider now the completioncf ′

of cf in which we decide to cache at each dgraph node that
cf did not make a decision on. This cache factorcf ′ is the
best completion ofcf from the viewpoint of running time,
but it may violate the constraint given on total memory. Yet,
we will use it to computef(n) as it guarantees thatf(n) will
never overestimate the cost of an optimal completion ofcf .

One important observation in this regard is that once the
caching decision is made on the ancestors of dgraph nodet,
we can compute exactly the number of recursive calls that
will be made to dgraph nodet (see Equation 1). Therefore,
when extending a partial cache factor, we will always insist
on making a decision regarding a dgraph nodet for which
decisions have been made on all its ancestors. This improves
the quality of the estimatef(n) asn gets deeper in the tree. It
also allows us to incrementally compute this estimate based
on the estimate ofn’s parent in the search tree.

3.3 Pruning
As depicted by the search tree in Figure 3, there is potentially
an exponential number of goal nodes in the search tree and
the combinatorial explosion of exhaustive search can become

unmanageable very quickly. Hence the search algorithm must
eliminate portions of the search space while still being able to
guarantee an optimal result. One of the key methods of doing
this is by pruning parts of the search tree which are known to
contain non-optimal results. The DFBnB algorithm does this
by pruning search tree nodes when the cost functionf(n) is
larger than or equal to the current best solution. Hence, more
accurate cost functions will allow more pruning. Another ma-
jor source of pruning is the given constraint on total memory.
This is accomplished by pruning a search tree node and all
its descendants once it attempts to assign more memory to
caches than is permitted by the memory constraint.

3.4 Search Decisions
Now that we have chosen a cost function, we are still left with
two important choices in our search algorithm: (1) which
child of a search tree node to expanded first, and (2) in what
order to visit dgraph nodes during search. Expanding the1–
child first is a greedy approach, as it attempts to fully cache
at a dgraph node whenever possible. Results on many dif-
ferent networks have shown that in many cases, expanding
the1–child before the0–child appears to be equal to or bet-
ter than the opposite, and it is this choice that we adopt in
our experiments. The specific order in which we visit dgraph
nodes in the search tree turns out to have an even more dra-
matic effect on the efficiency of search. Even though we make
caching decisions on parent dgraph nodes before their chil-
dren, there is still a lot of flexibility. Our experimentation on
many networks has shown that choosing the dgraph nodet
with the largestcontext(t)# is orders of magnitude more ef-
ficient than some other basic ordering heuristics[Allen and
Darwiche, 2002]. This choice corresponds to choosing the
dgraph node with the largest cache, and it is the one we use
in our search algorithm.

4 Time–Space Tradeoff
The main goal of this section is to present time–space tradeoff
curves for a number of benchmark Bayesian networks, some
of which are obtained from[Bayesian Network Repository,
URL] and others are included in the distributions of[Hugin
Expert, URL; GeNIe, URL]. The main points to observe with
respect to each curve is the slope of the curve, which pro-
vides information on the time penalty one pays when reduc-
ing space in probabilistic inference. The second main point
is to compare the produced curves with the time and space
requirement of jointree methods, as the version ofRC we
are using provides the same functionality as these algorithms
(that is, probability of evidence and posterior marginals over
families and variables). This baseline comparison is impor-
tant as it places our results in the context of state–of–the–art
inference systems.

Time–space tradeoff curves.Figures 4, 5, and 6 depict
optimal discrete time–space tradeoff curves for three net-
works. These curves were generated as follows. A join-
tree was first generated for the network using Hugin.1 The

1We used Hugin’s default setting: the minimum fill–in weight
heuristic in conjunction with prime component analysis.

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (KB)

alarm.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

9.8 KB
3.7 KB

0 sec

Figure 4: Time–space tradeoff on Alarm.

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

B.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

7.3 MB
2.1 MB

2 sec

Figure 5: Time–space tradeoff on B.

jointree was then converted into a dtree as described in[Dar-
wiche, 2001]. The dtree was finally converted into a dgraph
as described in the full paper. Two sets of results were then
generated:

• We computed the space requirements for jointree algo-
rithms, using both the Hugin[Jensenet al., 1990] and
Shenoy–Shafer[Shafer and Shenoy, 1990] architectures.
For the first architecture, we assumed one table for each
clique and one table for each separator. For the sec-
ond, we assumed two tables for each separator (no ta-
bles for cliques). We also performed propagation on the
jointree using Netica[Norsys Software Corp., URL] and
recorded the running time.

• We then ran our search algorithm to find an optimal
cache factor under different memory constraints, where
we generated100 data points for each curve. For each
caching factor that we identified, we computed the num-
ber of recursive calls that will be made byRCunder that
factor and converted the calls to seconds.2

2Our Java implementation ofRC on a Sun Ultra10, 440 MHz

0

50

100

150

200

250

300

0 2 4 6 8 10 12

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

water.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

30.2 MB
7.6 MB

7 sec

dtree based on Hugin jointre
alternative dtree

Figure 6: Time–space tradeoff on Water.

A number of observations are in order here. First, these time–
space tradeoff curves show that the amount of memory used
by RC under full caching is very close to that required by
the Shenoy–Shafer architecture (the Hugin architecture takes
much more space). Second, the curves show that a signifi-
cant amount of memory can sometimes be reduced from full
caching with only a limited increase in the time required; in
fact, the exponential growth appears to be occurring only near
the lower extreme of no caching. The space requirement for
Water (Figure 6), for example, can be reduced to30% while
only increasing the running time by a factor of6. Moreover,
the space requirements for B (Figure 5) can be reduced to
about2.5% while increasing the running time by a factor of
20. Finally, we note that each optimal search for the Water
and B networks took less than two seconds, and each opti-
mal search for Alarm took less than two minutes. We stress
though that such searches need to be done only once for a
network, and their results can then be used for many further
queries.

Non–optimal tradeoffs. On some networks, the search
space is too large to solve optimally using our search algo-
rithm, but the anytime nature of the algorithm allows us to
interrupt the search at any point and ask for the best result
obtained thus far. Figures 7 and 8 were generated by allow-
ing the search to run for an hour. Even though these curves
are not optimal, they are useful practically. For example, ac-
cording to these curves, the memory requirement of Barley
can be reduced from about22 MB to about6.5 MB while
only increasing the running time from about1 to 4 minutes.
Moreover, the space requirement of Munin1 can be reduced
from about370 MB to 150 MB, while increasing the running
time from about22 minutes to about6 hours. Encouraged
by such results, we are planning to investigate other (non–
optimal) search methods, such as local search.

Dtrees vs dgraphs. Running RC on a dtree takes less
space than running it on a dgraph, but produces much less

computer with256 MB of RAM, makes an average number of three
million recursive calls per second.

0

100

200

300

400

500

600

700

800

900

1000

2 4 6 8 10 12 14 16 18 20 22

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

barley.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

151.1 MB
21.0 MB

29 sec

Figure 7: Time–space tradeoff on Barley.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 50 100 150 200 250 300 350 400

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

munin1.net DGraph - RC Calls (All) vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

3,111.3 MB
353.7 MB

 Failed

Figure 8: Time–space tradeoff on Munin1.

information (probability of evidence instead of posterior
marginals). To illustrate this difference concretely, we present
in Figure 9 two tradeoff curves for the Water network, assum-
ing a dtree version ofRC, which require much less memory
compared to the curves in Figure 6. Suppose now that we
only have1 MB of memory, instead of the7.6 MB or 30.2
MB required by jointree algorithms, and we want to compute
the posterior marginals for all variables. According to Fig-
ure 6, we can do this in669 seconds using the dgraph version
of RC. The dtree version takes16.7 seconds to compute the
probability of evidence under this amount of memory, and
we would have to run it85 times to produce all posterior
marginals for the Water network (given variable cardinalities
in Water).

Effect of dtree/dgraph on tradeoff. Our notion of op-
timality for tradeoff is based on a given dtree/dgraph; hence,
generating different dtrees/dgraphs could possibly lead to bet-
ter time–space tradeoff curves. To illustrate this point, we
generated tradeoff curves for the Water network based on

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3 3.5 4

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

water.net DTree - RC Calls vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

30.2 MB
7.6 MB

7 sec

dtree based on Hugin jointre
alternative dtree

Figure 9: Time–space tradeoff on Water for computing prob-
ability of evidence.

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300 350 400

R
un

ni
ng

 ti
m

e
(s

ec
)

Space (MB)

random.net DTree - RC Calls vs Cache

Hugin Space:
Shenoy-Shafer Space:
Netica Time:

11,709.0 MB
694.6 MB

 Failed

Figure 10: Time–space tradeoff on Random for computing
probability of evidence.

multiple dtrees/graphs, as shown in Figures 6 and 9. One ob-
servation that we came across is that dtrees/graphs that are
based on jointrees tend to require less memory under full
caching, but are not necessarily best for tradeoff towards the
no caching region; see Figures 6 for an example. Yet, we
used such dtrees/graphs in this paper in an effort to provide a
clear baseline for comparison with jointree methods. If we
relax this constraint, however, we can obtain better trade-
off curves than is generally reported here, as illustrated by
Figures 6 and 9. The specific way in which properties of
a dtree/dgraph influence the quality of corresponding time–
space tradeoff curves is not very well understood, however,
and we hope to shed more light on this in future work.

Size of search space.It should be noted that the difficulty
of obtaining an optimal time–space tradeoff curve on some
networks is not due to a large space requirement, but is due
mostly to the number of nodes in the Bayesian network as that
is what decides the size of search space. To further illustrate

this point, we generated a network randomly with40 nodes
(many of them non–binary),86 edges, and a width of 14. This
network requires extensive memory but has a relatively small
number of variables. In fact, both Netica and Hugin were un-
able to compile the network requiring about6 GB and11 GB
respectively. We were able, however, to produce an optimal
time–space tradeoff curve for this network. The curve for the
dtree version ofRC is shown in Figure 10. According to this
curve, we can compute the probability of any evidence on this
network in about 2 hours using only about75 MB.

Related work. We close this section by a note on re-
lated work for time–space tradeoff in probabilistic reasoning,
which takes a different approach[Dechter and Fattah, 2001].
In this work, large separators in a jointree are removed by
combining their adjacent clusters, which has the effect of re-
ducing the space requirements of the Shenoy–Shafer architec-
ture (as we now have fewer separators), but also increasing its
running time (as we now have larger clusters). The tradeoffs
permitted by this approach, however, are coarser than those
permitted byRC as discussed in[Darwiche, 2001]. Further-
more, the secondary optimization problem of which separa-
tors to remove in order to minimize running time is not ad-
dressed in[Dechter and Fattah, 2001] for the proposed ap-
proach, as we do in this paper for theRC approach.

5 Conclusions and Future Work
The main contribution of this paper is a formal framework,
and a corresponding working system, for trading space for
time when designing probabilistic reasoning systems based
on Bayesian networks. The proposal is based on the algo-
rithm of recursive conditioning, and is accompanied with a
set of experimental results showing that a significant amount
of memory can sometimes be reduced while only incurring
a reasonable penalty in running time. The proposed frame-
work is then beneficial for designing reasoning systems with
limited memory, as in embedded systems, and for reasoning
with challenging networks on which jointree algorithms can
exhaust the system memory.

Recursive conditioning and the described time–space
tradeoff system have been implemented in JAVA in the
SAM IAM tool, which is available publically[UCLA Auto-
mated Reasoning Group, URL].

Acknowledgments
This work has been partially supported by NSF grant IIS-
9988543 and MURI grant N00014-00-1-0617.

References
[Allen and Darwiche, 2002] David Allen and Adnan Darwiche.

Optimal time–space tradeoff in probabilistic inference. InPro-
ceedings of the First European Workshop on Probabilistic Graph-
ical Models, 1–8, 2002.

[Bayesian Network Repository, URL] Bayesian Network Reposi-
tory. http://www.cs.huji.ac.il/labs/compbio/Repository/, URL.

[Darwiche and Hopkins, 2001] Adnan Darwiche and Mark Hop-
kins. Using recursive decomposition to construct elimination or-
ders, jointrees, and dtrees. InECSQARU’01, 180–191, 2001.

[Darwiche, 2001] Adnan Darwiche. Recursive conditioning.Arti-
ficial Intelligence, 126(1–2):5–41, 2001.

[Darwiche, 2002] Adnan Darwiche. Decomposition graphs. Tech-
nical Report D-134, Computer Science Department, UCLA,
2002.

[Dechter and Fattah, 2001] Rina Dechter and Yousri El Fattah.
Topological parameters for time-space tradeoff.Artificial Intelli-
gence, 125(1-2):93–118, 2001.

[GeNIe, URL] GeNIe. http://www2.sis.pitt.edu/˜genie/, URL.

[Hugin Expert, URL] Hugin Expert. http://www.hugin.com/, URL.

[Jensenet al., 1990] Finn V. Jensen, Steffen L. Lauritzen, and Kris-
tian G. Olesen. Bayesian updating in causal probabilistic net-
works by local computations.Computational Statistics Quar-
terly, 4:269–282, 1990.

[Karypis and Kumar, 1998] George Karypis and Vipin Kumar.
Hmetis: A hypergraph partitioning package.
http://www.cs.umn.edu/karypis, 1998.

[Norsys Software Corp., URL] Norsys Software Corp.
http://www.norsys.com/, URL.

[Papadimitriou and Steiglitz, 1998] Christos H. Papadimitriou and
Kenneth Steiglitz.Combinatorial Optimization. Dover Publica-
tions, Inc., 1998.

[Shafer and Shenoy, 1990] Glenn R. Shafer and Prakash P. Shenoy.
Probability propagation.Annals of Mathematics and Artificial
Intelligence, 2:327–352, 1990.

[UCLA Automated Reasoning Group, URL] UCLA Automated
Reasoning Group. SamIam: Sensitivity Analysis, Modeling,
Inference And More. http://reasoning.cs.ucla.edu/samiam, URL.

